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ABSTRACT

Knowledge-based potentials are developed to investigate the differentiation of native structures from

their decoy sets. This work presents the construction of two different distance-dependent potential en-

ergy functions based on two basic assumptions using mathematical modeling. In the first case, according

to Anfinsen’s dogma, we assumed that the energy of each model structure should be more positive than

the corresponding native type. In the second one, we assumed that the energy difference between the

native and decoy structures changes linearly with the root-mean-square deviation of structures. These

knowledge-based potentials are expressed by the B-spline basis functions of the pairwise distances be-

tween Cα-Cα of inter-residues. The potential function parameters in the above two approaches were

optimized using the linear programming algorithm on a large collection of Titan-HRD and tested on the

remainder. We found that the potential functions produced by Anfinsen’s dogma detect native structures

more accurately than those developed by the root-mean-square deviation. Both linear programming

knowledge-based potentials (LPKP) successfully detect the native structures from an ensemble of decoys.

However, the LPKP of the first approach is able to correctly identify 130 native structures out of 150

tested cases with an average rank of 1.67. While the second approach LPKP detects 124 native structures

from their decoys. We concluded that linear programming optimization is a promising method in gener-

ating knowledge-based potential functions. All the high-resolution structures (training and testing) used

for this work are available online and can be downloaded from http://titan.princeton.edu/HRDecoys.

Keywords

knowledge-based potential, B-spline basis function, native structure detection, optimization, linear pro-

gramming
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1 Introduction

Proteins are important macromolecules that involved in all cellular processes which theirs functions are

directly related to the 3D structure. The prediction of the protein structure is one of the incentive

questions in computational biology. Although we know millions of protein sequences, less than a hundred

thousand protein structures have been found until now [1]. It can be indirectly concluded that determining

the protein structure at the atomic level is overwhelming. Reports on ab initio technique developments

show significant progress in predicting protein structure in previous years, however, the quality of models

does not have enough accuracy to be useful for biologists [2]. Hence, the bioinformatics approach is most

widely used to predict the tertiary structure of proteins.

According to Anfinsen’s dogma, the native structure is determined by the amino acid sequence of protein

which means at the environmental condition that folding occurs, the native structure is formed at the

global minimum free energy [3]. Force fields have been developed to calculate the potential energy

of molecular systems which refer to the functional form and parameter sets that can be derived from

empirical and theoretical studies. The protein structure is considered as atomic or coarse-grained so

that potential functions can include pairwise interactions, side-chain orientations, secondary structural

preferences, solvent-exposure, and other geometric properties of proteins [4, 5]. The accuracy of these

potential functions can be traced by evaluating the ability to detect the native structure from a decoy

ensemble. There are two general knowledge-based and physics-based approaches to introduce potential

functions [6, 7, 8, 9, 10]. Knowledge-based potentials are simple potentials extracted from the protein

data bank designed to improve the quality of protein models whereas, in physics-based potentials, the

chemical properties of the molecule are also taken into account. Various methods have been developed

to increase the accuracy of these potential functions in recent years [11, 12, 13, 14].

In most cases, knowledge-based potentials are used to sort decoy structures by calculating similarity

to the native structure. The inability of the proposed model to identify the native structure as the

lowest potential energy is regarded as the error rate of the potential functions. There are two methods

to generate knowledge-based potentials. The first method is to use the Boltzmann inversion equation

to convert the distribution of geometric properties of known structures to potential energy functions.

This method is also called the statistical potential obtained from the ratio of observed frequencies to

the reference state. Therefore, several models have been developed for representing reference states such

as Sippl’s assumption, distance scaled finite ideal-gas reference state (DFIRE), and discrete optimized

protein energy (DOPE). In the second method, the potentials are extracted from a training process to

quantitatively differentiate between the incorrectly folded models and native structures [1].

