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Abstract

Ectotherms in cold environments often spend long winters underground. In 1941
Raymond Cowles proposed a novel ecological trade-off involving depth at which
ectotherms overwintered. On warm days, only shallow reptiles could detect warming
soils and become active; but on cold days, they risked freezing. Cowles discovered that
most reptiles at a desert site overwintered at shallow depths. To extend his study we
compiled hourly soil temperatures (5 depths, 90 sites, continental USA) and
physiological data, and then simulated consequences of overwintering at fixed depths. In
warm localities shallow ectotherms have low energy costs and largest reserves in spring;
but in cold localities, shallow ectotherms risk freezing. Ectotherms shifting to the coldest
depth potentially reduce energy expenses, but paradoxically sometimes have higher
expenses than those at fixed depths. Biophysical simulations for one desert site predict
that shallow ectotherms should have elevated opportunities for mid-winter activity but
may need to move deep to digest captured food. Our simulations generate testable eco-
physiological predictions but rely on physiological responses to acute cold rather to
natural cooling profiles. Furthermore, testing ecological predictions requires natural-
history data that do not exist. Thus, our simulation approach uncovers “unknown
unknowns” and suggests research agendas for studying ectotherms overwintering

underground.
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INTRODUCTION

“...as we know, there are known knowns; there are things we know
we know. We also know there are known unknowns; that is to say we
know there are some things we do not know. But there are also

unknown unknowns—the ones we don't know we don't know.”

Donald Rumsfeld (2002),
United States Secretary of Defense

News briefing 12 February 2002

Ectotherms living in cold climates may spend months hibernating underground or in
other retreats. Some remain underground, but others emerge on warm days. Conditions
underground will affect risk of freezing or cold injury as well as energy reserves in
spring. Despite a legacy of studies of the physiology of cold tolerance and of hibernation
(Gregory 1982; Storey 1990; Addo-Bediako et al. 2000; Costanzo et al. 2008; Denlinger
& Lee 2010; Zani et al. 2012; Williams et al. 2014; Sinclair 2015), an understanding of
the dynamics of overwinter physiology, behaviour, and ecology has striking gaps. As we
will argue here, many ‘unknown unknowns’ exist.

Almost eight decades ago, Raymond B. Cowles (1941) explored the overwinter
biology of squamate reptiles in a California desert. Cowles observed that some squamates
spent the entire winter buried in the sand but that some others emerge and are active on

warm days. He knew that soil temperatures changed with depth and were both coldest
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and warmest near the ground surface (Figs. 1, S1, S2-animation), and that the diurnal heat
pulse on sunny days penetrated slowly downward (Smith 1929). Cowles proposed a
novel trade-off: only reptiles in shallow retreats could potentially become active on warm
days in winter or spring because the diurnal heat pulse descending into the soil would
reach them during daylight hours (Smith 1929) and be a reliable cue that surface
temperatures were warm enough for activity. Nevertheless, Cowles also noted that
shallow reptiles risked freezing and predation by endotherms (see p. 129 in Cowles

1941). Thus, Cowles (1941) is a pioneering example of “trade-off”” and optimality
thinking in ecology.

Testing such ideas involves determining where organisms are overwintering
underground. In 1944 that was — and still is — a logistic challenge (but see Karlstrom
1956; Kenagy & Smith 1971; van Gelder et al. 1986; Grenot & Heulin 1988;
Lutterschmidt et al. 2006; Maritz & Alexander 2009; Harris et al. 2015; Berman et al.
2016; DeNardo et al. 2018). Cowles was opportunistic: he followed a large tractor and
‘scraper’ that was progressively scraping off the tops of hummock dunes, thus converting
native desert to farmland (“brushing”, photo in Fig. S3). Cowles caught any reptiles in
the “dirt spill,” took their body temperatures (7v), and estimated hibernation depths from
soil-temperature measurements (7soi1). His efforts were "exceedingly gratifying": after
only “four and a half” days, he caught 96 individuals of 14 species and estimated depth
for 49. Most were shallow: 76% were between 2 and 30 cm deep (Fig. S4).

Cowles’s insights inspired us to ask three basic questions about the eco-
physiological consequences of overwintering at various depths. Cowles addressed the

first two. (1) How deep must a reptile go to avoid dangerously or lethally cold
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temperatures? (2) Which depth best enables reptiles to detect a thermal cue of a warm
day in winter, thus maximizing opportunities for above-ground activity? (3) What depths
minimize cumulative energetic expenses over the winter? Cowles did not ask this last
question, but low expenses may promote overwinter survival and maximize energy
reserves at spring emergence (Hahn & Tinkle 1965; Wilson & Cooke 2001; Zani 2008;
Williams et al. 2014; Sinclair 2015).

Ideally, such questions should be answered with field data of known hibernating
depths, T, and physiological profiles, all from geographically diverse sites. However,
data for squamate reptiles are incomplete and scattered (e.g., Parker & Brown 1974;
Ruby 1977; Congdon et al. 1979; Bauwens 1981; Grenot & Heulin 1988; Sexton et al.
1997; Wilson & Cooke 2001; Bishop & Echternacht 2004; Zani 2008; Zani et al. 2012;
Harris et al. 2015; Berman et al. 2016; Cecchetto ef al. 2019), except for the few species
hibernating communally in rocky dens at mid- to high-latitude (Gregory 1982; Norberg &
Cobb 2017). Geographic surveys of overwinter biology are rare (Tsuji 1988; Sexton et al.
1997; Wilson & Cooke 2001). Moreover, physiological data for squamates are typically
acquired from acute-exposure assays, which may have limited relevance to ectotherms
experiencing slow cooking in nature (Fig. 1B) (Halpern & Lowe 1968; Patterson &
Davies 1984; Tsuji 1988; Storey 2006; Huang & Tu 2008; Berman et al. 2016).

Given limitations of empirical data, we used concepts in Cowles (1941) as a
‘narrative’ (Otto & Rosales 2020) to guide simulations that explore consequences of
overwintering at different depths (Fig. 2). We downloaded hourly soil temperature data

for five depths from 90 sites for 2017-2018 (Fig. S5) in the continental United States

(Material and Methods). Next, we incorporated physiological data (e.g., cold
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tolerance) and predicted how overwintering depth affects cold injury and energy
expenditures. Also, we used a biophysical model (Kearney & Porter 2017, 2019) to
simulate how retreat depth at a desert site affects opportunities for activity on warm days.

