REFERENCES
Alt, N., Zhang, T. Y., Motchnik, P., Taticek, R., Quarmby, V., Schlothauer, T., … Harris, R. J. (2016). Determination of critical quality attributes for monoclonal antibodies using quality by design principles. Biologicals , 44 (5), 291–305. https://doi.org/10.1016/j.biologicals.2016.06.005
Anselmo, A. C., Gokarn, Y., & Mitragotri, S. (2019). Non-invasive delivery strategies for biologics. Nature Reviews Drug Discovery ,18 (1), 19–40. https://doi.org/10.1038/nrd.2018.183
Arslan, M., Karadag, D., & Kalyoncu, S. (2019). Protein engineering approaches for antibody fragments: directed evolution and rational design approaches. Turkish Journal of Biology , 43 (1), 1–12. https://doi.org/10.3906/biy-1809-28
Awwad, S., & Angkawinitwong, U. (2018). Overview of antibody drug delivery. Pharmaceutics , 10 (3), 1–24. https://doi.org/10.3390/pharmaceutics10030083
Barcelona, P. F., Galan, A., Nedev, H., Jian, Y., Sarunic, M. V., & Uri Saragovi, H. (2018). The route of administration influences the therapeutic index of an anti-proNGF neutralizing mAb for experimental treatment of Diabetic Retinopathy. PLoS ONE , 13 (6), 1–19. https://doi.org/10.1371/journal.pone.0199079
Beck, A., Wurch, T., Bailly, C., & Corvaia, N. (2010). Strategies and challenges for the next generation of therapeutic antibodies.Nature Reviews Immunology , 10 (5), 345–352. https://doi.org/10.1038/nri2747
Bequignon, E., Dhommée, C., Angely, C., Thomas, L., Bottier, M., Escudier, E., … Gouilleux-Gruart, V. (2019). FcRn-Dependent transcytosis of monoclonal antibody in human nasal epithelial cells in vitro: A prerequisite for a new delivery route for therapy?International Journal of Molecular Sciences , 20 (6), 1379. https://doi.org/10.3390/ijms20061379
Blair, H. A., & Duggan, S. T. (2018). Belimumab: A Review in Systemic Lupus Erythematosus. Drugs , 78 (3), 355–366. https://doi.org/10.1007/s40265-018-0872-z
Boder, E. T., & Wittrup, K. D. (1998). Optimal screening of surface-displayed polypeptide libraries. Biotechnology Progress ,14 (1), 55–62. https://doi.org/10.1021/bp970144q
Carson, K. L. (2005). Flexibility - The guiding principle for antibody manufacturing. Nature Biotechnology , 23 (9), 1054–1058. https://doi.org/10.1038/nbt0905-1054
Carvalho, L. S., Bravim da Silva, O., Carneiro de Almeida, G., Davies de Oliveira, J., Parachin, N. S., & Carmo, T. S. (2017). Production processes for monoclonal antibodies. Intech , i , 13. https://doi.org/http://dx.doi.org/10.5772/64263
Chahar, D. S., Ravindran, S., & Pisal, S. S. (2020). Monoclonal antibody purification and its progression to commercial scale.Biologicals , 63 , 1–13. https://doi.org/10.1016/j.biologicals.2019.09.007
Chiu, M. L., & Gilliland, G. L. (2016). Engineering antibody therapeutics. Current Opinion in Structural Biology , 38 , 163–173. https://doi.org/10.1016/j.sbi.2016.07.012
Cui, Y., Cui, P., Chen, B., Li, S., & Guan, H. (2017). Monoclonal antibodies: formulations of marketed products and recent advances in novel delivery system. Drug Development and Industrial Pharmacy ,43 (4), 519–530. https://doi.org/10.1080/03639045.2017.1278768
