References
1. Upham JW, James AL. Remission of asthma: The next therapeutic frontier? Pharmacology & Therapeutics . 2011;130(1):38-45. doi:10.1016/j.pharmthera.2011.01.002
2. Vonk JM, Postma DS, Boezen HM, et al. Childhood factors associated with asthma remission after 30 year follow up. Thorax . 2004;59(11):925-929. doi:10.1136/thx.2003.016246
3. Carpaij OA, Burgess JK, Kerstjens HAM, Nawijn MC, van den Berge M. A review on the pathophysiology of asthma remission. Pharmacol Ther . 2019;201:8-24. doi:10.1016/j.pharmthera.2019.05.002
4. Carpaij OA, Nieuwenhuis MAE, Koppelman GH, van den Berge M, Postma DS, Vonk JM. Childhood factors associated with complete and clinical asthma remission at 25 and 49 years. European Respiratory Journal . 2017;49(6):1601974. doi:10.1183/13993003.01974-2016
5. Vonk JM, Nieuwenhuis MAE, Dijk FN, et al. Novel genes and insights in complete asthma remission: A genome-wide association study on clinical and complete asthma remission. Clin Exp Allergy . 2018;48(10):1286-1296. doi:10.1111/cea.13181
6. Qi C, Xu C-J, Koppelman GH. The role of epigenetics in the development of childhood asthma. Expert Review of Clinical Immunology . 2019;15(12):1287-1302. doi:10.1080/1744666X.2020.1686977
7. Gibney ER, Nolan CM. Epigenetics and gene expression.Heredity . 2010;105(1):4-13. doi:10.1038/hdy.2010.54
8. Xu C-J, Söderhäll C, Bustamante M, et al. DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respir Med . 2018;6(5):379-388. doi:10.1016/S2213-2600(18)30052-3
9. Forno E, Wang T, Qi C, et al. DNA methylation in nasal epithelium, atopy, and atopic asthma in children: a genome-wide study. Lancet Respir Med . 2019;7(4):336-346. doi:10.1016/S2213-2600(18)30466-1
10. Vermeulen CJ, Xu C-J, Vonk JM, et al. Differential DNA methylation in bronchial biopsies between persistent asthma and asthma in remission.Eur Respir J . Published online November 14, 2019. doi:10.1183/13993003.01280-2019
11. Nieuwenhuis MA, Siedlinski M, van den Berge M, et al. Combining genomewide association study and lung eQTL analysis provides evidence for novel genes associated with asthma. Allergy . 2016;71(12):1712-1720. doi:10.1111/all.12990
12. Allum F, Shao X, Guénard F, et al. Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants. Nat Commun . 2015;6:7211. doi:10.1038/ncomms8211
13. Houseman E, Accomando WP, Koestler DC, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics . 2012;13(1):86. doi:10.1186/1471-2105-13-86
14. Aryee MJ, Jaffe AE, Corrada-Bravo H, et al. Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics . 2014;30(10):1363-1369. doi:10.1093/bioinformatics/btu049
15. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics . 2012;28(6):882-883. doi:10.1093/bioinformatics/bts034
16. Pedersen BS, Schwartz DA, Yang IV, Kechris KJ. Comb-p: software for combining, analyzing, grouping and correcting spatially correlated P-values. Bioinformatics . 2012;28(22):2986-2988. doi:10.1093/bioinformatics/bts545
17. McLean CY, Bristor D, Hiller M, et al. GREAT improves functional interpretation of cis-regulatory regions. Nature Biotechnology . 2010;28(5):495-501. doi:10.1038/nbt.1630
18. the BIOS Consortium, Bonder MJ, Luijk R, et al. Disease variants alter transcription factor levels and methylation of their binding sites. Nat Genet . 2017;49(1):131-138. doi:10.1038/ng.3721
19. Qi C, Jiang Y, Yang IV, et al. Nasal DNA methylation profiling of asthma and rhinitis. J Allergy Clin Immunol . Published online January 14, 2020. doi:10.1016/j.jaci.2019.12.911