While attempting to parameterize variables (e.g., lethal temperature) in these
simulations, we discovered that specific behavioural, ecological, and physiological data
required for our simulations — as well as field data required to test their predictions —
often do not exist or are unsuitable. These issues likely reflect the logistic difficulty of
determining the depth, temporal 7} profiles, and behaviour of overwintering ectotherms
along environmental gradients (Sinclair 2001a), the logistic challenge of quantifying time
series of physiological responses to chronic rather than acute temperature exposures
(Sinclair 2001a; Huang & Tu 2008), and the lack of information on cues used for mid-
winter emergence (Heath 1962; Lutterschmidt et al. 2006). Our simulations thus rely on
uncertain parameter values but nonetheless provide “approximate answers” (Tukey 1962)
to ecologically relevant questions. Most importantly, they help uncover what needs to be
measured (‘unknown unknowns’).

The three questions we address are diverse (cold risk, energy reserves, activity).
Therefore, we present separate methods, results, and discussion sections for each question
and for the initial section of T patterns. When appropriate, we include an “unknown
unknowns” section. In CONCLUDING REMARKS we synthesize key issues and
propose a research agenda.

We made several global assumptions. We assumed that ectotherms are buried in

soil (thus not in burrows, under rocks, or in rock crevices) and that 7y equals adjacent
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Tsi. [Note: the median absolute deviation of 7y from Tsoit was only 0.2 °C for 11 lizards
(Phrynocephalus vlangalii) dug up in voluntarily selected, underground retreats in Aksai,
China (L. Ma, unpublished observations).] We assumed that soil moisture (or ice),
desiccation, or gas tensions did not influence results (but see, Costanzo 1989; Burke et al.

2002; Berman et al. 2016; Rossi et al. 2020).
Patterns of soil temperatures

Methods (soil temperatures)

Using the R package ‘soilDB’ (Skovlin & Beaudette 2019), we downloaded hourly soil
temperatures at five depths (-5, -10, -20, -50, and -100 cm) from 660 sites from the
continental USA from the Climate Analysis Network (SCAN,
http://www.wcc.nrcs.usda.gov/scan/) and from the NRCS National Water and Climate
Center (SNOTEL, https://www.wcc.nrcs.usda.gov/snow/) for 2017-18. Site metadata
(longitude, latitude, and elevation, etc.) were also downloaded (table S1). Site
descriptions and images are available at the above URLs. Note that measured 7s.i are site
specific, as Tsoit Will vary even on a local scale (shading, aspect, soil).

Downloaded Tsii data were messy (Kearney 2020). We numerically scanned 7T'soil
and examined plots of Tsoi versus date for obvious errors. Questionable sites were
omitted (blind as to location), as were sites missing data for more than 5% of hours at any
depth from October-March. This left 90 sites (table S1, black dots in Fig. S5). The
minimum completeness (by depth and month) was 97.3%, and 71.9% of samples were
100% complete. To characterize Tsoi at each site, depth, and month, we computed the
median T and the 2.5% and 97.5% quantiles for 7si. We chose quantiles as estimates

of minimum and maximum 75 to exclude potential measurement errors and extremes.
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SCAN/SNOTEL sites were established to support natural resource assessments.
To determine whether sites were relevant to squamate reptiles, we downloaded and

cleaned squamate locality records (https://www.gbif.org). Tsi sites are close to known

squamate localities (see legend Fig. S5), but some regions with high species density of
squamates (e.g., southeast US) are under sampled.

We used a linear model (gls) to analyse how minimum 7oy varied with latitude,
elevation, and depth. We accounted for spatial autocorrelation of residuals by including a
spatial error structure (Zuur et al. 2009). After examining residuals, we substituted
log(depth) for depth and checked for normality, homogeneity, and spatial autocorrelation.
Because the 3-way interaction was significant (p-value and AIC scores), model
simplification was unnecessary. The model was fit (gls) by the R package ‘nlme’

(Pinheiro et al. 2020). All statistics were generated via R version 3.6.2 (2019-12-12).
Results (soil temperatures)

Monthly variation in minimum and in maximum 7. (September — April) versus
depth are depicted for a random sample of 25 sites (Fig. 3A,B): each line connects
minimum or maximum 7ot With depth for one site. In most months and sites, the coldest
and warmest 7soii are both at shallow depths. In mid-winter, gradients of minimum 7soit
with depth are relatively steep; and warmest 7soi1 are deep.

The coldest Tsi were usually at -5 cm in all months (between 52.0 and 93.9% of
sites), except June and July, when coldest Tsii were at -100 cm (Table S2A). The
warmest Tsii were also at -5 cm in all months (between 49.1 and 90.9% of sites) except
November through January, when the warmest 71 switched to -100 cm (Table S2B).

Not surprisingly, Ts.ii was least variable (inter-quartile range, IQR) at -100 cm in all
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months (between 34.9 and 93.1% of sites, Table S2C); and Tsoit was most variable at -5
cm in all months (between 59.8 and 93.9% of sites, Table S2D).

Temporal constancy of Tsoii increased with depth. The average absolute difference
in median Ty (at each site, depth) for January 2017 versus January 2018 was inversely
correlated with depth (-5 cm =1.17°C, -10 cm = 1.21°C, -20 cm = 1.13°, -50 cm =
0.89°C, -100 cm = 0.60°C; = -0.993, P = 0.0007, Pearson correlation, 2-tailed). Thus,
between-year, within-year (Fig. 1) and within-month (Table S2D) variation in Tsii was
greatest at shallow depths.

In the spatial model, minimum 750 declined with latitude and elevation, but
increased with depth. Several interactions were significant (Table 1). The negative effect
of latitude weakened with elevation, and the negative effect of elevation weakened with
depth, with significant and negative 3-way interaction between depth, latitude, and
elevation). The implications of these patterns will be discussed in the topic-specific
sections (below).

Question . Which depth minimizes risk of cold injury or death?