Datta-Mannan, A. (2019). Mechanisms influencing the pharmacokinetics and disposition of monoclonal antibodies and peptides. Drug Metabolism and Disposition , 47 (10), 1100–1110. https://doi.org/10.1124/dmd.119.086488
Dorceus, M., Willard, S. S., Suttle, A., Han, K., Chen, P.-J., & Sha, M. (2017). Comparing culture methods in monoclonal antibody production: Batch, fed-batch, and perfusion. Retrieved 12 April 2020, from BioProcess International website: https://bioprocessintl.com/analytical/upstream-development/comparing-culture-methods-monoclonal-antibody-production-batch-fed-batch-perfusion/
Ecker, D. M., Jones, S. D., & Levine, H. L. (2015). The therapeutic monoclonal antibody market. MAbs , 7 (1), 9–14. https://doi.org/10.4161/19420862.2015.989042
Eibl, D., & Eibl, R. (2019). Single‐use equipment in biopharmaceutical manufacture: A brief introduction. In R. Eibl & D. Eibl (Eds.),Single‐Use Technology in Biopharmaceutical Manufacture (pp. 1–11). https://doi.org/10.1002/9781119477891
Enever, C., Pupecka-Swider, M., & Sepp, A. (2015). Stress selections on domain antibodies: ‘What doesn’t kill you makes you stronger’.Protein Engineering Design and Selection , 28 (3), 59–66. https://doi.org/10.1093/protein/gzu057
Eon-Duval, A., Broly, H., & Gleixner, R. (2012). Quality attributes of recombinant therapeutic proteins: An assessment of impact on safety and efficacy as part of a quality by design development approach.Biotechnology Progress , 28 (3), 608–622. https://doi.org/10.1002/btpr.1548
European Medicines Agency. (2016). Guideline on development, production, characterisation and specification for monoclonal antibodies and related products. Guideline , 44 (July). https://doi.org/EMEA/CHMP/BWP/157653/2007
Fan, Y., Ley, D., & Andersen, M. R. (2018). Fed-batch CHO cell culture for lab-scale antibody production . https://doi.org/10.1007/978-1-4939-7312-5_12
Finkler, C., & Krummen, L. (2016). Introduction to the application of QbD principles for the development of monoclonal antibodies.Biologicals , 44 (5), 282–290. https://doi.org/10.1016/j.biologicals.2016.07.004
Fouser, L. A., Swanberg, S. L., Lin, B.-Y., Benedict, M., Kelleher, K., Cumming, D. A., & Riedel, G. E. (1992). High level expression of a chimeric anti–ganglioside GD2 antibody: Genomic kappa sequences improve expression in COS and CHO cells. Nature Biotechnology ,10 (10), 1121–1127. https://doi.org/10.1038/nbt1092-1121
Giannos, S. A., Kraft, E. R., Zhao, Z. Y., Merkley, K. H., & Cai, J. (2018). Formulation stabilization and disaggregation of Bevacizumab, Ranibizumab and Aflibercept in dilute solutions. Pharmaceutical Research , 35 (4), 1–15. https://doi.org/10.1007/s11095-018-2368-7
Gomord, V., Fitchette, A.-C., Menu-Bouaouiche, L., Saint-Jore-Dupas, C., Plasson, C., Michaud, D., & Faye, L. (2010). Plant-specific glycosylation patterns in the context of therapeutic protein production.Plant Biotechnology Journal , 8 (5), 564–587. https://doi.org/10.1111/j.1467-7652.2009.00497.x
Gronemeyer, P., Ditz, R., & Strube, J. (2014). Trends in upstream and downstream process development for antibody manufacturing.Bioengineering , 1 (4), 188–212. https://doi.org/10.3390/bioengineering1040188
