References
Ackerly,
D.D. (2003). Community assembly, niche conservatism, and adaptive
evolution in changing environments. Int. J. Plant Sci. , 164,
S165-S184.
Anderson, J. & Domsch, K. (1978). A physiological method for the
quantitative measurement of microbial biomass in soils.Soil
Biol. Biochem. , 10, 215-221.
Aponte, C., García, L.V. & Maranon, T. (2012). Tree species effect on
litter decomposition and nutrient release in mediterranean oak forests
changes over time. Ecosystems , 15, 1204-1218.
Austin, A.T., Vivanco, L., González‐Arzac, A. & Pérez, L.I. (2014).
There’s no place like home? An exploration of the mechanisms behind
plant litter–decomposer affinity in terrestrial ecosystems. New
Phytol. , 204, 307-314.
Ayres, E., Steltzer, H., Simmons, B.L., Simpson, R.T., Steinweg, J.M.,
Wallenstein, M.D. et al. (2009). Home-field advantage accelerates
leaf litter decomposition in forests. Soil Biol. Biochem. , 41,
606-610.
Bardgett, R.D. & van der Putten, W.H. (2014). Belowground biodiversity
and ecosystem functioning. Nature , 515, 505.
Barton, A.M. (2002). Intense wildfire in southeastern Arizona:
transformation of a Madrean oak–pine forest to oak woodland.Forest Ecol. Manag. , 165, 205-212.
Beck, T., Joergensen, R., Kandeler, E., Makeschin, F., Nuss, E.,
Oberholzer, H. et al. (1997). An inter-laboratory comparison of
ten different ways of measuring soil microbial biomass C. Soil
Biology and Biochemistry , 29, 1023-1032.
Berendse, F. & Scheffer, M. (2009). The angiosperm radiation revisited,
an ecological explanation for Darwin’s ‘abominable mystery’. Ecol.
Lett. , 12, 865-872.
Benner, R., Fogel, M. L., Sprague, E. K., & Hodson, R. E. (1987).
Depletion of 13C in lignin and its implications for stable carbon
isotope studies. Nature, 329(6141), 708–710.
Bowling, D. R., Pataki, D. E., & Randerson, J. T. (2008). Carbon
isotopes in terrestrial ecosystem pools and CO2 fluxes. New
Phytol ., 178(1), 24–40.
Cárdenas, R. E., & Dangles, O. (2012). Do canopy herbivores
mechanically facilitate subsequent litter decomposition in soil? A pilot
study from a Neotropical cloud forest. Ecol. Res. , 27 ,
975-981.
Cavender‐Bares, J., Kozak, K.H., Fine, P.V. & Kembel, S.W. (2009). The
merging of community ecology and phylogenetic biology. Ecol.
Lett. , 12, 693-715.
Cheng, K., & Yu, S. (2020). Neighboring trees regulate the
root‐associated pathogenic fungi on the host plant in a subtropical
forest. Ecol. Evol. , 10(9), 3932–3943.
Cherif, M. & Loreau, M. (2013).
Plant–herbivore–decomposer
stoichiometric mismatches and nutrient cycling in ecosystems.Proc. Biol. Sci. , 280, 20122453.
Coley, P.D. & Barone, J. (1996). Herbivory and plant defenses in
tropical forests.Annu.
Rev. Ecol. Syst. , 27, 305-335.
Cornelissen, J.H., Grootemaat, S., Verheijen, L.M., Cornwell, W.K.,
Bodegom, P.M., Wal, R. et al. (2017). Are litter decomposition
and fire linked through plant species traits? New Phytol. , 216,
653-669.
Cornwell, W.K., Cornelissen, J.H., Amatangelo, K., Dorrepaal, E.,
Eviner, V.T., Godoy, O. et al. (2008). Plant species traits are
the predominant control on litter decomposition rates within biomes
worldwide. Ecol. Lett. , 11, 1065-1071.
Cornwell, W.K. & Weedon, J.T. (2014). Decomposition trajectories of
diverse litter types: a model selection analysis. Methods Ecol.
Evol. , 5, 173-182.
Coûteaux, M.-M., Bottner, P. & Berg, B. (1995). Litter decomposition,
climate and liter quality. Trends Ecol. Evol. , 10, 63-66.
Crawley, M.J. (2013).
The
R book Second edition. John Wiley & Sons.
Crisp, M.D. & Cook, L.G. (2012). Phylogenetic niche conservatism: what
are the underlying evolutionary and ecological causes? New
Phytol. , 196, 681-694.
Dias, A.T.C., Cornelissen, J.H. & Berg, M.P. (2017).
Litter
for life: assessing the multifunctional legacy of plant traits. J.
Ecol. , 105, 1163-1168.
DiMichele, W.A. & Bateman, R.M. (1996). Plant paleoecology and
evolutionary inference: two examples from the Paleozoic.Rev.