Cowles (1941) expected that the risk of cold injury or death would be highest at shallow
depths. At many sites (Fig. 3A), Tsil just below the ground surface indeed dropped below
freezing in winter. However, predicting whether shallow squamates are at risk from cold
requires knowing which 7}, are damaging or lethal. Specifying such temperatures proved
problematic because traditional assays are of questionable relevance to risk in winter

(below).
Methods (cold risk)

In traditional cold tolerance assays (e.g., CTmin), Squamates are cooled quickly until their
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righting response is lost (Andersen ef al. 2015; Bennett et al. 2018). Another assay
measures survival over hours or days, but typically after sudden drop to one or more
fixed Ty (e.g., Heatwole ef al. 1969; Gregory 1982; Burke et al. 2002; Storey 2006; but
see Huang & Tu 2008; Olson et al. 2013; Berman et al. 2016).

In nature, Ty of squamates underground will not drop suddenly in autumn but
rather drop slowly over months, especially near the surface (Figs. 1B, S6). Traditional
assays (above) fail to approximate natural cooling patterns (Sinclair 2001a) and thus
their relevance to overwinter cold risk is at best correlational (Andersen et al. 2015).
Accordingly, we used three acute measures in an attempt to bracket cold risk.

Critical Thermal Minimum: CTmin is the most common index of cold tolerance
(Cowles & Bogert 1944). We compiled CTmin data for 40 species of North American
lizards (Grigg & Buckley 2013; Muiioz ef al. 2014; Muioz et al. 2016) and used the
median as a baseline CTmin (11.2 °C, range 2.2 to 15.5 °C). However, CTmin often varies
geographically (van Berkum 1988; Aratjo et al. 2013; Sunday ef al. 2014 ):
consequently, we computed a geographically adjusted CTmin by regressing C7Tmin On
absolute latitude and elevation (see Supplemental Methods: Details). The best-fitting
model (by AIC) was CTmin ~ 17.69 (£ 1.333) — 0.22 (£ 0.049) x abs (latitude) — 0.63 (£
0.224) x log (elevation, m), with variance structure not added to elevation. We calculated
the percentage of time each month (and over winter) when temperatures at each depth
dropped below base or adjusted CTmin.

Freezing point: we calculated the percentage of time in each month in which
Tsoit at each depth was below -0.63 °C, which is the median temperature at which a

sample of 23 species of North American lizards froze (Lowe ef al. 1971). These
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temperatures have a narrow range (-0.7 to -0.3 °C) and are uncorrelated with latitude (» =
-0.057, P =10.796). Exposure to freezing temperatures for a few hours or days is likely
lethal (see table 1 in Storey 2006), but several Zootoca vivipara from France survived
temperatures of -0.8 to -3.5 °C for three weeks (Costanzo et al. 1995), and one Z.
vivipara from Siberia survived -10 °C for 34 days (Berman et al. 2016). Because
repeated cold exposures can be damaging (Sinclair 2001a; Marshall & Sinclair 2012,
2018), we calculated the number of times Tsii dropped below -0.63 °C as well as the
single longest run (hours).

Supercooling point: we calculated the percentage of time when T, at each
depth were below -6.0 °C, which is the median supercooling temperature for 23 species
of lizards (Lowe et al. 1971). Exposure to Tsil at or below this level should be lethal (see
table 1 in Storey 2006). Supercooling temperatures have a narrow range (-7.2 to -3.9°C)
and are uncorrelated with latitude (» = 0.344, P = 0.1078), as is the case 12 populations of

lab-reared Uta stansburiana (Michels-Boyce & Zani 2015).
Results (cold risk)

Although CTin is the most commonly measured cold-tolerance index of reptiles, 7soil in
January dropped below the median lizard CTmin (11.2°C) at least once at -5, -20, and even
-30 cm at all sites and even at -50 and -100 cm at most sites (Table S4A). The pattern is
similar though less extreme for CTmin adjusted for latitude and elevation (Table S4B). At
-5 cm, 64.3% of sites experienced below-freezing temperatures (Table S4C), and 17.4%
experienced below-supercooling temperatures (Table S4D).

Two-thirds of sites at -5 cm had below-freezing runs of 7. at least once over

winter (Table 2). The median and maximum number of cold runs occurred at -5 cm, but

11
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declined with depth, as did the median length of the longest freezing event (Table 2). The
single longest below-freezing run (-5 cm) was 131 days (Crow Creek, WY, 2539 m).
Geographic patterns in the proportion of hours with below-freezing temperatures
by depth in January (coldest month) are plotted in Fig. 4. Many southern sites never
experienced below-freezing temperatures at any depth (red dots, Fig. 4). At northern and
montane sites, freezing was common at shallow depths. Freezing was uncommon at -50

cm, and did not occur at -100 cm.

Discussion (cold risk)

Cowles (1941) predicted that reptiles overwintering at shallow depths potentially
face cold injury or death. Not surprisingly, Ts.i— especially at shallow depths — are often
low (Figs. 1, 2, & 3, Table S4), especially at high latitudes and elevations (Table 1, S4).
But are those Tsoil low enough to cause physiological stress or death?

CTmin 1s the most common cold-tolerance assay. However, almost all sites and
depths experienced Tsoit below the median CTwin of lizards during winter (Table S4A),
and most still did so even with site-adjusted CTmin (Table S4B). Squamates live near most
sites (Fig. S5) and thus may regularly experience below CTmin temperatures in winter,
CTmin thus appears to be of limited direct relevance to cold survival or to geographic
range limits (Lowe et al. 1971; Huang & Tu 2008). If squamates tolerate near freezing
temperatures, they must over winter at or below -20 cm at most sites (Fig. 3, Table S4C).
If they survive to near super-cooling temperatures (Tables S4C,D), they can survive at
most sites — except perhaps at very shallow depths in the coldest sites (Tables S4D).

‘Unknowns’ for cold tolerance. — The question “how cold is ‘too cold’ for

12
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reptiles?” cannot presently be answered, because no ecologically relevant protocol and
assay exists. CTmin 1s the most common assay (Lutterschmidt & Hutchison 1997; Bennett
et al. 2018), but the median cooling rate for 51 CTmin studies with squamates is -1.0
°C/min (Bennett et al. 2018) — roughly four orders of magnitude faster than natural
cooling rates (Fig. 1B, S6; Sinclair 2001b). At -50 cm at Ford Dry Lake (Fig. 1B), for
example, Tsoit drops only about 11.8 °C from October through December. At -20 or -10
cm, Tsoit also drops slowly but fluctuates daily (Fig. 1B). Thus, rapid and monotonic
patterns of CTmin assays bear no resemblance to natural cooling patterns and thus yield
point estimates of uncertain relevance to overwinter survival or cold injury.