Using physical potential functions and considering more than 40 physical constraints in a linear program-
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ming problem, Rajgaria et.al [15] have achieved better results than previous studies on the Titan-HRD

protein data set. Despite the desirable results, it is inevitable to consider several constraints in the op-

timization problem using the physical potential functions. In some studies, the least-square problem has

been used to optimize knowledge-based potentials. Since the least-square problem is based on norm-2,

the energy difference between the native structure and the decoy can give both positive and negative

values. Therefore, the use of this method in protein modeling makes the Anfinsen’s dogma not applicable

to the potential production process. In these studies, choosing the best decoy instead of recognizing the

native structure is the main parameter for model evaluation. The best decoy is determined by calculating

the minimum distance and the lowest energy difference with the native structure. In addition to the

inability to distinguish the native structure from the decoy, there is also a high computational cost for

using the least-squares method [1, 16].

Although many influential factors are involved in the production of knowledge-based potentials. But

in this study, the modeling of these functions with a mathematical approach is discussed. Given that

the purpose of modeling is to reduce the parameters involved in the problem as much as possible. We

considered the pairwise distances between the Cα of amino acids so that the knowledge-based potentials

are formulated using B-spline basis functions. We introduce two different optimization processes to

obtain potential parameters. Both are based on Anfinson’s dogma that in the first method only the

energy difference of the native and decoy structure is included in the modeling while in the latter method

it is assumed that the energy difference is linearly proportional to the distance of structures. We solved

them by using MATLAB software and checked the results of the two methods. Finally, our results were

cross-checked with previously reported data. Our LPKPs have better detection for native structures

compared to other methods. Both LPKPs are able to identify 130 and 124 native structures out of 150

tested cases, respectively.

2 Materials and Methods

In this model, the amino acids are represented by the location of Cα atoms. Hence a protein with m

amino acids is expressed by a vector, C = (c1, c2, ..., cm) where ck is the location of Cα of the k-th amino

acid having the following three-dimensional coordinates:

ck = (xk, yk, zk).

We denote the native structure of each protein with N = (n1, n2, ..., nm) and decoy structures with

Di = (d1, d2, ..., dm), where i is the decoy number.
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2.1 Geometric Distance Between Two Protein Structures

The Euclidean distance between two points is the basis for calculating the geometric distance between

two protein structures. Root-mean-square deviation (RMSD) method was used for this purpose so that

the first protein structure is considered to be the reference and the second structure is best fitted to the

first one using a transformation operator G:

RMSD = min
G

√∑m
k=1 ‖nk −G(dk)‖2

m
,

where nk and dk are the k-th location of the Cα atoms in native reference structure and decoy structures,

respectively, and m is the number of amino acids. The transformation G involves a set of translation and

rotation operations to obtain the best structural alignment between two protein structures and it does not

change the shape or size of the proteins [17, 18, 19]. RMSD as defined above is a norm-2 metric distance

[20]. The norm-2 (also written ”L2-norm”) ‖x‖ is a vector norm defined for a vector xT = [x1, x2, . . . xn]

by

‖x‖ =

√√√√ n∑
k=1

|xk|2,

where |xk| denotes the absolute value of xk [21].

2.2 Knowledge-based Potential Function

According to Anfinsen’s dogma, potential energy functions must be obtained in such a way that the energy

of the protein’s native structure has the lowest value in a set of decoy structures [3]. This hypothesis is

shown in the following constraint:

EDi
− EN > ε, (1)

in this equation, EN is the energy vector of a native structure and EDi
is the energy vector of the i-th

decoy structure of the relevant protein [15]. If we have p proteins and each protein has i decoys, then

constraint (1) is reformulated as below:

∑
p,i

(Ep,i(X)− Ep,n(X)) > ε, (2)

where X is a vector of parameters that indicates the number of interactions between different types of

amino acids at different distances of Cα-Cα in the protein structure. Given that the number of natural

amino acids is 20, the total number of types of interactions is equal to 210. Also, each type of interaction

is expressed with eight parameters representing potential energy at different intervals. Therefore, the
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total number of parameters needed to calculate the potential energy between different types of amino

acids at different distances is equal to 210 × 8 = 1680. In equation (2), ε is an arbitrary number in which

different values have been tested and the best of them have been 0.01. In the p-th protein, Ep,i is the

energy matrix of the i-th decoy, and Ep,n is the energy matrix of the native. Now equation (2) can be

rewritten as follow, where parameters Sp are positive frail variables:

