References
[1] Guan W, Ni Z, Hu Y, Liang W, Ou C, He J, et al. Clinical
Characteristics of Coronavirus Disease 2019 in China. N Engl J Med
2020;382:1708–20. doi:10.1056/NEJMoa2002032.
[2] WHO situation report.Coronavirus disease (COVID-19) Highlights.
Available on
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200607-covid-19-sitrep-139.pdf?sfvrsn=79dc6d08_2.
[3] Sanders JM, Monogue ML, Jodlowski TZ, Cutrell JB. Pharmacologic
Treatments for Coronavirus Disease 2019 (COVID-19): A Review. JAMA - J
Am Med Assoc 2020;323:1824–36. doi:10.1001/jama.2020.6019.
[4] Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC,
et al. Remdesivir for the Treatment of Covid-19 — Preliminary Report.
N Engl J Med 2020:NEJMoa2007764. doi:10.1056/NEJMoa2007764.
[5] McCreary EK, Pogue JM. Coronavirus disease 2019 treatment: A
review of early and emerging options. Open Forum Infect Dis
2020;7:1–11. doi:10.1093/ofid/ofaa105.
[6] Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The
FDA-approved Drug Ivermectin inhibits the replication of SARS-CoV-2 in
vitro. Antiviral Res 2020:104787. doi:10.1016/j.antiviral.2020.104787.
[7] Parnham MJ, Haber VE, Giamarellos-Bourboulis EJ, Perletti G,
Verleden GM, Vos R. Azithromycin: Mechanisms of action and their
relevance for clinical applications. Pharmacol Ther
2014;143:225-45.doi:10.1016/j.pharmthera.2014.03.003.
[8] Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M,
et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19:
results of an open-label non-randomized clinical trial. Int J Antimicrob
Agents 2020:105949. doi:10.1016/j.ijantimicag.2020.105949.
[9] Fantini J, Chahinian H, Yahi N. nSynergistic antiviral effect of
hydroxychloroquine and azithromycin in combination against SARS-CoV-2:
what molecular dynamics studies of virus-host interactions reveal. Int J
Antimicrob Agents 2020:106020. doi:10.1016/j.ijantimicag.2020.106020.
[10] Fantini J, Di Scala C, Chahinian H, Yahi N. Structural and
molecular modelling studies reveal a new mechanism of action of
chloroquine and hydroxychloroquine against SARS-CoV-2 infection. Int J
Antimicrob Agents 2020:105960. doi:10.1016/j.ijantimicag.2020.105960.
[11] Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization
of spike glycoprotein of SARS-CoV-2 on virus entry and its immune
cross-reactivity with SARS-CoV. Nat Commun 2020; 11: 1620.
[12] Zhou D, Dai S-M, Tong Q. COVID-19: a recommendation to examine
the effect of hydroxychloroquine in preventing infection and
progression. J Antimicrob Chemother 2020, in press.
[13] Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG,
Decroly E. The spike glycoprotein of the new coronavirus 2019-nCoV
contains a furin-like cleavage site absent in CoV of the same clade.
Antiviral Res 2020;176:104742. doi:10.1016/j.antiviral.2020.104742.
[14] Rabi FA, Al Zoubi MS, Al-Nasser AD, Kasasbeh GA, Salameh DM.
Sars-cov-2 and coronavirus disease 2019: What we know so far. Pathogens
2020;9:1–14. doi:10.3390/pathogens9030231.
[15] Siddiqi HK, Mehra MR. COVID-19 Illness in Native and
Immunosuppressed States: A Clinical-Therapeutic Staging Proposal. J
Heart Lung Transplant 2020; 39: 405-407
[16] Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of
COVID-19: immunity, inflammation and intervention. Nat Rev Immunol
2020:1–12. doi:10.1038/s41577-020-0311-8.
[17] Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson
JJ, et al. COVID-19: consider cytokine storm syndromes and
immunosuppression. Lancet 2020; 395: 1033-34.
