References
Ackerly, D.D. (2003). Community assembly, niche conservatism, and adaptive evolution in changing environments. Int. J. Plant Sci. , 164, S165-S184.
Anderson, J. & Domsch, K. (1978). A physiological method for the quantitative measurement of microbial biomass in soils.Soil Biol. Biochem. , 10, 215-221.
Aponte, C., García, L.V. & Maranon, T. (2012). Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems , 15, 1204-1218.
Austin, A.T., Vivanco, L., González‐Arzac, A. & Pérez, L.I. (2014). There’s no place like home? An exploration of the mechanisms behind plant litter–decomposer affinity in terrestrial ecosystems. New Phytol. , 204, 307-314.
Ayres, E., Steltzer, H., Simmons, B.L., Simpson, R.T., Steinweg, J.M., Wallenstein, M.D. et al. (2009). Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol. Biochem. , 41, 606-610.
Bardgett, R.D. & van der Putten, W.H. (2014). Belowground biodiversity and ecosystem functioning. Nature , 515, 505.
Barton, A.M. (2002). Intense wildfire in southeastern Arizona: transformation of a Madrean oak–pine forest to oak woodland.Forest Ecol. Manag. , 165, 205-212.
Beck, T., Joergensen, R., Kandeler, E., Makeschin, F., Nuss, E., Oberholzer, H. et al. (1997). An inter-laboratory comparison of ten different ways of measuring soil microbial biomass C. Soil Biology and Biochemistry , 29, 1023-1032.
Berendse, F. & Scheffer, M. (2009). The angiosperm radiation revisited, an ecological explanation for Darwin’s ‘abominable mystery’. Ecol. Lett. , 12, 865-872.
Benner, R., Fogel, M. L., Sprague, E. K., & Hodson, R. E. (1987). Depletion of 13C in lignin and its implications for stable carbon isotope studies. Nature, 329(6141), 708–710.
Bowling, D. R., Pataki, D. E., & Randerson, J. T. (2008). Carbon isotopes in terrestrial ecosystem pools and CO2 fluxes. New Phytol ., 178(1), 24–40.
Cárdenas, R. E., & Dangles, O. (2012). Do canopy herbivores mechanically facilitate subsequent litter decomposition in soil? A pilot study from a Neotropical cloud forest. Ecol. Res. , 27 , 975-981.
Cavender‐Bares, J., Kozak, K.H., Fine, P.V. & Kembel, S.W. (2009). The merging of community ecology and phylogenetic biology. Ecol. Lett. , 12, 693-715.
Cheng, K., & Yu, S. (2020). Neighboring trees regulate the root‐associated pathogenic fungi on the host plant in a subtropical forest. Ecol. Evol. , 10(9), 3932–3943.
Cherif, M. & Loreau, M. (2013). Plant–herbivore–decomposer stoichiometric mismatches and nutrient cycling in ecosystems.Proc. Biol. Sci. , 280, 20122453.
Coley, P.D. & Barone, J. (1996). Herbivory and plant defenses in tropical forests.Annu. Rev. Ecol. Syst. , 27, 305-335.
Cornelissen, J.H., Grootemaat, S., Verheijen, L.M., Cornwell, W.K., Bodegom, P.M., Wal, R. et al. (2017). Are litter decomposition and fire linked through plant species traits? New Phytol. , 216, 653-669.
Cornwell, W.K., Cornelissen, J.H., Amatangelo, K., Dorrepaal, E., Eviner, V.T., Godoy, O. et al. (2008). Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. , 11, 1065-1071.
Cornwell, W.K. & Weedon, J.T. (2014). Decomposition trajectories of diverse litter types: a model selection analysis. Methods Ecol. Evol. , 5, 173-182.
Coûteaux, M.-M., Bottner, P. & Berg, B. (1995). Litter decomposition, climate and liter quality. Trends Ecol. Evol. , 10, 63-66.
Crawley, M.J. (2013). The R book Second edition. John Wiley & Sons.
Crisp, M.D. & Cook, L.G. (2012). Phylogenetic niche conservatism: what are the underlying evolutionary and ecological causes? New Phytol. , 196, 681-694.
Dias, A.T.C., Cornelissen, J.H. & Berg, M.P. (2017). Litter for life: assessing the multifunctional legacy of plant traits. J. Ecol. , 105, 1163-1168.
DiMichele, W.A. & Bateman, R.M. (1996). Plant paleoecology and evolutionary inference: two examples from the Paleozoic.Rev. Palaeobot. Palyno. , 90, 223-247.