Großhans, S., Wang, G., Fischer, C., & Hubbuch, J. (2018). An integrated precipitation and ion-exchange chromatography process for antibody manufacturing: Process development strategy and continuous chromatography exploration. Journal of Chromatography A ,1533 , 66–76. https://doi.org/10.1016/j.chroma.2017.12.013
Hamuro, L., Kijanka, G., Kinderman, F., Kropshofer, H., Bu, D. xiu, Zepeda, M., & Jawa, V. (2017). Perspectives on subcutaneous route of administration as an immunogenicity risk factor for therapeutic proteins. Journal of Pharmaceutical Sciences , 106 (10), 2946–2954. https://doi.org/10.1016/j.xphs.2017.05.030
Homayun, B., Lin, X., & Choi, H. J. (2019). Challenges and recent progress in oral drug delivery systems for biopharmaceuticals.Pharmaceutics , 11 (3). https://doi.org/10.3390/pharmaceutics11030129
Hung, J. J., Dear, B. J., Dinin, A. K., Borwankar, A. U., Mehta, S. K., Truskett, T. T., & Johnston, K. P. (2018). Improving viscosity and stability of a highly concentrated monoclonal antibody solution with concentrated proline. Pharmaceutical Research , 35 (7), 133. https://doi.org/10.1007/s11095-018-2398-1
ICH. (2009). ICH guidelines. Retrieved 12 April 2020, from https://www.ich.org/page/ich-guidelines
Jackisch, C., Kim, S. B., Semiglazov, V., Melichar, B., Pivot, X., Hillenbach, C., … Ismael, G. (2015). Subcutaneous versus intravenous formulation of trastuzumab for HER2-positive early breast cancer: Updated results from the phase III HannaH study. Annals of Oncology , 26 (2), 320–325. https://doi.org/10.1093/annonc/mdu524
Jacobi, A., Enenkel, B., Garidel, P., Eckermann, C., Knappenberger, I. P., & Kaufmann, H. (2014). Process development and manufacturing of therapeutic antibodies. In S. D. and J. M. Reichert (Ed.),Handbook of Therapeutic Antibodies (Second, pp. 601–663). Wiley-VCH Verlag GmbH & Co.
Jarasch, A., Koll, H., Regula, J. T., Bader, M., Papadimitriou, A., & Kettenberger, H. (2015). Developability assessment during the selection of novel therapeutic antibodies. Journal of Pharmaceutical Sciences , 104 (6), 1885–1898. https://doi.org/10.1002/jps.24430
Jefferis, R. (2009). Glycosylation as a strategy to improve antibody-based therapeutics. Nature Reviews Drug Discovery ,8 (3), 226–234. https://doi.org/10.1038/nrd2804
Johnson, D. H., Parupudi, A., Wilson, W. W., & DeLucas, L. J. (2009). High-throughput self-interaction chromatography: Applications in protein formulation prediction. Pharmaceutical Research , 26 (2), 296–305. https://doi.org/10.1007/s11095-008-9737-6
Jossen, V., Eibl, R., & Eibl, D. (2019). Single‐use bioreactors – An overview. In R. Eibl & D. Eibl (Eds.), Single‐Use Technology in Biopharmaceutical Manufacture (pp. 37–52). https://doi.org/10.1002/9781119477891
Juran, J. M. (1992). Departmental quality planning. National Productivity Review , 11 (3), 287–300. https://doi.org/10.1002/npr.4040110302
Karlberg, M., von Stosch, M., & Glassey, J. (2018). Exploiting mAb structure characteristics for a directed QbD implementation in early process development. Critical Reviews in Biotechnology ,38 (6), 957–970. https://doi.org/10.1080/07388551.2017.1421899
Kelley, B. (2009). Industrialization of mAb production technology: The bioprocessing industry at a crossroads. MAbs , 1 (5), 443–452. https://doi.org/10.4161/mabs.1.5.9448