(Ep,i − Ep,n)X − Sp ≥ ε. (3)

In the first approach, the knowledge-based potential functions were optimized through the criteria for-

mulated in equation (3). Also, assuming that the energy difference between the native and the decoy

structure can be related to the geometric distance between them, a similar condition can be extended to

optimize the potential functions [1, 16, 22]. This constraint is shown as below:

EDi
− EN ∝ DisDi,N , (4)

where, DisDi,N is the distance between decoy Di and native N . The equation (4) is rewritten in the

following:

EDi
− EN = α.DisDi,N . (5)

In this equation, α is constant that is considered as 1 in [22], so the constraint (5) is rewritten for p

proteins as below, where Dp,i,n is the distance between native structure and i-th decoy structure of p-th

protein. ∑
p,i

Ep,i(X)− Ep,n(X) ≤ Dp,i,n. (6)

The extended uniform cubic B-spline possesses the convex hull property, symmetry, and geometric in-

variability [23]. These features are convincing to use this function as the basis for the potential functions.

We used this function at eight uniform intervals for each of the 210 types of interactions between amino

acids shown in Table 1. So, the energy of all decoy and native structures is calculated using the equation

below [1, 22]:

E(θ) =
∑
i<j

∑
p

Xaa(i),aa(j)
p Bp(ri,j). (7)

In this equation, aa(i) ∈ {1, ..., 20} is the amino acid type of the i-th Cα and Bp(ri,j) is the p-th B-

spline basis function evaluated on the distance between the i-th and j-th Cα, shown in Figure 1. Also,

X
aa(i),aa(j)
p are the model parameters determined by the optimization according to the following.
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2.3 Optimization Problems

We designed energy function using an optimization procedure, assuming that for every native structure

Nn,p, we have a set of decoy structures Di,p. At each stage, (Ei,p − En,p) is the energy difference and

Di,n,p is the corresponding distance between the native structure and j-th decoy in the p-th protein.

Also, the sum of the frail variables constraint (2) was minimized in each scheme. Since the frail variables

are positive, the condition Sp ≥ 0 was added to each optimization problem. For vector X, we consider

the subscription of general constraints [15] for the condition −4 ≤ X ≤ 4.

2.3.1 First optimization scheme

The first optimization problem can be written into linear programming which used Anfinsen’s dogma as

below, that was named with LPKP1:

min
X,S1,...,Sp

∑
Sp,

s.t (Ei,p − En,p)X − Sp ≥ ε,

Sp ≥ 0,

− 4 ≤ X ≤ 4.

(8)

where the vector X is a set of parameters of the energy functions, and p is the number of proteins in the

training set.

2.3.2 Second optimization scheme

The second optimization problem (called LPKP2) can be written into linear programming using Eq.(8)

and the relationship between distance and energy difference of two structures as following:

min
X,S1,...,Sp

∑
Sp,

s.t (Ei,p − En,p)X − Sp ≥ ε,

(Ei,p − En,p)X ≤ Di,n,p,

Sp ≥ 0,

− 4 ≤ X ≤ 4.

(9)

This scheme is similar to the first scheme in terms of protein number, optimization method, and the

number of parameters X except the constraint (5).
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2.4 Training and Test Sets

The high-resolution decoy set contained 1400 protein structures, with 500-1600 decoys for each protein

[15], but we deleted proteins in which decoys and native structures do not have the same number of

amino acids. Finally, the 1370 proteins remained from the Titan-HRD. The entire set of protein decoy

structures has been made available at http://titan.princeton.edu/HRDecoys/. From 1370 proteins

used for decoy generation, 1220 proteins were randomly selected for training processes. Since each protein

has at least 500 decoy structures, therefore, all decoys of each protein were sorted based on their Cα RMSD

and then 500 decoys were randomly selected to cover the whole RMSD range. This arrangement of a

training set has 500× 1220 = 610000 decoy structures. Because of computational limitations, it is not

possible to include all 610000 decoys in the training step. Therefore, we reduced 500 to 45 decoys per

protein to set up the training procedure with 60000 decoy structures. The remaining 150 proteins of

Titan-HRD set was used for testing the obtained potential functions. In this step, also 500 decoys were

selected using the same technique explained above in generating the training set. A summary of the test

and training data sets are given in Table 2.