Fernandez, C., Monnier, Y., Santonja, M., Gallet, C., Weston, L.A., Prévosto, B. et al. (2016). The impact of competition and allelopathy on the trade-off between plant defense and growth in two contrasting tree species. Front. Plant Sci. , 7, 594.
Freschet, G.T., Aerts, R. & Cornelissen, J.H. (2012). Multiple mechanisms for trait effects on litter decomposition: moving beyond home‐field advantage with a new hypothesis. J. Ecol. , 100, 619-630.
García‐Palacios, P., Maestre, F.T., Kattge, J. & Wall, D.H. (2013). Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. , 16, 1045-1053.
Gerhold, P., Cahill, J.F., Winter, M., Bartish, I.V. & Prinzing, A. (2015). Phylogenetic patterns are not proxies of community assembly mechanisms (they are far better). Funct. Ecol. , 29, 600-614.
Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D., Wall, D.H. et al. (2010). Diversity meets decomposition.Trends Ecol. Evol. , 25, 372-380.
Gholz, H.L., Wedin, D.A., Smitherman, S.M., Harmon, M.E. & Parton, W.J. (2000). Long‐term dynamics of pine and hardwood litter in contrasting environments: toward a global model of decomposition. Glob. Change Biol. , 6, 751-765.
Grossman, J. J., Cavender-Bares, J., & Hobbie, S. E. (2020). Functional diversity of leaf litter mixtures slows decomposition of labile but not recalcitrant carbon over two years. Ecol. Monogr. , ecm.1407–53.
Guénon, R., Day, T.A., Velazco-Ayuso, S. & Gros, R. (2017). Mixing of Aleppo pine and Holm oak litter increases biochemical diversity and alleviates N limitations of microbial activity. Soil Biol. Biochem. , 105, 216-226.
Handa, I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen, O., et al. (2014). Consequences of biodiversity loss for litter decomposition across biomes. Nature, 509, 218–221.
Hansen, A.J., Neilson, R.P., Dale, V.H., Flather, C.H., Iverson, L.R., Currie, D.J. et al. (2001). Global Change in Forests: Responses of Species, Communities, and Biomes: Interactions between climate change and land use are projected to cause large shifts in biodiversity.AIBS Bulletin , 51, 765-779.
Hättenschwiler, S. & Vitousek, P.M. (2000). The role of polyphenols in terrestrial ecosystem nutrient cycling. Trends Ecol. Evol. , 15, 238-243.
Iverson, L.R. & Prasad, A.M. (2001). Potential changes in tree species richness and forest community types following climate change.Ecosystems , 4, 186-199.
Kaneko, N. & Salamanca, E. (1999). Mixed leaf litter effects on decomposition rates and soil microarthropod communities in an oak–pine stand in Japan. Ecol. Res. , 14, 131-138.
Karban, R. & Myers, J.H. (1989). Induced plant responses to herbivory.Annu. Rev. Ecol. Syst. , 20, 331-348.
Lummer, D., Scheu, S. & Butenschoen, O. (2012). Connecting litter quality, microbial community and nitrogen transfer mechanisms in decomposing litter mixtures. Oikos , 121, 1649-1655.
Milcu, A. & Manning, P. (2011). All size classes of soil fauna and litter quality control the acceleration of litter decay in its home environment. Oikos , 120, 1366-1370.
Negrete-Yankelevich, S., Fragoso, C., Newton, A.C., Russell, G. & Heal, O.W. (2008). Species-specific characteristics of trees can determine the litter macroinvertebrate community and decomposition process below their canopies. Plant Soil , 307, 83-97.
Pan, X., Berg, M.P., Butenschoen, O., Murray, P.J., Bartish, I.V., Cornelissen, J.H. et al. (2015). Larger phylogenetic distances in litter mixtures: lower microbial biomass and higher C/N ratios but equal mass loss. Proc. Biol. Sci. , 282, 20150103.
Pausch, J., Kramer, S., Scharroba, A., Scheunemann, N., Butenschoen, O., Kandeler, E. et al. (2016). Small but active–pool size does not matter for carbon incorporation in below‐ground food webs. Funct. Ecol. , 30, 479-489.
Porre, R. J., van der Werf, W., De Deyn, G. B., Stomph, T. J., & Hoffland, E. (2020). Is litter decomposition enhanced in species mixtures? A meta-analysis.Soil Biol. Biochem. , 145, 107791.