A less common protocol involves scoring survival (or length of survival) after
sudden transfer to one or more low and fixed 75 (e.g., Storey 2006; but see Huang & Tu
2008; Olson et al. 2013). Such “drop and hold” assays (“response surfaces”) are
experimentally tractable and are probably more relevant to natural cold tolerance than is
CTmin (e.g.,Huang & Tu 2008; Olson et al. 2013), but still do not match the chronic and
fluctuating T4 profiles experienced by organisms in nature (Fig. 1B, S2 & S6, Sinclair
2001a; Marshall & Sinclair 2012, 2015). Do such temporal discrepancies render
traditional assays unreliable for predicting overwinter survival? That is unknown. We
suspect that drop and hold assays underestimate natural cold tolerance, as natural and
slow cooling offer ample time for acclimatization. This issue may never be resolved for
squamates, as survival experiments raise ethical issues.

What new protocols might be suitable? We do not see a simple solution. A full
factorial design that incorporates fluctuating and shifting temperatures (Fig. 1B, S6),

varying exposure duration, and repeated cold-exposure bouts — and does so for multiple
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populations and species — is logistically challenging (Sinclair 2001a; Huang & Tu 2008;
Marshall & Sinclair 2015, 2018) and potentially feasible only with insects or micro-
organisms. Moreover, any derived statistical model will be descriptive and not predictive
for other sites and perhaps other depths. A more pragmatic starting point would be to try
to determine whether cold tolerance estimates from ‘drop and hold’ or even ‘slow drop’
experiments (Huang & Tu 2008) are acceptably close to those derived from natural
patterns of cooling thermal profiles (Figs. 1B & S6) (Marshall & Sinclair 2015, 2018).

Perhaps asking what ‘temperature’ is damaging or lethal is an ‘inappropriate
question’ (sensu Hertz et al. 1993) because no single temperature likely exists. Lethal and
damaging temperatures might shift over winter and depend on each individual’s
idiosyncratic exposure, age (Kingsolver et al. 2011), and physiological state. But how
much individual (Bennett 1987) and season variation (Layne ef al. 1985; Hu & Appel
2004; Pingor et al. 2016) is rarely known, even at a single site.

Rather than ask what temperature is lethal, one can turn the question around and
ask what depths are damaging and do those depths vary geographically and
interspecifically? Here two approaches seem feasible. First, subject sets of organisms in
the laboratory to empirical Tsoii profiles measured over winter at different sites and depths
(e.g., Fig. 1B, S6) and later score survival or fecundity. Alternatively, bury organisms at
various depths and sites, monitor their thermal profiles, and score their survival in spring
(Tucker & Packard 1998; Kevin Roberts, personal communication); and then determine
whether traditional acute measurements of cold tolerance predict overwinter survival.
Either approach would illustrate how deep an organism needs to go to survive at a given

site, but any conclusions would be descriptive and applicable only locally. Again, such
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survival experiments are feasible only with invertebrates or microorganisms.

It has been eight decades since Cowles asked how deep an ectotherm must
overwinter to reduce the risk of cold injury or death. In our view, that question is still
unanswered primarily because traditional cooling protocols yield unvalidated predictions
of cold tolerance in nature. Ecologically relevant protocols are essentially ‘unknown

unknowns,” and will be logistically challenging to derive and implement.

Question Il. What depth maximizes the opportunity for activity

on warm days in winter?

Cowles (1941) knew that some reptiles in California deserts would become active on
warm winter days. But how might buried reptiles detect whether a given day was in fact
sufficiently warm for activity? Cowles noted that the heat pulse moving slowly down into
the soil (Smith 1929) on sunny days could serve as a reliable cue of warm conditions on
the surface, but only if reptiles were shallow. To explore his prediction, we used the
microclimate model (Kearney & Porter 2017) and the steady state heat budget model in
NicheMapR (Kearney & Porter 2019) and predicted Tsoi1, potential activity times, and
metabolic rates for lizards (20-g) that that had retreated underground at fixed depths
(below) at a California desert site (Ford Dry Lake, 33.7°N, -115.1°W). [Complete R code

in Supplement.]
Methods (activity)

We estimated hourly Tsii at multiple depths (2.5, 5, 10, 15, 20, 30, 50, 100 cm)

plus above-ground operative temperatures (7¢) for winter 2017-2018, but for 0% and 90%
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shade. [Input parameter values are in Table S8.] We then used the ‘ectotherm’ function of
NicheMapR (Kearney & Porter 2019) to compute potential 71 of squamates active on the
surface and to determine potential activity time, contingent on minimum threshold
temperature for activity plus a cue for emergence (below). Because cues that squamates
use to emerge in mid-winter are unknown (but see Heath 1962; Bishop & Echternacht
2004), we assumed that squamates would emerge only if (1) their 7y in their retreat was
above an arbitrary temperature threshold Trmin (20 °C) and (2) their 7}, was increasing
by at least 0.1 °C h'!. Alternative thresholds and emergence models (Heath 1965) can be
explored.

Once on the surface, a squamate was simulated to forage, if its 7 was greater than
minimum foraging temperature 7rmin (35.0 °C) and below the maximum foraging
temperature 7Fmax (43.0 °C). To achieve its preferred body temperature (7prer =39.0 °C)
and to avoid overheating, the animal then shuttled between 0% and 90% shade. Once
potential 7y in the open was greater than 7prer, shade was incremented in 3% increments
to achieve Tprer up to the maximum allowed shade level of 90%, at which point the value
of Tprer was incremented until it reached 7Fmax). When surface conditions were too hot or
cold, the animal was simulated to retreat either to a fixed depth or (for ‘Panglossy’
ectotherms, see below) could chose a depth that avoid extremely high [ 7T¥max + (CTmax -
T max) / 2] or cold (freezing point of -0.63 °C, above) temperatures.