Palaeobot. Palyno. , 90, 223-247.
Fernandez, C., Monnier, Y., Santonja, M., Gallet, C., Weston, L.A.,
Prévosto, B. et al. (2016). The impact of competition and
allelopathy on the trade-off between plant defense and growth in two
contrasting tree species. Front. Plant Sci. , 7, 594.
Freschet, G.T., Aerts, R. & Cornelissen, J.H. (2012). Multiple
mechanisms for trait effects on litter decomposition: moving beyond
home‐field advantage with a new hypothesis. J. Ecol. , 100,
619-630.
García‐Palacios, P., Maestre, F.T., Kattge, J. & Wall, D.H. (2013).
Climate and litter quality differently modulate the effects of soil
fauna on litter decomposition across biomes. Ecol. Lett. , 16,
1045-1053.
Gerhold, P., Cahill, J.F., Winter, M., Bartish, I.V. & Prinzing, A.
(2015). Phylogenetic patterns are not proxies of community assembly
mechanisms (they are far better). Funct. Ecol. , 29, 600-614.
Gessner, M.O., Swan, C.M., Dang, C.K., McKie, B.G., Bardgett, R.D.,
Wall, D.H. et al. (2010). Diversity meets decomposition.Trends Ecol. Evol. , 25, 372-380.
Gholz, H.L., Wedin, D.A., Smitherman, S.M., Harmon, M.E. & Parton, W.J.
(2000). Long‐term dynamics of pine and hardwood litter in contrasting
environments: toward a global model of decomposition. Glob. Change
Biol. , 6, 751-765.
Grossman, J. J., Cavender-Bares, J., & Hobbie, S. E. (2020). Functional
diversity of leaf litter mixtures slows decomposition of labile but not
recalcitrant carbon over two years. Ecol. Monogr. , ecm.1407–53.
Guénon, R., Day, T.A., Velazco-Ayuso, S. & Gros, R. (2017). Mixing of
Aleppo pine and Holm oak litter increases biochemical diversity and
alleviates N limitations of microbial activity. Soil Biol.
Biochem. , 105, 216-226.
Handa,
I. T., Aerts, R., Berendse, F., Berg, M. P., Bruder, A., Butenschoen,
O., et al. (2014). Consequences of biodiversity loss for litter
decomposition across biomes. Nature, 509, 218–221.
Hansen, A.J., Neilson, R.P., Dale, V.H., Flather, C.H., Iverson, L.R.,
Currie, D.J. et al. (2001). Global Change in Forests: Responses
of Species, Communities, and Biomes: Interactions between climate change
and land use are projected to cause large shifts in biodiversity.AIBS
Bulletin , 51, 765-779.
Hättenschwiler, S. & Vitousek, P.M. (2000). The role of polyphenols in
terrestrial ecosystem nutrient cycling. Trends Ecol. Evol. , 15,
238-243.
Iverson, L.R. & Prasad, A.M. (2001). Potential changes in tree species
richness and forest community types following climate change.Ecosystems ,
4, 186-199.
Kaneko, N. & Salamanca, E. (1999). Mixed leaf litter effects on
decomposition rates and soil microarthropod communities in an oak–pine
stand in Japan. Ecol. Res. , 14, 131-138.
Karban, R. & Myers, J.H. (1989). Induced plant responses to herbivory.Annu. Rev. Ecol. Syst. , 20, 331-348.
Lummer, D., Scheu, S. & Butenschoen, O. (2012). Connecting litter
quality, microbial community and nitrogen transfer mechanisms in
decomposing litter mixtures. Oikos , 121, 1649-1655.
Milcu, A. & Manning, P. (2011). All size classes of soil fauna and
litter quality control the acceleration of litter decay in its home
environment. Oikos , 120, 1366-1370.
Negrete-Yankelevich, S., Fragoso, C., Newton, A.C., Russell, G. & Heal,
O.W. (2008). Species-specific characteristics of trees can determine the
litter macroinvertebrate community and decomposition process below their
canopies. Plant Soil , 307, 83-97.
Pan, X., Berg, M.P., Butenschoen, O., Murray, P.J., Bartish, I.V.,
Cornelissen, J.H. et al. (2015). Larger phylogenetic distances in
litter mixtures: lower microbial biomass and higher C/N ratios but equal
mass loss. Proc. Biol. Sci. , 282, 20150103.
Pausch, J., Kramer, S., Scharroba, A., Scheunemann, N., Butenschoen, O.,
Kandeler, E. et al. (2016). Small but active–pool size does not
matter for carbon incorporation in below‐ground food webs. Funct.
Ecol. , 30, 479-489.
Porre, R. J., van der Werf, W., De Deyn, G. B., Stomph, T. J., &
Hoffland, E. (2020).
Is
litter decomposition enhanced in species mixtures? A meta-analysis.Soil Biol. Biochem. , 145, 107791.