Kemter, K., Altrichter, J., Derwand, R., Kriehuber, T., Reinauer, E., & Scholz, M. (2018). Amino acid-based advanced liquid formulation development for highly concentrated therapeutic antibodies balances physical and chemical stability and low viscosity. Biotechnology Journal , 13 (7), 1700523. https://doi.org/10.1002/biot.201700523
Khetan, A., Huang, Y., Dolnikova, J., Pederson, N. E., Wen, D., Yusuf-Makagiansar, H., … Ryll, T. (2010). Control of misincorporation of serine for asparagine during antibody production using CHO cells. Biotechnology and Bioengineering , 107 (1), 116–123. https://doi.org/10.1002/bit.22771
Köhler, G., & Milstein, C. (1975). Continuous cultures of fused cells secreting antibody of predefined specificity. Nature ,256 (5517), 495–497. https://doi.org/10.1038/256495a0
Kuehn, S. E. (2014). The process is the product. Retrieved 13 April 2020, from Pharmaceutical Manufacturing website: https://www.pharmamanufacturing.com/articles/2014/the-process-is-the-product/
Kumar, N. N., Lochhead, J. J., Pizzo, M. E., Nehra, G., Boroumand, S., Greene, G., & Thorne, R. G. (2018). Delivery of immunoglobulin G antibodies to the rat nervous system following intranasal administration: Distribution, dose-response, and mechanisms of delivery.Journal of Controlled Release , 286 , 467–484. https://doi.org/10.1016/j.jconrel.2018.08.006
Kunert, R., & Reinhart, D. (2016). Advances in recombinant antibody manufacturing. Applied Microbiology and Biotechnology ,100 (8), 3451–3461. https://doi.org/10.1007/s00253-016-7388-9
Kung, P., Goldstein, G., Reinherz, E., & Schlossman, S. (1979). Monoclonal antibodies defining distinctive human T cell surface antigens. Science , 206 (4416), 347–349. https://doi.org/10.1126/science.314668
Kuroda, D., & Tsumoto, K. (2020). Engineering stability, viscosity, and immunogenicity of antibodies by computational design. Journal of Pharmaceutical Sciences , 109 (5), 1631–1651. https://doi.org/10.1016/j.xphs.2020.01.011
Langer, E. S., & Rader, R. A. (2019). Biopharmaceutical manufacturing is shifting to single-use systems. Are the dinosaurs, the large stainless steel facilities, becoming extinct? American Pharmaceutical Review .
Le Basle, Y., Chennell, P., Tokhadze, N., Astier, A., & Sautou, V. (2020). Physicochemical stability of monoclonal antibodies: A review.Journal of Pharmaceutical Sciences , 109 (1), 169–190. https://doi.org/10.1016/j.xphs.2019.08.009
Li, Z., & Easton, R. (2018). Practical considerations in clinical strategy to support the development of injectable drug-device combination products for biologics. MAbs , 10 (1), 18–33. https://doi.org/10.1080/19420862.2017.1392424
Liu, J. K. H. (2014). The history of monoclonal antibody development - Progress, remaining challenges and future innovations. Annals of Medicine and Surgery , 3 (4), 113–116. https://doi.org/10.1016/j.amsu.2014.09.001
Liu, Y. D., Goetze, A. M., Bass, R. B., & Flynn, G. C. (2011). N-terminal glutamate to pyroglutamate conversion in vivo for human IgG2 antibodies. Journal of Biological Chemistry , 286 (13), 11211–11217. https://doi.org/10.1074/jbc.M110.185041