Metabolic rates were estimated as functions of 7 (Andrews & Pough 1985) for
each hour and summed for the winter (December to February) for simulations assuming
that lizards stayed at a fixed depth versus became active whenever possible. Activity was

summed from November to March.
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Results (activity)

Squamates overwintering at shallow depths at Ford Dry Lake are potentially active many
more days in winter than are those at deep retreats (Figs. 5), as Cowles (1941) predicted.
Predicted total activity time declines from 603-h at -2.5 cm to 9-h at -30 cm (November-
March, Fig. 6A). At-50 or -100 cm, activity ceases because the warming signal does not
penetrate to those depths.

Cumulative energy cost at Ford Dry Lake is non-linearly related to depth and
activity. Cost is high near the surface (-2.5 or -5 cm, probably reflecting high T on
warm days at this southern site), declines at moderately shallow depths (-10 to -30 cm,
Fig 6B), and then increases with depth. Squamates using depths shallower than about -30
cm can become active and have high 75 on suitable days (Fig. 5): as a result, they have
higher energy costs than do inactive ectotherms using the same fixed depths (Fig. 6B).
For example, a squamate that is active on warm days but otherwise is at -10 cm will
expend 2.3X more energy per winter than an inactive squamate at -10 cm. This higher
energy costs associated with activity suggests that surface-active squamates may need to
feed in winter, or risk depleting energy stores by spring emergence (see below).

Ford Dry Lake Depth is a relatively warm site, but very shallow squamates there
would still face cold risks. Squamates at -10 cm or shallower would experience below-
CTmin temperatures (Fig. 6C), and those at -2.5 cm would experience multiple below-
freezing events (Fig. 56D). At colder localities (Fig. 3, Table S4), these risks at shallow

depths will of course be elevated. The trade-off Cowles (1941) predicted is supported:
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shallow retreats permit activity but nonetheless increase risk of exposure to cold

temperatures (Fig. 6).
Discussion (activity)

Any attempt to simulate mid-winter activity requires an environmental cue, a
sensory capacity, and a behavioural model. All are unknown for squamates. Field studies
are needed determine cues used by squamates, and neurophysiological studies can
evaluate organismal sensitivities to changing T5.

Cowles (1941) assumed that a squamate would emerge if warming 7Tsoi raised its
Ty, above an unspecified threshold level. Our simulations used a similar approach
(threshold plus warming cue). Other models (or thresholds) are possible: for example,
emergence could be triggered by a temperature-compensated circadian clock (Heath
1962). However, a circadian cue might be reliable in summer, but probably not in winter,
when many days would be too cold for activity, at least at higher latitude and altitude
sites. In any case, the likely effectiveness of a circadian cue can be tested alone or in
combination with a behavioural model (e.g., at a given time each day, the squamate
moves to near the surface to evaluate conditions before deciding whether to emerge).

Why some squamate even emerge mid-winter is essentially unknown. Some will
feed (R. B. Huey and E. R. Pianka, unpublished,Congdon et al. 1979; Goldberg & Bursey
1990), but others are anorexic (Mayhew 1964). For those that feed, digestion (requires
warm temperatures) becomes a challenge (Question 3, below). For those that are active
but do not feed, their energetic expenses are increased (Fig. 6B). Presumably

physiological benefits override energetic costs and perhaps facilitate growth or
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preparation for reproduction -- if reserves are sufficient. In insects, brief warming re-
establishes ion gradients, foraging, and removes metabolic toxins (reviewed in Lee 2010).

The why and how of winter activity are open areas for research. Field
observations are needed to explore geographic and interspecific variation winter activity
and in feeding, as well as predation risks while activite (Wilson & Cooke 2001).
Physiological studies are needed to determine whether feeding is necessary in some but
not all regions and to clarify physiological benefits and costs associated with mid-winter
emergence (Stieler et al. 2006; Lee 2010; Zani et al. 2012).

We have focused on winter retreats, but risk of overheating will be an issue in
shoulder and summer months. Are optimal depths different in summer than winter?
Based on our simulations for Ford Dry Lake, a 20-cm depth seems suitable for both
summer (not too hot) and winter (not too cold). Some reptiles shift macro-habitats
between summer and winter (Christian et al. 1983; Kearney 2002), and high-latitude ones
often migrate to hibernacula (Parker & Brown 1974; Gregory 1982; Norberg & Cobb
2017). Uta in central California use the same retreat sites in summer and winter (B.
Sinervo, personal communication); but those in central Oregon move from desert scrub

habitat to south-facing rocky outcrops (P. Zani, personal communication).

Question lll. What depth minimizes energy expenses or

maximizes digestion?

Cowles (1941) did not discuss energetics. However, we consider how Ts.i at fixed depths

affects cumulative (maintenance) energy expenses. For ectotherms that feed on warm
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days, we estimate the depth that maximizes digestion rate. Finally, we evaluate whether

being able to shift depths conserves energy relative to staying at one depth.
Methods (energy, digestion)

We used a metabolic temperature equation (M X T) tuned for reptiles (Andrews & Pough
1985), converted Tsoil to estimates of hourly metabolic rates for a 20-g lizard, and then
summed over time intervals. [Mean Q1o was 2.9 for a sample of lizard species (with at
least one temperature below 15°C and thus relevant to winter), and variation was
substantial (Table S3).]

We assumed that M x T relationships are geographically stable. For insects,
interspecific M X T relationships do steepen with latitude (Irlich ez al. 2009), but mainly
at latitudes above the continental USA (M. E. Dillon, personal communication). M x T of
reptiles often shift (positively, negatively, or not) from active to winter periods (Halpern
& Lowe 1968; Aleksiuk 1976; Patterson & Davies 1984; Tsuji 1988; Angilletta 2001b;
de Souza et al. 2004), but here we assume they are static within winter. When computing
energetic costs at each site, we excluded depths where 7501t dropped below freezing (-
0.63°C) during the sample period (month or winter), as ectotherms there would not likely
survive (Storey 2006).

Next, we relaxed the restriction that an ectotherm stayed at fixed depth and
allowed it to move every hour to the depth that will have the lowest 75oii — and thus the
lowest metabolic costs — in the next hour. However, we excluded depths at which Tl
dropped below CTmin, simply because a lizard there be immobilized. This scenario
represents the optimality concept of a “Panglossy” ectotherm — one that is always in the

best place (Huey ef al. 1989). We then determined how much energy a Panglossy
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ectotherm would save compared with an ectotherm that stays at a fixed depth. We ignore
any costs of moving (Huey et al. 1989), which must be high for ectotherms moving
through soil (Vleck 1979), though less so if in a burrow.