[18] Xu X, Han M, Li T, Sun W, Wang D, Fu B, et al. Effective
treatment of severe COVID-19 patients with tocilizumab. Proc Natl Acad
Sci 2020;117:202005615. doi:10.1073/pnas.2005615117.
[19] Kawamura K, Ichikado K, Takaki M, Eguchi Y, Anan K, Suga M.
Adjunctive therapy with azithromycin for moderate and severe acute
respiratory distress syndrome: a retrospective, propensity
score-matching analysis of prospectively collected data at a single
center. Int J Antimicrob Agents 2018;51:918–24.
doi:10.1016/j.ijantimicag.2018.02.009.
[20] Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R,
Zinkernagel AS, et al. Endothelial cell infection and endotheliitis in
COVID-19. Lancet 2020;395:1417–8. doi:10.1016/S0140-6736(20)30937-5.
[21] Danesi R, Lupetti A, Barbara C, Ghelardi E, Chella A, Malizia
T, et al. Comparative distribution of azithromycin in lung tissue of
patients given oral daily doses of 500 and 1000 mg. J Antimicrob
Chemother 2003;51:939–45. doi:10.1093/jac/dkg138.
[22] Lucchi M, Damle B, Fang A, de Caprariis PJ, Mussi A, Sanchez
SP, et al. Pharmacokinetics of azithromycin in serum, bronchial
washings, alveolar macrophages and lung tissue following a single oral
dose of extended or immediate release formulations of azithromycin. J
Antimicrob Chemother 2008;61:884–91. doi:10.1093/jac/dkn032.
[23] Zheng S, Matzneller P, Zeitlinger M, Schmidt S. Development of
a population pharmacokinetic model characterizing the tissue
distribution of azithromycin in healthy subjects. Antimicrob Agents
Chemother 2014;58:6675–84. doi:10.1128/AAC.02904-14.
[24] Damle B, Vourvahis M, Wang E, Leaney J, Corrigan B. Clinical
Pharmacology Perspectives on the Antiviral Activity of Azithromycin and
Use in COVID-19. Clin Pharmacol Ther. 2020, in press.
[25] Baldwin DR, Wise R, Andrews JM, Ashby JP, Honeybourne D.
Azithromycin concentrations at the sites of pulmonary infection. Eur
Respir J 1990;3:886–90.
[26] Gorelik E, Masarwa R, Perlman A, Rotshild V, Muszkat M, Matok
I. Systematic review, meta-analysis, and network meta-analysis of the
cardiovascular safety of macrolides. Antimicrob Agents Chemother
2018;62. doi:10.1128/AAC.00438-18.
[27] Hansen MP, Scott AM, Mccullough A, Thorning S, Aronson JK,
Beller EM, et al. Adverse events in people taking macrolide antibiotics
versus placebo for any indication. Cochrane Database Syst Rev 2019; 1:
CD011825.
[28] Saleh M, Gabriels J, Chang D, Kim BS, Mansoor A, Mahmood E, et
al. The Effect of Chloroquine, Hydroxychloroquine and Azithromycin on
the Corrected QT Interval in Patients with SARS-CoV-2 Infection. Circ
Arrhythmia Electrophysiol 2020:CIRCEP.120.008662.
doi:10.1161/CIRCEP.120.008662.
[29] Madrid PB, Panchal RG, Warren TK, Shurtleff AC, Endsley AN,
Green CE, et al. Evaluation of Ebola Virus Inhibitors for Drug
Repurposing. ACS Infect Dis 2016;1:317–26.
doi:10.1021/acsinfecdis.5b00030.
[30] Zheng S, Meng X, Huang Q, et al . Spiramycin and
Azithromycin, Safe for Administration to Children, Exert Antiviral
Activity Against Enterovirus A71 in Vitro and in Vivo. Int J Antimicrob
Agents; 53:362-69.
[31] Li C, Zu S, Deng Y-Q, Li D, Parvatiyar K, Quanquin N, et al.