3 Results and Discussion

The existence of effective factors has been led to the use of various methods for the production of

knowledge-based potential functions. In this study, we have been modeled these functions taking into

account a limited number of these parameters. The knowledge-based potential functions are designed

according to eight uniform cubic B-spline functions and the distances between Cα atoms in protein

structures. These potential functions were extracted from the information of 60000 decoy structures.

Two sets of energy parameters were constructed based on two different optimization schemes of LPKP1

and LPKP2. The main constraint in the LPKP1 model is the Anfinsen’s dogma [3]. Hence, the energy

difference between the decoy and the native structure must always be greater than a positive constant

value called ε, which are shown in constraint (3). In the LPKP2 model, the effect of RMSD examined on

our scheme by adding constraint (6). The objective function of each scheme has minimized the sum of

the frail variables, discussed in the methods section. The zero value for an objective function means that

there no infringements. In this study, the objective function has obtained a value close to zero, which

represents the very low error of our introduced optimization model. Previously, the optimization schemes

(5) and (9) were described, and the method was generally explained in Algorithm 1.

At first, the value of ε considered 0.01 in schemes (5) and (9). The optimization schemes implemented

with ε and approximately 60000 structures. Since the ability to identify between the native and native-

like structures is a considerable standard for any potential function, the optimization results have been
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Algorithm 1 Execution of knowledge-based potential function

Input: M, Ndecoys.
. M : Number of Proteins.
. Ndecoys : Number of Decoys in a Similar Protein.
Output: Ei,j , Di,n,p.
. Ei,j : Energy difference between two structures.
. Di,n,p : RMSD distance between two structures.
. θ1 : The model parameters determined by the optimization (5).
. θ2 : The model parameters determined by the optimization (9).

1: for i = 1 to M do
2: Read Cα three-dimensional coordinates for native structure.
3: Solve Disi,1 for each pair of Cα in native structure.
4: Solve problem ENativei (7) for native structure.
5: for j = 1 to Ndecoys do
6: Read Cα three-dimensional coordinates for decoy structure.
7: Solve Disi,j+1 for each pair of Cα in decoy structure.
8: Solve problem EDecoyi,j (7) for decoy structure.
9: Set Ei,j = EDecoyi,j − ENativei .

10: Solve RMSD problem Di,n,p (8).
11: end for
12: end for
13: Solve problem (5) for θ1.
14: Solve problem (9) for θ2.

tested to detect native structure. The LPKP examined 500 decoys for each of the 150 test proteins of the

Titan-HRD decoy set. In this examination, the comparative rank of the native among decoy structures

has been calculated. An ideal potential function should be able to detect rank 1 for the native structures

of all the proteins in the test set. As we know, it is an accepted condition that the test set should not

share with the training set since it invalidates the potential energy appraisement. Hence, our test set was

carefully selected so that the training and test sets had no overlap. The examination results are presented

in Table 6. According to that, 130 native structures were correctly recognized among 150 proteins with

an average rank of 1.67 in method (5). Moreover, native structures were distinguished in 124 proteins of

scheme (9) with an average rank of 2.83. The results represent that our proposed method is significantly

more accurate than previous methods [15, 24, 25, 26].