Lu, R. M., Hwang, Y. C., Liu, I. J., Lee, C. C., Tsai, H. Z., Li, H. J., & Wu, H. C. (2020). Development of therapeutic antibodies for the treatment of diseases. Journal of Biomedical Science ,27 (1), 1–30. https://doi.org/10.1186/s12929-019-0592-z
Madani, F., Hsein, H., Busignies, V., & Tchoreloff, P. (2020). An overview on dosage forms and formulation strategies for vaccines and antibodies oral delivery. Pharmaceutical Development and Technology , 25 (2), 133–148. https://doi.org/10.1080/10837450.2019.1689402
Maddux, N. R., Joshi, S. B., Volkin, D. B., Ralston, J. P., & Middaugh, C. R. (2011). Multidimensional methods for the formulation of biopharmaceuticals and vaccines. Journal of Pharmaceutical Sciences , 100 (10), 4171–4197. https://doi.org/10.1002/jps.22618
Mandal, A., Pal, D., Agrahari, V., Trinh, H. M., Joseph, M., & Mitra, A. K. (2018). Ocular delivery of proteins and peptides: Challenges and novel formulation approaches. Advanced Drug Delivery Reviews ,126 , 67–95. https://doi.org/10.1016/j.addr.2018.01.008
Matucci, A., Vultaggio, A., & Danesi, R. (2018). The use of intravenous versus subcutaneous monoclonal antibodies in the treatment of severe asthma: A review. Respiratory Research , 19 (1), 1–10. https://doi.org/10.1186/s12931-018-0859-z
MedScape. (2020). Retrieved 11 April 2020, from https://reference.medscape.com/
Mimura, Y., Katoh, T., Saldova, R., O’Flaherty, R., Izumi, T., Mimura-Kimura, Y., … Rudd, P. M. (2018). Glycosylation engineering of therapeutic IgG antibodies: challenges for the safety, functionality and efficacy. Protein and Cell , 9 (1), 47–62. https://doi.org/10.1007/s13238-017-0433-3
Mitragotri, S., Burke, P. A., & Langer, R. (2014). Overcoming the challenges in administering biopharmaceuticals: Formulation and delivery strategies. Nature Reviews Drug Discovery , 13 (9), 655–672. https://doi.org/10.1038/nrd4363
Mould, D. R., & Meibohm, B. (2016). Drug development of therapeutic monoclonal antibodies. BioDrugs , 30 (4), 275–293. https://doi.org/10.1007/s40259-016-0181-6
Nagashima, H., Watari, A., Shinoda, Y., Okamoto, H., & Takuma, S. (2013). Application of a Quality by Design approach to the cell culture process of monoclonal antibody production, resulting in the establishment of a Design space. Journal of Pharmaceutical Sciences , 102 (12), 4274–4283. https://doi.org/10.1002/jps.23744
Ortega, H., Yancey, S., & Cozens, S. (2014). Pharmacokinetics and absolute bioavailability of mepolizumab following administration at subcutaneous and intramuscular sites. Clinical Pharmacology in Drug Development , 3 (1), 57–62. https://doi.org/10.1002/cpdd.60
Ovacik, M., & Lin, K. (2018). Tutorial on monoclonal antibody pharmacokinetics and its considerations in early development.Clinical and Translational Science , 11 (6), 540–552. https://doi.org/10.1111/cts.12567
Page, M. J., & Sydenham, M. A. (1991). High level expression of the humanized monoclonal antibody CAMPATH-1H in Chinese Hamster Ovary cells.Nature Biotechnology , 9 (1), 64–68. https://doi.org/10.1038/nbt0191-64
Parker, J., Pollard, J. W., Friesen, J. D., & Stanners, C. P. (1978). Stuttering: High-level mistranslation in animal and bacterial cells.Proceedings of the National Academy of Sciences of the United States , 75 (3), 1091–1095.