Azithromycin Protects against Zika Virus Infection by Upregulating
Virus-Induced Type I and III Interferon Responses. Antimicrob Agents
Chemother 2019; 63: e00394-19.
[32] Iannetta M, Ippolito G, Nicastri E. Azithromycin Shows
Anti-Zika Virus Activity in Human Glial Cells. Antimicrob Agents
Chemother 2017;61. doi:10.1128/aac.01152-17.
[33] Schögler A, Kopf BS, Edwards MR, Johnston SL, Casaulta C,
Kieninger E, et al. Novel antiviral properties of azithromycin in cystic
fibrosis airway epithelial cells. Eur Respir J 2015;45:428–39.
doi:10.1183/09031936.00102014.
[34] Gielen V, Johnston SL, Edwards MR, Edwards CMR. Azithromycin
induces anti-viral responses in bronchial epithelial cells. Eur Respir J
Eur Respir J 2010;36:646–54. doi:10.1183/09031936.00095809.
[35] Menzel M, Akbarshahi H, Bjermer L, Uller L. Azithromycin
induces anti-viral effects in cultured bronchial epithelial cells from
COPD patients OPEN. Sci rep 2016; 6: 28698.
[36] Tran DH, Sugamata R, Hirose T, Suzuki S, Noguchi Y, Sugawara A,
et al. Azithromycin, a 15-membered macrolide antibiotic, inhibits
influenza A(H1N1)pdm09 virus infection by interfering with virus
internalization process. J Antibiot (Tokyo) 2019;72:759–68.
doi:10.1038/s41429-019-0204-x.
[37] Kanoh S, Rubin BK. Mechanisms of Action and Clinical
Application of Macrolides as Immunomodulatory Medications. Clin
Microbiol Rev 2010;23:590–615. doi:10.1128/CMR.00078-09.
[38] Zimmermann P, Ziesenitz VC, Curtis N, Ritz N. The
immunomodulatory effects of macrolides-A systematic review of the
underlying mechanisms. Front Immunol 2018;9:302.
doi:10.3389/fimmu.2018.00302.
[39] Arason AJ, Joelsson JP, Valdimarsdottir B, Sigurdsson S,
Gudjonsson A, Halldorsson S, et al. Azithromycin induces epidermal
differentiation and multivesicular bodies in airway epithelia. Respir
Res 2019;20:129. doi:10.1186/s12931-019-1101-3.
[40] Asgrimsson V, Gudjonsson T, Gudmundsson GH, Baldursson O. Novel
effects of azithromycin on tight junction proteins in human airway
epithelia. Antimicrob Agents Chemother 2006;50:1805–12.
doi:10.1128/AAC.50.5.1805-1812.2006.
[41] Shimizu T, Shimizu S. Azithromycin inhibits mucus
hypersecretion from airway epithelial cells. Mediators Inflamm
2012;2012:1–6. doi:10.1155/2012/265714.
[42] Sligl WI, Asadi L, Eurich DT, Tjosvold L, Marrie TJ, Majumdar
SR. Macrolides and mortality in critically Ill patients with
community-acquired pneumonia: A systematic review and meta-analysis.
Crit Care Med 2014;42:420–32. doi:10.1097/CCM.0b013e3182a66b9b.
[43] Vrančić M, Banjanac M, Nujić K, Bosnar M, Murati T, Munić V, et
al. Azithromycin distinctively modulates classical activation of human
monocytes in vitro. Br J Pharmacol 2012;165:1348–60.
doi:10.1111/j.1476-5381.2011.01576.x.
[44] Hodge S, Hodge G, Brozyna S, Jersmann H, Holmes M, Reynolds PN.
Azithromycin increases phagocytosis of apoptotic bronchial epithelial
cells by alveolar macrophages. Eur Respir J 2006;28:486–95.
doi:10.1183/09031936.06.00001506.
