References
1. Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory
syndrome-related coronavirus–The species and its viruses, a statement
of the Coronavirus Study Group. BioRxiv. 2020.
2. Ng LF, Hiscox JA. Coronaviruses in animals and humans. BMJ.2020;m634.
3. Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of
SARS-CoV-2. Nat Med . 2020;1-3.
4. Gonzaalez JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L.
A comparative sequence analysis to revise the current taxonomy of the
family Coronaviridae. Archives Virol. 2003;148:2207–35.
5. Jackwood MW. What we know about avian corona virus infectious
bronchitis virus (IBV) in poultry - and how that knowledge relates to
the virus causing COVID-19 in humans. Amer Assoc Aman Pathol.2020.
6. Swayne DE, Suarez DL, Spackman E, et al. Domestic poultry and SARS
coronavirus, southern China. Emer Infect Dis. 2004;10:914.
7. Almazan F, Sola I, Zuniga S, et al. Coronavirus reverse genetic
systems: Infectious clones and replicons. Virus Res.2014;189:262-270.
8. Lu R, Zhao X, Li J, et al. Genomic characterization and epidemiology
of 2019 novel coronavirus: implications for virus origins and receptor
binding. Lancet. 2020;395:565-574.
9. Kenneth McIntosh, MD. Coronavirus disease 2019 (COVID-19). 2020.
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—24-february-2020
(26 February 2020, date last accessed).
10. WHO (World Health Organization). Coronavirus disease 2019
(COVID-19). 2020.
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—24-february-2020
(Accessed on February 26, 2020).
11. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Napoli RD, et al.Features, Evaluation and Treatment Coronavirus (COVID-19). Stat
Pearls Publishing, Treasure Island FL. 2020.
12. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early
transmission dynamics in Wuhan, China, of novel corona virus-infected
pneumonia. N Engl J Med. 2020;382:1199-1207.
13. Wang W, Tang J, Wei F, et al. Updated understanding of the
outbreak of 2019 novel corona virus (2019-nCoV) in Wuhan, China. J
Med Virol. 2020;92:441-447.
14. Rothan HA and Byrareddy SN. The epidemiology and pathogenesis of
coronavirus disease (COVID-19) Outbreak. J Autoimmuni.2020;109:102433.
15. Lei J, Li J, Li X, Qi X, et al. CT imaging of the 2019 novel
corona virus (2019-nCoV) pneumonia. Radiology. 2020;295:18.
16. Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, et al.Identification of a novel corona virus causing severe pneumonia in
human: a descriptive study. Chinese Med J. 2020;1.
17. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features
of patients infected with 2019 novel corona virus in Wuhan, China.Lancet. 2020;395:497-506.
18. Carlos WG, Cruz CSD, Cao B, Pasnick S, Jamil S, et al. Novel
wuhan (2019-nCoV) corona virus. Am J Respir Crit Care Med.2020;201:7-8.
19. Assiri A, Al-Tawfifiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S,
Al Barrak A, et al. Epidemiological, demographic, and clinical
characteristics of 47 cases of Middle East respiratory syndrome corona
virus disease from Saudi Arabia: a descriptive study. Lancet
Infect Dis. 2013;13:752-761.
20. Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ, et al.
Importation and human-to-human transmission of a novel corona virus in
Vietnam. N Engl J Med. 2020;382:872-874.
21. Hassan S, Sheikh FN, Jamal S, et al. Coronavirus (COVID-19): A
Review of Clinical Features, Diagnosis, and Treatment. Cureus.2020;123:7355.
22. Mao Y, Wei L, Junping W, Gang C, et al. Clinical and pathological
characteristics of 2019 novel coronavirus disease (COVID-19): a
systematic review. Fujian Acad of Med Sci. 2020;31.
23. Ng DL, Al-Hosani F, Keating MK, et al. Clinicopathologic,
immunohistochemical, and ultrastructural findings of a fatal case of
Middle East respiratory syndrome coronavirus infection in the United
Arab Emirates. Am J Pathol. 2016;186:652-58.
24. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients
with COVID-19 pneumonia in Wuhan, China: a descriptive study
[Published Online February 24, 2020]. Lancet Infect Dis.2020;20:425-434.
25. Liu Qian WR, Guoqiang Q, Yunyun W, et al. A report on the
general observation of the necropsy of a newly developed coronavirus
pneumonia. Fa Yi Xue Za Zhi. 2020;1004-5619.
26. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al.Pathological findings of COVID-19 associated with acute respiratory
distress syndrome. Lancet Res Med. 2020;8:420-422.
27. Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia
associated with the 2019 novel coronavirus indicating person-to-person
transmission: a study of a family cluster.Lancet. 2020;395:514-523.
28. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao S, et al. Pulmonary
Pathology of Early Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in
two Patients with Lung Cancer. Preprints. 2020.
29. Heymann DL, Shindo N. COVID-19: what is next for public health?Lancet. 2020;395:542–545.
30. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper
respiratory specimens of infected patients. N Eng J
Med. 2020;382:1177-1179.
31. Wikipedia. Diamond Princess (ship). https://en.wikipedia.org/wiki/
Diamond_Princess_(ship) 2020.
32. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier
transmission of COVID-19. JAMA. 2020.
33. Hu Z, Song C, Xu C, et al. Clinical characteristics of 24
asymptomatic infections with COVID-19 screened among close contacts in
Nanjing, China. Sci China Life Sci. 2020;1-6.
34. Sabino-Silva R, Jardim ACG, Siqueira WL. Coronavirus COVID-19
impacts to dentistry and potential salivary diagnosis. Clin Oral
Investig. 2020;1-3.
35. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical
characteristics of 99 cases of 2019 novel coronavirus pneumonia in
Wuhan, China: a descriptive study. Lancet. 2020;395:507-513.
36. Jiang F, Deng L, Zhang L, et al. Review of the clinical
characteristics of coronavirus disease 2019 (COVID-19). J Gener
Intern Med. 2020;1-5.
37. Pan L, Mu M, Ren HG, Yang P, Sun Y, Wang R. Clinical characteristics
of COVID-19 patients with digestive symptoms in Hubei, China: a
descriptive, cross-sectional, multicenter study. Am J
Gastroenterol . 2020;20.
38. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical
characteristics of coronavirus disease 2019 in China. N Engl J
Med. 2020.
39. Sun P, Qie S, Liu Z, Ren J, Li K, Xi J. Clinical characteristics of
50466 hospitalized patients with 2019‐nCoV infection. J med
virology. 2020.
40. Wu J, Liu J, Zhao X, Liu C, Wang W, Wang D, et al. Clinical
Characteristics of Imported Cases of Coronavirus Disease 2019 (COVID-19)
in Jiangsu Province: A Multicenter Descriptive Study. Clinic
Infect Dis. 2020.
41. Du Z, Wang L, Cauchemez S, et al. Risk for transportation of 2019
novel coronavirus disease from Wuhan to other cities in China.Emerging Infect Dis. 2020;26.
42. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical
characteristics and intrauterine vertical transmission potential of
COVID-19 infection in nine pregnant women: a retrospective review of
medical records. Lancet. 2020;395:809-815.
43. Perlman S, Netland J. Coronaviruses post-SARS: update on replication
and pathogenesis. Nat Rev Microbiol. 2009;7:439-450.
44. Chen Y, Liu Q, Guo D, et al. Emerging coronaviruses: genome
structure, replication, and pathogenesis. J Med Virol.2020;2:418-423.
45. Chan JFW, To KKW, Tse H, Jin DY, Yuen KY, et al. Interspecies
transmission and emergence of novel viruses: lessons from bats and
birds. Trends Microbiol. 2013;21:544-555.