Pivot, X., Gligorov, J., Müller, V., Curigliano, G., Knoop, A., Verma, S., … Verma, S. (2014). Patients’ preferences for subcutaneous trastuzumab versus conventional intravenous infusion for the adjuvant treatment of HER2-positive early breast cancer: final analysis of 488 patients in the international, randomized, two-cohort PrefHer study.Annals of Oncology , 25 (10), 1979–1987. https://doi.org/10.1093/annonc/mdu364
Pollard, D., Brower, M., Abe, Y., Lopes, A. G., & Sinclair, A. (2016). Standardized economic cost modeling for next-generation mAb production. Retrieved 12 April 2020, from BioProcess International website: https://bioprocessintl.com/business/economics/standardized-economic-cost-modeling-next-generation-mab-production/
Popplewell, A. G. (2015). Protein engineering: Applications to therapeutic proteins and antibodies. Pharmaceutical Sciences Encyclopedia , 1–11. https://doi.org/10.1002/9780470571224.pse537
Razinkov, V. I., Treuheit, M. J., & Becker, G. W. (2015). Accelerated formulation development of monoclonal antibodies (MABS) and mab-based modalities: Review of methods and tools. Journal of Biomolecular Screening , 20 (4), 468–483. https://doi.org/10.1177/1087057114565593
Ribatti, D. (2014). From the discovery of monoclonal antibodies to their therapeutic application: An historical reappraisal. Immunology Letters , 161 (1), 96–99. https://doi.org/10.1016/j.imlet.2014.05.010
Ritacco, F. V., Wu, Y., & Khetan, A. (2018). Cell culture media for recombinant protein expression in Chinese hamster ovary (CHO) cells: History, key components, and optimization strategies.Biotechnology Progress , 34 (6), 1407–1426. https://doi.org/10.1002/btpr.2706
Ryman, J. T., & Meibohm, B. (2017). Pharmacokinetics of monoclonal antibodies. CPT: Pharmacometrics and Systems Pharmacology ,6 (9), 576–588. https://doi.org/10.1002/psp4.12224
Sifniotis, V., Cruz, E., Eroglu, B., & Kayser, V. (2019). Current advancements in addressing key challenges of therapeutic antibody design, manufacture, and formulation. Antibodies , 8 (2), 36. https://doi.org/10.3390/antib8020036
Sissolak, B., Lingg, N., Sommeregger, W., Striedner, G., & Vorauer-Uhl, K. (2019). Impact of mammalian cell culture conditions on monoclonal antibody charge heterogeneity: an accessory monitoring tool for process development. Journal of Industrial Microbiology and Biotechnology , 46 (8), 1167–1178. https://doi.org/10.1007/s10295-019-02202-5
Smith, G. (1985). Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science ,228 (4705), 1315–1317. https://doi.org/10.1126/science.4001944
Somma, R. (2007). Development knowledge can increase manufacturing capability and facilitate quality by design. Journal of Pharmaceutical Innovation , 2 (3–4), 87–92. https://doi.org/10.1007/s12247-007-9017-8
Sormanni, P., Amery, L., Ekizoglou, S., Vendruscolo, M., & Popovic, B. (2017). Rapid and accurate in silico solubility screening of a monoclonal antibody library. Scientific Reports , 7 (1), 8200. https://doi.org/10.1038/s41598-017-07800-w
Steinmeyer, D. E., & McCormick, E. L. (2008). The art of antibody process development. Drug Discovery Today , 13 (13–14), 613–618. https://doi.org/10.1016/j.drudis.2008.04.005
Strochlic, A., & Davis, E. (2017). Optimize combination Products: Select a drug delivery device that meets user needs. Retrieved from MedTech Intelligence website: https://www.medtechintelligence.com/feature_article/optimize-combination-products-select-drug-delivery-device-meets-user-needs/
Tesar, D., Luoma, J., Wyatt, E. A., Shi, C., Shatz, W., Hass, P. E., … Kelley, R. F. (2017). Protein engineering to increase the potential of a therapeutic antibody Fab for long-acting delivery to the eye. MAbs , 9 (8), 1297–1305. https://doi.org/10.1080/19420862.2017.1372078
The Antibody Society. (2020). Retrieved 13 April 2020, from https://www.antibodysociety.org/home/
Thömmes, J., Twyman, R. M., & Gottschalk, U. (2017). Alternatives to packed-bed chromatography for antibody extraction and purification. In U. Gottschalk (Ed.), Process Scale Purification of Antibodies(Second Edi, pp. 215–231). John Wiley & Sons, Inc.