[45] Poschet JF, Perkett EA, Timmins GS, Deretic V, Co-Corresponding
#, Timmins G. Azithromycin and ciprofloxacin have a chloroquine-like
effect on respiratory epithelial cells.
bioRxiv 2020.03.29.008631; doi: https://doi.org/10.1101/2020.03.29.008631.
[46] Ratzinger F, Haslacher H, Poeppl W, Hoermann G, Kovarik JJ,
Jutz S, et al. Azithromycin suppresses CD4 + T-cell activation by direct
modulation of mTOR activity. Sci Rep 2014;4:1–10.
doi:10.1038/srep07438.
[47] Beigelman A, Mikols CL, Gunsten SP, Cannon CL, Brody SL, Walter
MJ. Azithromycin attenuates airway inflammation in a mouse model of
viral bronchiolitis. Respir Res 2010;11:1–11.
doi:10.1186/1465-9921-11-90.
[48] Karlström A, Heston SM, Boyd KL, Tuomanen EI, McCullers JA.
Toll-like receptor 2 mediates fatal immunopathology in mice during
treatment of secondary pneumococcal pneumonia following influenza. J
Infect Dis 2011;204:1358–66. doi:10.1093/infdis/jir522.
[49] Patel A, Joseph J, Periasamy H, Mokale S. Azithromycin in
combination with ceftriaxone reduces systemic inflammation and provides
survival benefit in a murine model of polymicrobial sepsis. Antimicrob
Agents Chemother 2018;62:1–13. doi:10.1128/AAC.00752-18.
[50] Wuyts WA, Willems S, Vos R, Vanaudenaerde BM, De Vleeschauwer
SI, Rinaldi M, et al. Azithromycin reduces pulmonary fibrosis in a
bleomycin mouse model. Exp Lung Res 2010;36:602–14.
doi:10.3109/01902148.2010.492895.
[51] Krempaska K, Barnowski S, Gavini J, Hobi N, Ebener S, Simillion
C, et al. Azithromycin has enhanced effects on lung fibroblasts from
idiopathic pulmonary fibrosis (IPF) patients compared to controls.
Respir Res 2020; 21: 25. doi:10.1186/s12931-020-1275-8.
[52] Min JY, Jang YJ. Macrolide therapy in respiratory viral
infections. Mediators Inflamm 2012;2012. doi:10.1155/2012/649570.
[53] Martín-Loeches I, Bermejo-Martin JF, Vallés J, Granada R,
Vidaur L, Vergara-Serrano JC, et al. Macrolide-based regimens in absence
of bacterial co-infection in critically ill H1N1 patients with primary
viral pneumonia. Intensive Care Med 2013;39:693–702.
doi:10.1007/s00134-013-2829-8.
[54] Arabi YM, Deeb AM, Al-Hameed F, Mandourah Y, Almekhlafi GA,
Sindi AA, et al. Macrolides in critically ill patients with Middle East
Respiratory Syndrome. Int J Infect Dis 2019;81:184–90.
doi:10.1016/j.ijid.2019.01.041.
[55] Ishaqui AA, Khan AH, Sulaiman SAS, Alsultan MT, Khan I, Naqvi
AA. Assessment of efficacy of Oseltamivir-Azithromycin combination
therapy in prevention of Influenza-A (H1N1)pdm09 infection complications
and rapidity of symptoms relief. Expert Rev Respir Med 2020;14:533–41.
doi:10.1080/17476348.2020.1730180.
[56] Kakeya H, Seki M, Izumikawa K, Kosai K, Morinaga Y, Kurihara S,
et al. Efficacy of Combination Therapy with Oseltamivir Phosphate and
Azithromycin for Influenza: A Multicenter, Open-Label, Randomized Study.
Plos One 2014; 9: e9129346. doi:10.1371/journal.pone.0091293.
[57] Lee N, Wong CK, Chan MCW, Yeung ESL, Tam WWS, Tsang OTY, et al.
Anti-inflammatory effects of adjunctive macrolide treatment in adults
hospitalized with influenza: A randomized controlled trial. Antiviral
Res 2017;144:48–56. doi:10.1016/j.antiviral.2017.05.008.