Other force fields such as HR [15], LKF [24], TE13 [25], and HL [26] have been tested on this set

of high-resolution decoys. All these force fields were fundamentally different from each other in their

methods of energy estimation. The HR force field is a novel Cα-Cα distance-dependent potential where

the interaction distance range 3-9 Åis divided into eight bins. Also, this method has the nearest results

to our model with the detection limit of 113 native structures. The LKF force field is a Cα-Cα distance-

dependent potential where the interaction distance range 3-9 Åis divided into eight bins. However, the

LKF was not successful in the detection of native structures. Moreover, the TE13 force field is also a

distance-dependent (13 bin) force field, but the interaction distance is measured between the geometric
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centers of the side chain of two interacting residues. The HL force field is a contact-based force field,

such that two conditions needed to consider a pairwise amino acid contact. First, they have to be at

least five residues apart from each other and secondly, the distance between their non-hydrogen atoms

must be less than 4.5 angstroms. The comparison of the energy rankings obtained using different force

fields presented in Table 3. As one can see in table 3, according to the ranks, LPKPs are the best in

identifying the native structures. Assigning rank 1 to the native structure means that the force field is

adept at finding the native structure from an array of its nonnative configurations. therefore, the LPKPs

could increase the percentage of native fold recognition from 75.33 to 86.67.

The results of optimization (5) and (9) were tested to calculate the correlation coefficient of each of

the proteins in the test Titan-HRD set. We used the below formulation for computing the correlation

coefficient:

Corr(d,E) =
1

N − 1

N∑
i=1

Sd(Xi)− 〈Sd〉
σ(Sd)

E(Xi)− 〈E〉
σ(E)

.

The Corr(d,E) defined between values of energy E(Xi) and distance Sd(Xi) for all of the Xi decoy

structures. Furthermore, 〈.〉 and σ(.) were determined the mean and standard deviation. The reason for

defining the correlation coefficient Corr(d,E) is that it can measure the quality of energy function E

with respect to the distance Sd. Initially, by examining the correlation of each protein, we found that the

scheme (5) had better than (9) in the correlation coefficient LPKP and RMSD. For the presentation of

these results, two proteins randomly were chosen in Figure 2, and have been compared for two optimization

methods. The correlation had been approximately 0.7 for the first method and this value reduced to 0.6

in the second.

Considering the correlation graph of all proteins in Figure 3, we found that the scheme (5) had a mean

correlation of 0.7. Hence, the scheme (5) had more than 80 proteins with a correlation of 0.6. These

results indicate a high correlation in LPKP. Furthermore, by comparing the two graphs in Figure 3, we

found that scheme (5) has a higher correlation amount. Also, method (9) had a mean correlation of 0.6

and had more than 70 proteins with a correlation of 0.6.

Originally, the number of decoys and the value of epsilon were considered constant in our training set.

Since the LPKP1 brought on better results, in the following, the conditions are discussed for this modeling

method. Hence, we considered five different values for the number of training set decoys. In this experi-

ment, we included the values of 15, 25, and 35 instead of 45 for the number of decoys in each protein. The

results of identifying native structures for each of these values are summarized in Table 4. We observed

that as the number of decoys increased to 35, our model accuracy increased dramatically. However, above

this had no significant effect on the rate of detection of the native structure. Furthermore, according

to Figure 4, in each protein, the graph of different values for the number of training set decoys is very

10



similar to the logarithmic function. Considering this diagram, if the number of decoys selected for the

training set is more than a certain amount, there is no significant change in the results and only increases

the computational volume of the modeling. Therefore, we selected 45 decoy structures per protein for

use in the process of developing knowledge-based potentials. In the last step, different values for ε has

been considered in the optimization schemes. We realized the slight changes in the amount of ε do not

create a significant impact on our modeling by examining these values.

Although our priority was detecting the native structure among decoys as the first structure, and our

proposed scheme was able to present adequate detect regardless of elimination of many involved parame-

ters and mathematically modeling, for comparison the LPKPs with more recent methods, the best decoy

introduced in [1] is used, which is demonstrated in Table 5.