Some reptiles feed in winter and thus require elevated temperatures to digest that
food (Congdon et al. 1979; Angilletta 2001a, R. B. Huey and E. R. Pianka, unpublished).
To determine how depth would affect digestion rate, we modified an equation for gut
passage time (hours) versus body temperature for Sceloporus undulatus (from table 1, in
Angilletta 2001a): 1/(-20.59 X Tsoit + 0.26 X Toii> + 428.85). We then summed hourly
digestion rates by month and determined the depth that maximized that sum, again
contingent on Tsi not dropping below -0.63°C (lethal, see above). [For simplicity, we
assumed that a lizard that captured food would immediately retreat underground to a

fixed depth and not emerge to bask on subsequent days.]
Results (energy, digestion)

Cumulative energy costs at fixed depths.— During cool months (October through
February), cumulative energy costs were generally lowest at -5 cm at many sites ( >
39.3% of sites, Table S5A); but during warm months (March - September), when near-
surface temperatures are warm, cumulative costs were generally lowest at -50 or -100 cm
(Table S5A). In contrast, cumulative costs were generally highest at -100 cm in cold
months (October — March), but highest at -5 cm in warm months (April -
September)(Table S5B).

When cumulative energy costs were calculated over one or several months, they
were still lowest at -5 or -10 cm at most sites (Table 3). At many cold sites, however,

cumulative rates were lowest deeper in the soil, because -5 or -10 cm depths would likely
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be lethal (Table 2).

Cumulative metabolism of a ‘Panglossy’ ectotherm.—Ectotherms that can change
depth every hour generally had lower costs than those at fixed depths (Table S6, Fig.
S7A). The percentage saving was very small [median saving 1.9% (Q1o0 = 2.0) to 3.4%
(O10 = 3.0)]. Panglossy saving is small because winter energetic costs were generally
lowest at shallow depths (see Table 2). Moreover, Panglossy ectotherms would have to
make many moves totalling long distances over winter (Fig. S7B,C). For our sites, the
median number of depth changes was 187 (range 0 to 717). The median and maximum
cumulative (vertical) distances moved were 30.8 m and 149 m respectively. Were the
energetic costs of movement included, a Panglossy strategy is unlikely to be as
energetically advantageous as a fixed-depth one.

Single site analysis.--Here we contrast patterns a Panglossy vs. fixed-depth
strategy at Ford Dry Lake, California (33.65°N, -115.10°W, 120 m). We used
NicheMapR (Kearney & Porter 2017) to simulate hourly Tsoi at eight depths (-2.5 to -100
cm) for two habitats (30% or 60% shade) (15 October 2013 — 15 March 2014).
Estimated Tsoi profiles (Fig. 7A,F) are coded red for Tsoii warmer than C7in (arbitrarily
9.3°C), and blue for Tsoii colder CTrin. We also estimated the depth with the lowest
energy costs each hour (Fig. 7B,D) and the cumulative energy costs (Fig. 7C,E).

Daily and seasonal variation in Tsoi at fixed depths is shown in Fig. 7A and F.
Mid-winter temperatures are much colder in 60% shade (than in 30% shade) and
frequently drop below 9.3 °C (arbitrary CTmin). In 30% shade in mid-winter, Panglossy
squamates would achieve lowest 7% and thus minimize daily costs by shuttling between

shallow depths (night) and to -30 cm (day)(Fig. 7B), thus avoiding warm near-surface
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Tsoit during the day (Fig. 7A). In 60% shade, however, Panglossy squamates would often
need to go deep to find temperatures warmer than C7y, (Fig. 7D).

In 30% shade, a Panglossy strategy conserved considerable energy relative to that
of overwintering at fixed depths (Fig. 7C). [As above, we ignore costs of movement.] In
60% shade, however, a Panglossy strategy was paradoxically more expensive than fixed-
depth strategies. To be able to continue to move, a Panglossy ectotherm had to select Tsoil
warmer than CTmin (9.4 °C), thus raising metabolic rate, whereas the only constraint on
fixed-depth ectotherms was that 7o never dropped below freezing, which it never did in

30% shade and did only for two hours at 60% shade.

Digestion.-- Some squamates that are active on warm winter days may capture food
(Mayhew 1964R. B. Huey and E. R. Pianka, unpublished; Congdon ef al. 1979; Goldberg
& Bursey 1990) and will need high T, for digestion (Angilletta et al. 2002): this will
basking (Norberg & Cobb 2016) or moving to a warm retreat. Consequently, we
calculated the depths at which digestive rates (see above) were highest (Table S7) by site
and by month, excluding depths where Ts.ii dropped below freezing (above). We assumed
a squamate with food would move to (then stay at) at a depth until digestion was
complete. [Alternatively, a spectral analysis of surface 7. would inform the possibility of
being able to bask on the surface in subsequent days. |

In cold months (October-February), digestion rates were maximal at -100 cm at
almost all sites (Table S7), reflecting relatively warm il at depth. In warmer months

(April - September), however, digestion rates were instead maximal at - 5 cm (Table S7),
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except at hot sites, where Tsi at -5 cm would too hot (above CTmax), forcing lizards to

have deeper retreats).
Discussion (energy, digestion)

For individuals that do not feed in winter, a depth with cold (but not lethally cold)
temperatures minimizes cumulative energy costs and thus reduces starvation risk and
maximizes energy reserves on emergence in spring. Predicting optimal depth is
challenging because M x T relationships are non-linear (Ruel & Ayers 1999) and because
near-surface depths have both the lowest and highest temperatures (Fig. 3). Our
simulations suggest that cumulative energy costs (October- February) were generally
lowest at shallow depths (Table 2), though not at every site (Fig. 6). Shallow depths can
be warm during the day, but winter days are short and often inclement. Nevertheless,
ectotherms at very cold sites will need to move deeper to avoid cold injury or death
(Table 2B, Fig. 4) (Tucker & Packard 1998).