[58] Bermejo-Martin JF, Kelvin DJ, Eiros JM, Castrodeza J, De
Lejarazu RO. Macrolides for the treatment of severe respiratory illness
caused by novel H1N1 swine influenza viral strains. J Infect Dev Ctries
2009;3:159–61. doi:10.3855/jidc.18.
[59] Gibson PG, Yang IA, Upham JW, Reynolds PN, Hodge S, James AL,
et al. Effect of azithromycin on asthma exacerbations and quality of
life in adults with persistent uncontrolled asthma (AMAZES): a
randomised, double-blind, placebo-controlled trial. Lancet
2017;390:659–68. doi:10.1016/S0140-6736(17)31281-3.
[60] Hill AT, Sullivan AL, Chalmers JD, De Soyza A, Elborn JS, Floto
RA, et al. British Thoracic Society Guideline for bronchiectasis in
adults. Thorax 2019; 74: 1-69 doi:10.1136/thoraxjnl-2018-212463.
[61] Metlay JP, Waterer GW, Long AC, Anzueto A, Brozek J, Crothers
K, et al. Diagnosis and Treatment of Adults with Community-acquired
Pneumonia. An Official Clinical Practice Guideline of the American
Thoracic Society and Infectious Diseases Society of America. Am J Respir
Crit Car Med 2020; 200: e45-67.
[62] Martinez JA, Horcajada JP, Almela M, Marco F, Soriano A, Garcia
E, et al. Addition of a Macrolide to a β‐Lactam–Based Empirical
Antibiotic Regimen Is Associated with Lower In‐Hospital Mortality for
Patients with Bacteremic Pneumococcal Pneumonia. Clin Infect Dis
2003;36:389–95. doi:10.1086/367541.
[63] Walkey AJ, Wiener RS. Macrolide antibiotics and survival in
patients with acute lung injury. Chest 2012;141:1153–9.
doi:10.1378/chest.11-1908.
[64] Touret F, Gilles M, Barral K, Nougairède A, Decroly E,
Lamballerie X de, et al. In vitro screening of a FDA approved chemical
library reveals potential inhibitors of SARS-CoV-2 replication. BioRxiv
2020:2020.04.03.023846. doi:10.1101/2020.04.03.023846.
[65] Andreani J, Le Bideau M, Duflot I, Jardot P, Rolland C,
Boxberger M, et al. In vitro testing of combined hydroxychloroquine and
azithromycin on SARS-CoV-2 shows synergistic effect. Microb Pathog
2020;145:0–3. doi:10.1016/j.micpath.2020.104228.
[66] Ulrich H, Pillat MM. CD147 as a Target for COVID-19 Treatment:
Suggested Effects of Azithromycin and Stem Cell Engagement. Stem Cell
Rev Rep. 2020;16(3):434-40. doi:10.1007/s12015-020-09976-7.
[67] Nujić K, Banjanac M, Munić V, Polančec D, Eraković Haber V.
Impairment of lysosomal functions by azithromycin and chloroquine
contributes to anti-inflammatory phenotype. Cell Immunol
2012;279:78–86. doi:10.1016/j.cellimm.2012.09.007.
[68] Tyteca D, Van Der Smissen P, Mettlen M, Van Bambeke F, Tulkens
PM, Mingeot-Leclercq MP, et al. Azithromycin, a lysosomotropic
antibiotic, has distinct effects on fluid-phase and receptor-mediated
endocytosis, but does not impair phagocytosis in J774 macrophages. Exp
Cell Res 2002;281:86–100. doi:10.1006/excr.2002.5613.
[69] Basque J, Martel M, Leduc R, Cantin AM. Lysosomotropic drugs
inhibit maturation of transforming growth factor-β. Can J Physiol
Pharmacol 2008;86:606–12. doi:10.1139/Y08-063.