Viola, M., Sequeira, J., Seiça, R., Veiga, F., Serra, J., Santos, A. C., & Ribeiro, A. J. (2018). Subcutaneous delivery of monoclonal antibodies: How do we get there? Journal of Controlled Release ,286 (April), 301–314. https://doi.org/10.1016/j.jconrel.2018.08.001
Wen, D., Vecchi, M. M., Gu, S., Su, L., Dolnikova, J., Huang, Y.-M., … Meier, W. (2009). Discovery and investigation of misincorporation of serine at asparagine positions in recombinant proteins expressed in Chinese Hamster Ovary cells. Journal of Biological Chemistry , 284 (47), 32686–32694. https://doi.org/10.1074/jbc.M109.059360
Whitaker, N., Xiong, J., Pace, S. E., Kumar, V., Middaugh, C. R., Joshi, S. B., & Volkin, D. B. (2017). A formulation development approach to identify and select stable ultra–high-concentration monoclonal antibody formulations with reduced viscosities. Journal of Pharmaceutical Sciences , 106 (11), 3230–3241. https://doi.org/10.1016/j.xphs.2017.06.017
WHO. (1998). WHO good manufacturing practices for pharmaceutical products: Main principles. Who-GMP-Annex 2 , (961), 170-170 p.
Xu, Y., Wang, D., Mason, B., Rossomando, T., Li, N., Liu, D., … Liu, H. (2019). Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs , 11 (2), 239–264. https://doi.org/10.1080/19420862.2018.1553476
Yang, C., Gao, X., & Gong, R. (2018). Engineering of Fc fragments with optimized physicochemical properties implying improvement of clinical potentials for Fc-based therapeutics. Frontiers in Immunology ,8 . https://doi.org/10.3389/fimmu.2017.01860
Yang, X., Xu, W., Dukleska, S., Benchaar, S., Mengisen, S., Antochshuk, V., … Ambrogelly, A. (2013). Developability studies before initiation of process development: Improving manufacturability of monoclonal antibodies. MAbs , 5 (5), 787–794. https://doi.org/10.4161/mabs.25269
Yu, L. X., Amidon, G., Khan, M. A., Hoag, S. W., Polli, J., Raju, G. K., & Woodcock, J. (2014). Understanding pharmaceutical quality by design.AAPS Journal , 16 (4), 771–783. https://doi.org/10.1208/s12248-014-9598-3
Yu, X. C., Borisov, O. V., Alvarez, M., Michels, D. A., Wang, Y. J., & Ling, V. (2009). Identification of codon-specific serine to asparagine mistranslation in recombinant monoclonal antibodies by high-resolution mass spectrometry. Analytical Chemistry , 81 (22), 9282–9290. https://doi.org/10.1021/ac901541h
Zhang, E., Xie, L., Qin, P., Lu, L., Xu, Y., Gao, W., … Liu, S. (2020). Quality by Design–based assessment for analytical similarity of adalimumab biosimilar HLX03 to Humira®. The AAPS Journal ,22 (3), 69. https://doi.org/10.1208/s12248-020-00454-z
Zhao, L., Ji, P., Li, Z., Roy, P., & Sahajwalla, C. G. (2013). The antibody drug absorption following subcutaneous or intramuscular administration and its mathematical description by coupling physiologically based absorption process with the conventional compartment pharmacokinetic model. Journal of Clinical Pharmacology , 53 (3), 314–325. https://doi.org/10.1002/jcph.4
Zhao, L., Ren, T. H., & Wang, D. D. (2012). Clinical pharmacology considerations in biologics development. Acta Pharmacologica Sinica , 33 (11), 1339–1347. https://doi.org/10.1038/aps.2012.51
Zurdo, J. (2013). Developability assessment as an early de-risking tool for biopharmaceutical development. Pharmaceutical Bioprocessing ,1 (1), 29–50. https://doi.org/10.4155/pbp.13.3