For Panglossy ectotherms at Ford Dry Lake (Fig. 7), the depth that minimizes
cumulative metabolic costs changes seasonally and even within a 24-h day (Fig. 7B,D).
Moreover, Panglossy ectotherms using retreats with different shading will use very
different depths (Fig. 7B,D). Over the entire winter, Panglossy ectotherms can generally
save energy by moving to the coolest (but > CTmin) depth, but the magnitude is generally
small (median saving = 1.9% to 3.4%, see Supplementary Table S6), and this small
benefit would likely be swamped if the cost of movement were deducted (Wu et al.
2015). Paradoxically, a fixed-depth strategy can potentially result in lower energy costs
over winter than does a Panglossy strategy, primarily because Panglossy ectotherms must

restrict themselves to depths warm enough to permit movement (Fig. 7E), whereas fixed-
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depth ectotherms can benefit energetically if Tsoi drops below CTwmin but stays above the
freezing point.

For winter-active ectotherms that feed, digestion will require warm temperatures.
Depths that enhance digestion in winter are typically deep (Table S7), simply because
that is where temperatures are warmest (Fig. 1, Table S2B). We will return to this in the
CONCLUSIONS section.

‘Unknowns’ for metabolism.— We used a M x T relationships tuned for reptiles
(Andrews & Pough 1985), and assumed that M x T relationships were fixed and thus
independent of latitude, altitude, and time of winter. However, M X T curves can shift
geographically (Irlich et al. 2009) and seasonally. For example, M x T curves of winter-
active species are sometimes elevated (“compensation,” see Tsuji 1988), but those of
winter-inactive species are often lowered (“reverse acclimation,” Patterson & Davies
1978; Tsuji 1988). Incorporating known sources of variation (seasonal, ontogeny, local
adaptation, drift) in simulations is feasible, but only if actual patterns are known. They
are not.

What is an ecologically realistic protocol in the laboratory for estimating
cumulative energetic expenses during winter? To our knowledge, one does not exist. A
realistic one should mimic specific conditions hibernating ectotherms experience
underground. Therefore, temperature profiles should drop very slowly and incorporate
fluctuations (Figs. 3, S6) and not follow traditional ‘drop and hold’ exposures. Short
photoperiods might seem appropriate, but ectotherms underground will actually be in full
darkness (unless they emerge during the day), as light rarely penetrates even 5 mm into

the soil (Tester & Morris 2006). Housing conditions should allow ectotherms to bury
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themselves in the soil, and M x T relationships should be measured multiple times over
winter. Thus, traditional laboratory protocols, which are designed to partition
thermodynamic from acclimation effects (Havird et al. 2020), do not match natural
environmental exposures and are thus are questionable for simulating overwinter
expenses.

For a field approach, one could release animals into field enclosures in the
autumn, allow the them to bury themselves or bury them at fixed depths (Tucker &
Packard 1998), if one were interested in depth effects. One could dig them up at intervals
and acutely measure their M x T (Kevin Roberts, personal communication).

A very different approach would be to simulate whether known variation in M
x T is large enough to alter designation of optimal depths or even to compute how large
M x T shifts would have to be to alter conclusions about optimal depths (thus a
sensitivity analysis). Ideally such calculations should be made in context of the complete
energy budget across the whole life-cycle and its consequences for time to maturity and
reproduction (Kearney 2012; Levy et al. 2016; Schwarzkopf et al. 2016).

‘Unknowns’ for winter activity.— Cowles (1941) observed that some reptiles are
active on warm days in winter, but whether winter activity and feeding vary
geographically is known for few widespread species. Sceloporus occidentalis are winter
active in southern California but not in Washington (Tsuji 1988). Low-latitude
populations of Uta stansburiana can be active in winter (Wilson & Cooke 2001) and will
feed (B. Sinervo, personal communication), whereas higher-latitude ones can be active
(Wilson & Cooke 2001) but do not feed (P. Zani,, personal communication). Winter

feeding can be assayed by field observations or retrospectively by examining gut contents
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of winter-captured individuals (e.g., in museum collections). Alternatively, one could test

whether individuals observed active in nature accept food when offered.

Reptiles that are active and basking in winter — but not feeding — will of course
deplete metabolic reserves (Case 1976), and thus presumably must gain compensatory
benefits (e.g., establishing physiological homeostasis, priming reproduction) (Stieler et
al. 2006; Lee 2010; Zani ef al. 2012) or reduce risk of freezing from food particles in guts
that can catalyse ice formation (Bale 2002). Little is known about such benefits and
whether those benefits vary ontogenetically, geographically, and interspecifically in
squamates. In any case, if non-feeding emergence and basking is beneficial to some
species and populations, why is it not beneficial to all? The occurrence and physiological
consequences of activity versus inactivity and feeding versus anorexia in winter are
essentially ‘unknown unknowns’ and thus offer diverse opportunities for field and

laboratory research.
Concluding remarks

Winters present ecological and physiological challenges for ectotherms in cold
environments. Our project was inspired by Raymond B. Cowles’s (1941) novel insights
on the winter biology of ectotherms. We explored three basic questions involving how
overwinter depth affects risk of cold death, metabolic expenses, and opportunities for
activity. We used a simulation approach to address these questions. In every case,
however, we discovered that the field and laboratory data necessary to ‘map’ Tsoii onto
physiological and ecological consequences — as well as to test our predictions — are
inappropriate or even non-existent. In winter biology, there are both ‘known unknowns’

plus ‘unknown unknowns.” Accordingly, we outline a research agenda for the winter
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biology of ectotherms (Box 1). This agenda is not exhaustive but focuses specifically on
issues germane to our paper’s themes. In all cases we encourage studies that incorporate
seasonal, ontogenetic, geographic, and interspecific variation.

Implementing this agenda will be challenging and sometimes impossible for
ethical reasons. But some solutions are evident. The technique that Cowles (1941; fig.
S3) used to find reptiles in winter was opportunistic (see also Broadley 1972; DeNardo et
al. 2018). However, body temperature and depth data can be estimated by implanting
(attaching) temperature-sensitive loggers in ectotherms prior to hibernation and decoding
them after emergence. If other temperature recorders are placed in likely retreat sites
(depths), the overwinter positions and movements of individuals can be inferred. Above-
ground activity can be indicated by rapid 7y shifts (Harris et al. 2015), or from
dataloggers that record light level (Davis ef al. 2008). These are indirect methods, but
they should be accompanied by direct natural-history observations in winter.