4 Conclusion

Knowledge-based potentials are developed to derive native structures from their decoy sets. In this

work, we constructed two different sets of distance-dependent potential energy functions based on the

two basic assumptions. At first, we assumed that the energy of each decoy should be more positive

than the corresponding native type. In the next step, it is assumed that the energy difference and

the distance between the two structures are linearly dependent. The RMSD was used to calculate the

distance between the decoys and native structures. Each of the potential energy functions has terms

of pairwise distances between Cα-Cα and is expressed using B-spline basis function. We optimized the

parameters of the potential function by using two linear programming problems on a large collection

of Titan-HRD decoy set. Furthermore, the obtained results were tested on the remainder of Titan-

HRD. We found that the potential functions developed based on Anfinsen’s dogma have more accurate

detection than those developed by the root-mean-square deviation of structures. However, both linear

programming knowledge-based potentials (LPKP) were successful to recognize the native structures from

an ensemble of high-resolution decoys. The LPKP in the first scheme was able to identify correctly 130

native structures out of 150 test cases with an average rank of 1.67 and the second LPKP scheme was able

to detect 124 native structures with an average rank of 2.83. This indicates that the linear programming

optimization is a promising method in generating knowledge-based potential functions. All the structures

including training and testing Titan-HRD used for this work are available online and can be downloaded

from http://titan.princeton.edu/HRDecoys.
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Figure 1: The eight cubic B-spline basis functions B1,..., B8 used in the knowledge-based potentials.

Figure 2: Distribution of correlation coefficient between energy and RMSD for all 150 test cases.

Figure 3: Energy-RMSD plot for two test cases with two methods LPKP1 and LPKP2.

Figure 4: The effect of number of decoys in the training set on native structure detection and logarithmic

function.

14



Table 1: The bin width distances for eight B-spline basis functions.

ID Cα Distance (Å)

1 2.2 - 4.6

2 2.8 - 5.2

3 3.4 - 5.8

4 4.0 - 6.4

5 4.6 - 7.0

6 5.2 - 7.6

7 5.8 - 8.2

8 6.4 - 8.8

Table 2: Properties of the different protein decoy sets used in this study.

Decoy set Nprot a Nres b Ndecoys c RMSD

Titan-HRD 1220 111.80 500 2.46

Titan-HRD∗ 150 103.95 500 2.51

Training set (Titan-HRD) and test set (Titan-HRD∗) from the Titan

high resolution decoy set at http://titan.princeton.edu/HRDecoys/.

RMSD is the distance measures between the decoys and the corre-

sponding native structures averaged over all decoys and all proteins.
a Number of proteins in each set.
b The average number of residues in each set.
c The average number of decoys in each set.

Table 3: Testing force fields on 150 proteins of the Titan-HRD decoy set.

Method Name Ave Rank No of Firsts Ave RMSD

LPKP1 1.67 130 (86.67%) 2.291

LPKP2 2.83 124 (82.67%) 2.291

HRa 1.87 113 (75.33%) 0.451

LKFb 39.45 17 (11.33%) 1.721

TE13c 19.94 92 (62.16%) 0.813

HLd 44.93 70 (46.67%) 1.092

LPKP1 and LPKP2 are the results of schemes (5) and (9), respec-

tively.
a is extracted from [15].
b is extracted from [24].
c is extracted from [25] and TE13 force field was only tested on 148

cases.
d is extracted from [26].
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Table 4: The effect of number of decoys in training set on native structure detection.

Number of Decoys No of Firsts

15 52

25 110

35 128

45 130

50 130

Number of decoys for each protein in the

training set.

No of firsts is the number of native struc-

tures detected in all the test set proteins.

Table 5: Assessing the best decoys selected by energy functions on Titan-HRD dataset.

Best PPDa PPEa LPKP1 LPKP2

Titan-HRD 1.11 1.70 1.60 1.62 1.81

Average value over the test set.