[70] Markus Hoffmann HK-WSP. A multibasic cleavage site in the spike
protein of SARS-CoV-2 is essential for infection of human lung cells.
Cell Press 2020;78:779-784.e5. doi:10.1016/j.molcel.2020.04.022.
[71] Statement on IJAA paper | International Society of
Antimicrobial Chemotherapy n.d.
https://www.isac.world/news-and-publications/official-isac-statement
(accessed May 23, 2020).
[72] Gautret P, Lagier J-C, Parola P, et al. Clinical and
microbiological effect of a combination of hydroxychloroquine and
azithromycin in 80 COVID-19 patients with at least a six-day follow up:
an observational study. Travel Med Infect Dis 2020, in press.
[73] Million M, Lagier J-C, Gautret P, Colson P, Fournier P-E,
Amrane S, et al. Full-length title: Early treatment of COVID-19 patients
with hydroxychloroquine and azithromycin: A retrospective analysis of
1061 cases in Marseille, France. Travel Med Infect Dis 2020:101738.
doi:10.1016/j.tmaid.2020.101738.
[74] Molina JM, Delaugerre C, Goff J Le, Mela-Lima B, Ponscarme D,
Goldwirt L, et al. No Evidence of Rapid Antiviral Clearance or Clinical
Benefit with the Combination of Hydroxychloroquine and Azithromycin in
Patients with Severe COVID-19 Infection. Médecine Mal Infect 2020.
doi:10.1016/j.medmal.2020.03.006.
[75] Mahévas M, Tran V-T, Roumier M, Chabrol A, Paule R, Guillaud C,
et al. Clinical efficacy of hydroxychloroquine in patients with covid-19
pneumonia who require oxygen: observational comparative study using
routine care data. BMJ 2020, in press. doi:10.1136/bmj.m1844.
[76] Magagnoli J, Narendran S, Pereira F, Cummings TH, Hardin JW,
Sutton SS, et al. Outcomes of hydroxychloroquine usage in United States
veterans hospitalized with COVID-19. MED. 2020, in press.
doi:10.1016/j.medj.2020.06.001.
[77] Geleris J, Sun Y, Platt J, Zucker J, Baldwin M, Hripcsak G, et
al. Observational Study of Hydroxychloroquine in Hospitalized Patients
with Covid-19. N Engl J Med 2020:1–8. doi:10.1056/NEJMoa2012410.
[78] Rosenberg ES, Dufort EM, Udo T, Wilberschied LA, Kumar J,
Tesoriero J, et al. Association of Treatment With Hydroxychloroquine or
Azithromycin With In-Hospital Mortality in Patients With COVID-19 in New
York State. Jama 2020;12203:1–10. doi:10.1001/jama.2020.8630.
[79] Guérin V, Lévy P, Thomas J-L, Lardenois T, Lacrosse P, Sarrazin
E, et al. Azithromycin and Hydroxychloroquine Accelerate Recovery of
Outpatients with Mild/Moderate COVID-19 Preprints. 2020, in press.
doi:10.20944/PREPRINTS202005.0486.V1.
[80] Barbosa Esper R, Souza da Silva R, Teiichi Costa Oikawa F,
Machado Castro M, Razuk-Filho A, Benedito Batista Junior P, et al.
Empirical treatment with hydroxychloroquine and azithromycin for
suspected cases of COVID-19 followed-up by telemedicine. Available at:
https://pgibertie.files.wordpress.com/2020/04/2020.04.15-journal-manuscript-final.pdf.
[81] Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, Zimetbaum PJ,
et al. Risk of QT Interval Prolongation Associated With Use of
Hydroxychloroquine With or Without Concomitant Azithromycin Among
Hospitalized Patients Testing Positive for Coronavirus Disease 2019
(COVID-19). JAMA Cardiol 2020:1–6. doi:10.1001/jamacardio.2020.1834.