Prinzing, A., Powrie, L. W., Hennekens, S. M., Bartish, I. V., & Ozinga, W. A. (2016). “High-co-occurrence genera”: weak but consistent relationships with global richness, niche partitioning, hybridization and decline. Glob. Ecol. Biogeogr. , 25, 55–64.
Prinzing, A., Ozinga, W.A., Brändle, M., Courty, P.E., Hennion, F., Labandeira, C. et al. (2017). Benefits from living together? Clades whose species use similar habitats may persist as a result of eco‐evolutionary feedbacks. New Phytol. , 213, 66-82.
Ritchie, M.E., Tilman, D. & Knops, J.M. (1998). Herbivore effects on plant and nitrogen dynamics in oak savanna. Ecology , 79, 165-177.
Rosenzweig ML. (1995). Species diversity in space and time. New York, NY: Cambridge University Press.
Santonja, M., Fernandez, C., Gauquelin, T. & Baldy, V. (2015). Climate change effects on litter decomposition: intensive drought leads to a strong decrease of litter mixture interactions. Plant Soil , 393, 69-82.
Santonja, M., Rancon, A., Fromin, N., Baldy, V., Hättenschwiler, S., Fernandez, C. et al. (2017). Plant litter diversity increases microbial abundance, fungal diversity, and carbon and nitrogen cycling in a Mediterranean shrubland. Soil Biol. Biochem. , 111, 124-134.
Schädler, M., & Ballhorn, D. J. (2016). Beneficial Soil Microbiota as Mediators of the Plant Defensive Phenotype and Aboveground Plant-Herbivore Interactions. In U. Lüttge, W. Beyschlag, B. Büdel, & D. Francis, Resolving the Dryland Decomposition Conundrum: Some New Perspectives on Potential Drivers (Vol. 78, pp. 305–343). Cham: Springer International Publishing.
Schädler, M., Jung, G., Auge, H., & Brandl, R. (2003). Palatability, decomposition and insect herbivory: patterns in a successional old‐field plant community. Oikos , 103, 121–132.
Scheu, S. (1992). Automated measurement of the respiratory response of soil microcompartments: active microbial biomass in earthworm faeces.Soil Biol. Biochem. , 24, 1113-1118.
Schultz, J.C. & Baldwin, I.T. (1982). Oak leaf quality declines in response to defoliation by gypsy moth larvae. Science , 217, 149-151.
Srivastava, D.S., Cadotte, M.W., MacDonald, A.A.M., Marushia, R.G. & Mirotchnick, N. (2012). Phylogenetic diversity and the functioning of ecosystems. Ecol. Lett. , 15, 637-648.
Strauss, S.Y. & Agrawal, A.A. (1999). The ecology and evolution of plant tolerance to herbivory. Trends Ecol. Evol. , 14, 179-185.
Veen, G., Freschet, G.T., Ordonez, A. & Wardle, D.A. (2015). Litter quality and environmental controls of home‐field advantage effects on litter decomposition. Oikos , 124, 187-195.
Verdú, M., Gómez-Aparicio, L. & Valiente-Banuet, A. (2012). Phylogenetic relatedness as a tool in restoration ecology: a meta-analysis. Proc. Biol. Sci. , 279, 1761-1767.
Vialatte, A., Bailey, R.I., Vasseur, C., Matocq, A., Gossner, M.M., Everhart, D. et al. (2010). Phylogenetic isolation of host trees affects assembly of local Heteroptera communities. Proc. Biol. Sci. , 277, 2227-2236.
Vivanco, L. & Austin, A.T. (2008). Tree species identity alters forest litter decomposition through long‐term plant and soil interactions in Patagonia, Argentina. J. Ecol. , 96, 727-736.
Wallenstein, M.D., Haddix, M.L., Ayres, E., Steltzer, H., Magrini-Bair, K.A. & Paul, E.A. (2013). Litter chemistry changes more rapidly when decomposed at home but converges during decomposition–transformation.Soil Biol. Biochem. , 57, 311-319.
Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002). Phylogenies and community ecology. Annu. Rev. Ecol. Syst. , 33, 475-505.
Yguel, B., Bailey, R., Tosh, N.D., Vialatte, A., Vasseur, C., Vitrac, X.et al. (2011). Phytophagy on phylogenetically isolated trees: why hosts should escape their relatives. Ecol. Lett. , 14, 1117-1124.
Yguel, B., Courty, P.-E., Jactel, H., Pan, X., Butenschoen, O., Murray, P.J. et al. (2014). Mycorrhizae support oaks growing in a phylogenetically distant neighbourhood. Soil Biol. Biochem. , 78, 204-212.