LPKP1 and LPKP2 are the results of schemes (5) and (9), respec-

tively.
a is extracted from [1].
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Table 6: Rankings of the native structures using the LPKP1 and LPKP2 on Titan-HRD test set.
ID LPKP1 LPKP2 ID LPKP1 LPKP2 ID LPKP1 LPKP2 ID LPKP1 LPKP2

1em9A 1 1 1fb1A 1 1 1chd- 1 1 1faq- 1 1

1iioA 1 1 1hf9A 1 2 2drpA 1 1 1b0yA 1 1

1qqvA 1 1 1b1bA 1 1 1ci5A 1 1 1tmy- 1 2

1b9lA 1 1 1bik- 1 1 1k3bB 1 1 1gd5A 1 1

1ap0- 1 1 1hgvA 39 35 1fxkC 1 1 1hd0A 1 1

1ghc- 1 1 1tyfA 1 1 2ech- 1 1 1aplD 1 1

1u2fA 1 1 1ag4- 1 1 1af8- 1 1 3monB 1 4

1eptB 2 1 1fe6A 1 1 1cjgA 1 12 1quqB 1 2

1aq3A 1 4 1b2iA 2 1 1g10A 4 1 1eqiA 1 1

1c3kA 1 1 1cm0B 1 1 1n72A 1 1 1cl3A 1 1

1l0oC 1 2 1dpuA 1 1 1k5yR 1 23 1imt- 1 1

1etpA 1 1 1b2pA 1 1 1eal- 1 1 1rof- 1 1

1jq4A 1 1 1ahjA 1 1 1jpyA 1 1 1cmaA 1 6

1a10I 1 1 1hjrA 1 1 1qc7A 1 1 1d7bA 1 1

1lcl- 1 1 1hks- 1 1 1bccH 1 3 1a14H 1 1

1hlb- 1 1 1ec5A 1 1 1ndoB 1 1 1qckA 1 1

1gnf- 1 1 1c6vX 1 1 1k99A 9 1 1irqA 3 2

1lghB 1 39 1c7uA 3 1 1i7kA 1 1 1scjB 1 1

1hnr- 1 1 1ecsA 3 5 1b44D 1 1 1ai9A 1 1

1bpr- 1 1 1dujA 1 1 1g31A 1 1 1auz- 1 1

1dax- 3 1 1aalA 1 1 1i8nA 1 21 1exg- 2 1

1b4rA 1 1 1aiw- 1 1 1hp8- 1 1 1qgeE 1 1

1a2b- 1 1 1xbd- 7 1 1kbhA 1 1 1dc7A 1 1

1a2kA 1 4 1ab1- 1 1 1cqkA 1 1 1j5eP 1 1

1o7bT 1 1 1be9A 1 1 1b4uA 1 1 1bdyA 1 1

1j7dB 1 1 1occE 1 1 1cqqA 1 1 1ly7A 1 1

1jacA 1 1 1hs7A 1 3 1ibxB 1 1 1jajA 1 1

1occJ 1 2 1qj8A 1 1 1occH 1 6 2sob- 1 1

1tafB 1 1 1b6q- 1 1 1akjD 2 1 1a4aA 1 1

1ha8A 1 1 1olgA 21 42 1icfA 1 1 1a4yB 1 1

1yuf- 6 13 1qjzA 1 1 1jy2N 2 36 1csbA 2 1

1dhn- 1 1 1cdzA 1 12 1qkfA 1 1 1hbiA 1 1

1f7lA 1 1 1pcfA 1 1 1g84A 2 1 1jh3A 1 1

1cfaA 1 1 1kilE 1 1 1fpzA 1 1 1ehxA 1 1

1b01A 3 13 1hykA 2 1 1am9A 1 1 1a6l- 1 1

1dk7A 1 1 1hyp- 1 4 1amx- 1 1 1jhcA 1 1

1perL 1 4 1qmtA 1 1 1cg5B 1 1 3lriA 4 1

1fw9A 17 1 1gd7A 1 1

For 150 150

Ave 1.67 2.83

First 130 124
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Figure 1: The eight cubic B-spline basis functions B1,..., B8 used in the knowledge-based potentials.

Figure 2: Distribution of correlation coefficient between energy and RMSD for all 150 test cases.
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Figure 3: Energy-RMSD plot for two test cases with two methods LPKP1 and LPKP2

Figure 4: The effect of number of decoys in the training set on native structure detection and logarithmic
function
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