As regards physiological studies of metabolism and of cold tolerance, we have
argued (above) that acclimation regimes and conditions should approximate natural ones:
in contrast, traditional ‘drop and hold’ protocols do not match the dynamic thermal
profiles seen in nature (Fig. 1, S6, Sinclair 2001b). We appreciate that these designs may
be feasible primarily invertebrates (e.g., C. elegans, arthropods), especially the cold
tolerance assays.

A major puzzle involves animals that are active on warm days but do not feed
(above). Does activity (and elevated 7;) enable active ectotherms to clear accumulated

and toxic by-products (Stieler et al. 2006), recover from infections (Harris et al. 2015),
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prime reproductive capacity in anticipation of spring, or readjust metabolic stores (e.g.,
replenish glycogen, Zani et al. 2012)?

Similarly, experiments are needed to evaluate what cues prompt mid-winter
activity. Are animals using a temperature-compensated clock (Heath 1962), or a
threshold temperature (above), a change in sign in the derivative of Ty vs time (Heath
1965), or some combination thereof? Do cues vary geographically? Critical experiments
remain to be done, and simulations studies can guide experiments.

On a personal level, we concede that we have focused our own field studies on the
thermal biology of ectotherms in warm seasons. But despite our personal ‘dormancy’
from the field in winter, ectotherms in nature experience winter — sometimes long
winters. As others have argued, the overwinter ecology of ectotherms offers rich
opportunities for exploration, including impacts of climate change (Bradshaw &
Holzapfel 2006; Bradshaw & Holzapfel 2009; Williams ef al. 2014).

In concluding, we return to Cowles (1941). Almost eight decades after its
publication, this paper is remarkably contemporary. To us it is an early classic in
behavioural and physiological ecology, as well as an early example of trade-off thinking
in ecology. But according to Web of Science (accessed 2020-04-22), this paper has been
cited only 54 times. None of those citing papers draws attention to Cowles’s recognition

of trade-offs involving overwintering depth. This oversight needs to be corrected.
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939 Table1 Estimated effects of latitude, elevation and soil depth on minimal soil

940  temperatures during winter according to the gls model.

Coefficients Value | Std. error t-value P
Intercept 26.1647 2.2104 11.8371 <0.0000
Latitude (°N) -0.7025 0.0598 -11.7412 < 0.0000
Elevation (m) -0.0169 0.0024 -71749 < 0.0000
Depth (cm) 0.1040 0.0433 2.4024 0.0167
Latitude:Elevation 0.0004 0.0001 6.7943 <0.0000
Latitude:Depth -0.0005 0.0012 -0.4399 0.6602
Elevation:Depth 0.0001 <0.0000 2.1435 0.0326
Latitude:Elevation:Depth <0.0000 <0.0000 -2.3435 0.0194
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943  Table 2. Percentage of sites (by depth) with runs of Tsi below freezing (-0.63°C),
944  number (minimum, median, and maximum) of runs and length of runs below freezing in
945  hours (minimum, median, maximum), compiled for 90 sites for October 2017 through

946  April 2018. A ‘run’ is defined as 2 or more consecutive hours below freezing.

Pent. Number of runs Length of runs (hours)
Depth | sites
(cm) | frozen | Min. | Median | Max. Min. Median Max.
-5 65.6 0 6.5 93 0 17.5 2791
-10 55.6 0 2.5 59 0 10 2804
-20 333 0 0 23 0 0 1700
-50 5.6 0 0 16 0 0 655
-100 0 0 0 0 0 0 0
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948  Table 3. Percentage of depths (by site) having the lowest cumulative energy cost over
949  several winter periods, contingent on 7soi never dropping below freezing at that depth (-

950  0.63°C). Depth with lowest cumulative energy cost at most sites is boldfaced.

Depth (cm) Jan only Dec-Feb Nov-Mar Oct-Apr

5 33.0 41.8 60.2 69.4

10 19.6 28.6 27.6 24.5

20 21.6 14.3 11.2 5.1

50 19.6 14.3 1.0 1.0

100 6.2 1.0 0.0 0.0
951
952
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freezing (-0.63°C, assumed lethal). Here a representative cold (Lovelock, NV) and a
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Tsoi1 at the cold site were too cold, but

those (especially at -5 cm) at the warm site permitted activity on many winter days.
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Figure 6 (A) Cumulative hours of activity (potential) for a lizard spending inactive
periods at various depths at Ford Dry Lake, CA for November — March (see legend Fig.
4). (B) Total energy costs for winter for ectotherms that remain inactive at fixed depths
(grey symbols) or become active on warm winter days (December — February) (black).
(C) Maximum run-lengths below the critical thermal minimum (CTuin, here 7.3 °C) with
depth in winter. (D) Number of freezing events (< -0.63 °C) in winter by depth. All

calculations assume a warm signal of 0.1 °C/h.
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Figure 7 Simulated soil temperatures at various depths for Ford Dry Lake, CA for 30%

shade coverage (A) or 60% coverage (F). Red indicates Tsoit > 9.3 °C. (B & D) Depths

minimizing metabolic rate each hour over winter, contingent on 7si > 9.3 °C). (C & E)

Cumulative metabolic rate (ml O/h) for a Panglossy ectotherm (green) and for ectotherm

at fixed depths (-2.5cm to -100 cm: darker lines indicate deeper in soil).
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Box 1. An agenda for studies of overwinter biology of ectotherms
Field studies

(1) Document body temperature profiles throughout winter.
(2) Determine microsites used by ectotherms. Do animals shift depths during winter or
stay at fixed sites? Do they use burrows or crevices, or are they buried?
(3) Quantify patterns of activity and of feeding in winter, and explore ecological
(condition, growth, life history) consequences.
(4) Measure variation in overwinter mortality and causes thereof. Do animals die of
starvation, cold, suppressed immune responses, or predation?

Physiological studies
(1) Derive and implement ecologically relevant assays (using natural cooling patterns) of
cold tolerance and of metabolic-temperature relationships before, during, and after
winter.
(2) Quantify physiological costs and benefits of winter activity with and without feeding.
(3) Determine environmental and internal cues that initiate activity in winter. Do these

vary seasonally and geographically?
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