20. Herwig R, Hardt C, Lienhard M, Kamburov A. Analyzing and interpreting genome data at the network level with ConsensusPathDB.Nature Protocols . 2016;11(10):1889-1907. doi:10.1038/nprot.2016.117
21. Koch J, Pranjic K, Huber A, et al. PEX11 family members are membrane elongation factors that coordinate peroxisome proliferation and maintenance. Journal of Cell Science . 2010;123(19):3389-3400. doi:10.1242/jcs.064907
22. Schrader M, Reuber BE, Morrell JC, et al. Expression of PEX11beta mediates peroxisome proliferation in the absence of extracellular stimuli. J Biol Chem . 1998;273(45):29607-29614. doi:10.1074/jbc.273.45.29607
23. Ebberink MS, Koster J, Visser G, et al. A novel defect of peroxisome division due to a homozygous non-sense mutation in the PEX11β gene.J Med Genet . 2012;49(5):307-313. doi:10.1136/jmedgenet-2012-100778
24. Grant SFA, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat Genet . 2006;38(3):320-323. doi:10.1038/ng1732
25. Pearson ER. Translating TCF7L2: from gene to function.Diabetologia . 2009;52(7):1227-1230. doi:10.1007/s00125-009-1356-1
26. Thomsen SF, Duffy DL, Kyvik KO, Skytthe A, Backer V. Risk of asthma in adult twins with type 2 diabetes and increased body mass index: Type 2 diabetes, obesity and asthma in twins. Allergy . 2011;66(4):562-568. doi:10.1111/j.1398-9995.2010.02504.x
27. Carpaij OA, van den Berge M. The asthma–obesity relationship: underlying mechanisms and treatment implications. Current Opinion in Pulmonary Medicine . 2018;24(1):42-49. doi:10.1097/MCP.0000000000000446
28. Broekema M, Timens W, Vonk JM, et al. Persisting Remodeling and Less Airway Wall Eosinophil Activation in Complete Remission of Asthma.American Journal of Respiratory and Critical Care Medicine . 2011;183(3):310-316. doi:10.1164/rccm.201003-0494OC
29. Cardenas A, Sordillo JE, Rifas-Shiman SL, et al. The nasal methylome as a biomarker of asthma and airway inflammation in children. Nat Commun . 2019;10(1):3095. doi:10.1038/s41467-019-11058-3
30. Suzuki T, Elias BC, Seth A, et al. PKC eta regulates occludin phosphorylation and epithelial tight junction integrity. Proc Natl Acad Sci USA . 2009;106(1):61-66. doi:10.1073/pnas.0802741106
31. Zuo H, Cattani-Cavalieri I, Musheshe N, Nikolaev VO, Schmidt M. Phosphodiesterases as therapeutic targets for respiratory diseases.Pharmacol Ther . 2019;197:225-242. doi:10.1016/j.pharmthera.2019.02.002
32. Xu C, Zou C, Hussain M, et al. High expression of Sonic hedgehog in allergic airway epithelia contributes to goblet cell metaplasia.Mucosal Immunol . 2018;11(5):1306-1315. doi:10.1038/s41385-018-0033-4
33. Vieira Braga FA, Kar G, Berg M, et al. A cellular census of human lungs identifies novel cell states in health and in asthma. Nat Med . Published online June 17, 2019. doi:10.1038/s41591-019-0468-5
34. Dizier M-H, Nadif R, Margaritte-Jeannin P, et al. Interaction between the DNAH9 gene and early smoke exposure in bronchial hyperresponsiveness. Eur Respir J . 2016;47(4):1072-1081. doi:10.1183/13993003.00849-2015
35. Gerthoffer WT. Migration of Airway Smooth Muscle Cells.Proceedings of the American Thoracic Society . 2008;5(1):97-105. doi:10.1513/pats.200704-051VS
36. White MJ, Risse-Adams O, Goddard P, et al. Novel genetic risk factors for asthma in African American children: Precision Medicine and the SAGE II Study. Immunogenetics . 2016;68(6-7):391-400. doi:10.1007/s00251-016-0914-1
Table 1. Characteristics of study participants in the discovery and replication cohorts