Prinzing, A., Powrie, L. W., Hennekens, S. M., Bartish, I. V., &
Ozinga, W. A. (2016). “High-co-occurrence genera”: weak but consistent
relationships with global richness, niche partitioning, hybridization
and decline. Glob. Ecol. Biogeogr. , 25, 55–64.
Prinzing, A., Ozinga, W.A., Brändle, M., Courty, P.E., Hennion, F.,
Labandeira, C. et al. (2017). Benefits from living together?
Clades whose species use similar habitats may persist as a result of
eco‐evolutionary feedbacks. New Phytol. , 213, 66-82.
Ritchie, M.E., Tilman, D. & Knops, J.M. (1998). Herbivore effects on
plant and nitrogen dynamics in oak savanna. Ecology , 79, 165-177.
Rosenzweig ML. (1995). Species diversity in space and time. New York,
NY: Cambridge University Press.
Santonja, M., Fernandez, C., Gauquelin, T. & Baldy, V. (2015). Climate
change effects on litter decomposition: intensive drought leads to a
strong decrease of litter mixture interactions. Plant Soil , 393,
69-82.
Santonja, M., Rancon, A., Fromin, N., Baldy, V., Hättenschwiler, S.,
Fernandez, C. et al. (2017). Plant litter diversity increases
microbial abundance, fungal diversity, and carbon and nitrogen cycling
in a Mediterranean shrubland. Soil Biol. Biochem. , 111, 124-134.
Schädler, M., & Ballhorn, D. J. (2016). Beneficial Soil Microbiota as
Mediators of the Plant Defensive Phenotype and Aboveground
Plant-Herbivore Interactions. In U. Lüttge, W. Beyschlag, B. Büdel, &
D. Francis, Resolving the Dryland Decomposition Conundrum: Some New
Perspectives on Potential Drivers (Vol. 78, pp. 305–343). Cham:
Springer International Publishing.
Schädler, M., Jung, G., Auge, H., & Brandl, R. (2003). Palatability,
decomposition and insect herbivory: patterns in a successional old‐field
plant community. Oikos , 103, 121–132.
Scheu, S. (1992). Automated measurement of the respiratory response of
soil microcompartments: active microbial biomass in earthworm faeces.Soil Biol. Biochem. , 24, 1113-1118.
Schultz, J.C. & Baldwin, I.T. (1982). Oak leaf quality declines in
response to defoliation by gypsy moth larvae. Science , 217,
149-151.
Srivastava, D.S., Cadotte, M.W., MacDonald, A.A.M., Marushia, R.G. &
Mirotchnick, N. (2012). Phylogenetic diversity and the functioning of
ecosystems. Ecol. Lett. , 15, 637-648.
Strauss, S.Y. & Agrawal, A.A. (1999). The ecology and evolution of
plant tolerance to herbivory. Trends Ecol. Evol. , 14, 179-185.
Veen, G., Freschet, G.T., Ordonez, A. & Wardle, D.A. (2015). Litter
quality and environmental controls of home‐field advantage effects on
litter decomposition. Oikos , 124, 187-195.
Verdú, M., Gómez-Aparicio, L. & Valiente-Banuet, A. (2012).
Phylogenetic relatedness as a tool in restoration ecology: a
meta-analysis. Proc. Biol. Sci. , 279, 1761-1767.
Vialatte, A., Bailey, R.I., Vasseur, C., Matocq, A., Gossner, M.M.,
Everhart, D. et al. (2010).
Phylogenetic
isolation of host trees affects assembly of local Heteroptera
communities. Proc. Biol. Sci. , 277, 2227-2236.
Vivanco, L. & Austin, A.T. (2008). Tree species identity alters forest
litter decomposition through long‐term plant and soil interactions in
Patagonia, Argentina. J. Ecol. , 96, 727-736.
Wallenstein, M.D., Haddix, M.L., Ayres, E., Steltzer, H., Magrini-Bair,
K.A. & Paul, E.A. (2013). Litter chemistry changes more rapidly when
decomposed at home but converges during decomposition–transformation.Soil Biol. Biochem. , 57, 311-319.
Webb, C.O., Ackerly, D.D., McPeek, M.A. & Donoghue, M.J. (2002).
Phylogenies and community ecology. Annu. Rev. Ecol. Syst. , 33,
475-505.
Yguel, B., Bailey, R., Tosh, N.D., Vialatte, A., Vasseur, C., Vitrac, X.et al. (2011). Phytophagy on phylogenetically isolated trees: why
hosts should escape their relatives. Ecol. Lett. , 14, 1117-1124.
Yguel, B., Courty, P.-E., Jactel, H., Pan, X., Butenschoen, O., Murray,
P.J. et al. (2014). Mycorrhizae support oaks growing in a
phylogenetically distant neighbourhood. Soil Biol. Biochem. , 78,
204-212.