[82] Chorin E, Dai M, Shulman E, Wadhwani L, Bar-Cohen R, Barbhaiya
C, et al. The QT interval in patients with COVID-19 treated with
hydroxychloroquine and azithromycin. Nat Med 2020:1–2.
doi:10.1038/s41591-020-0888-2.
[83] Bessière F, Roccia H, Delinière A, Charrière R, Chevalier P,
Argaud L, et al. Assessment of QT Intervals in a Case Series of Patients
With Coronavirus Disease 2019 (COVID-19) Infection Treated With
Hydroxychloroquine Alone or in Combination With Azithromycin in an
Intensive Care Unit. JAMA Cardiol 2020.
doi:10.1001/jamacardio.2020.1787.
[84] Chang D, Saleh M, Gabriels J, Ismail H, Goldner B, Willner J,
et al. Journal Pre-proof Inpatient Use of Ambulatory Telemetry Monitors
for COVID-19 Patients Treated with Hydroxychloroquine and/or
Azithromycin. J Am Coll Cardiol 2020, in press.
doi:10.1016/j.jacc.2020.04.032.
[85] Chorin E, Wadhwani L, Magnani S, Dai M, Shulman E,
Nadeau-Routhier C, et al. Journal Pre-proof QT Interval Prolongation and
Torsade De Pointes in Patients with COVID-19 treated with
Hydroxychloroquine/Azithromycin. Heart Rhythm 2020; S1547-5271:30435-5.
doi:10.1016/j.hrthm.2020.05.014.
[86] Lane JC., Weaver J, Kostka K, Duarte-Salles T, Abrahao MTF,
Alghoul H, et al. Safety of hydroxychloroquine, alone and in combination
with azithromycin, in light of rapid wide-spread use for COVID-19: a
multinational, network cohort and self-controlled case series study.
MedRxiv. 2020:2020.04.08.20054551. doi:10.1101/2020.04.08.20054551.
[87] Harvey A. Risch. Early Outpatient Treatment of Symptomatic,
High-Risk Covid-19 Patients that Should be Ramped-Up Immediately as Key
to the Pandemic Crisis. Am J Epidemiol 2020;8034.
[88] Giudicessi JR, Noseworthy PA, Friedman PA, Ackerman MJ. Urgent
Guidance for Navigating and Circumventing the QTc-Prolonging and
Torsadogenic Potential of Possible Pharmacotherapies for Coronavirus
Disease 19 (COVID-19). Mayo Clinic Proceedings 2020; 6:1213-21.
[89] Rubin EJ, Harrington DP, Hogan JW, Gatsonis C, Baden LR, Hamel
MB. The Urgency of Care during the Covid-19 Pandemic — Learning as We
Go. N Engl J Med 2020:NEJMe2015903. doi:10.1056/NEJMe2015903.
[90] Fadel, D.O, Austin R Morrison,Amit Vahia, et al. Early
Short Course Corticosteroids in Hospitalized Patients with COVID-19.
Clinical Infectious Diseases. 2020, in press.
[91] Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant
treatment is associated with decreased mortality in severe coronavirus
disease 2019 patients with coagulopathy. J Thromb Haemost 2020;18.
doi:10.1111/jth.14817.
[92] Albert RK, Schuller JL. Macrolide antibiotics and the risk of
cardiac arrhythmias. Am J Respir Crit Care Med 2014;189:1173–80.
doi:10.1164/rccm.201402-0385CI.
[93] Wilson JG, Simpson LJ, Ferreira A-M, Rustagi A, Roque J, Asuni
A, et al. Cytokine profile in plasma of severe COVID-19 does not differ
from ARDS and sepsis. medRxiv 2020.
https://doi.org/10.1101/2020.05.15.20103549. n.d.
doi:10.1101/2020.05.15.20103549.
[94] Lansbury L, Lim B, Baskaran V, Lim WS. Journal Pre-proof
Co-infections in people with COVID-19: a systematic review and
meta-analysis Co-infections in people with COVID-19: a systematic review
and meta-analysis. J Infect 2020. doi:10.1016/j.jinf.2020.05.046.