46. Perlman S. Another decade, another coronavirus. N Eng J Med.2020;382:760-762.
46. Wu F, Zhao S, Yu B, Chen YM, Wang W, Hu Y, et al. Complete
genome characterization of a novel coronavirus associated with severe
human respiratory disease in Wuhan. China. bioRxiv. 2020.
47. Li F. Structure, function, and evolution of coronavirus spike
proteins. Annu Rev Virol. 2016; 3:237-261.
48. Ji W, Wang W, Zhao X, Zai J, Li X, et al. Cross‐species
transmission of the newly identified coronavirus 2019‐nCoV. J Med
Virol. 2020;92:433-440.
49. Madhugiri R, Fricke M, Marz M, Ziebuhr J, et al. Coronavirus
cis-acting RNA elements. In Adv Virus Res. 2016;96:127-163.
50. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, Qin C, et al. From SARS to
MERS, thrusting coronaviruses into the spotlight. Virus.2019;11:59.
51. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia
outbreak associated with a new coronavirus of probable bat
origin. Nature. 2020;579:270-273.
52. Walls AC, Tortorici MA, Frenz B, Snijder J, Li W, Rey FA, et al.
Glycan shield and epitope masking of a coronavirus spike protein
observed by cryo-electron microscopy. Nat Struct Mol Biol.2016;23:899.
53. Walls AC, Tortorici MA, Bosch BJ, Frenz B, Rottier PJ, Di-Maio F, et
al. Cryo-electron microscopy structure of a coronavirus spike
glycoprotein trimer. Nature. 2016;531:114-117.
54. Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner
HL, et al. Pre-fusion structure of a human coronavirus spike
protein. Nature. 2016;531:118-121.
55. Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, et al. Cryo-EM
structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the
dynamic receptor binding domains. Nat Commun. 2017;8:15092.
56. Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Luo C, et al. Cryo-EM
structure of infectious bronchitis coronavirus spike protein reveals
structural and functional evolution of coronavirus spike
proteins. PLoS Pathog. 2018;14:e1007009.
57. Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Tai W, Li F, et al.
Cryo-electron microscopy structure of porcine deltacoronavirus spike
protein in the prefusion state. J Virol. 2018;92: e01556-17.
58. Song W, Gui M, Wang X, Xiang Y, et al. Cryo-EM structure of the SARS
coronavirus spike glycoprotein in complex with its host cell receptor
ACE2. PLoS Pathog. 2018;14:1007236.
59. Li F, Berardi M, Li WH, Farzan M, Dormitzer PR, Harrison SC, et al.
Conformational states of the severe acute respiratory syndrome
coronavirus spike protein ectodomain. J Virol. 2006;80:6794–800.
60. Walls AC, Tortorici MA, Snijder J, et al. Tectonic
conformational changes of a coronavirus spike glycoprotein promote
membrane fusion. Proc Natl Acad Sci USA. 2017;114:11157-11162.
61. Heald-Sargent T, Gallagher T, et al. The coronavirus spike protein
and acquisition of fusion competence. Virus.2012;4: 557-580.
62. Millet JK, Whittaker G. Host cell entry of Middle East respiratory
syndrome coronavirus after two-step, furin-mediated activation of the
spike protein. Proc Natl Acad Sci USA. 2014; 111:15214-15219.
63. Chen Z, Pei D, Jiang L, Song Y, Wang J, Wang H, Qiu M, et al.
Antigenicity analysis of different regions of the severe acute
respiratory syndrome coronavirus nucleocapsid protein. Clin Chem.2004;50:988-995.
64. Lin X, Gong Z, Xiao Z, Xiong J, Fan B, Liu J, et al. Novel
coronavirus pneumonia outbreak in 2019: computed tomographic findings in
two cases. Korean J Radiol. 2020;21: 365-368.
65. Cui L, Wang H, Ji Y, Yang J, Xu S, Huang X, Guo D, et al. The
nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA
silencing in mammalian cells. J Virol. 2015; 89:9029-9043.
66. Ali PSS, John J, Selvaraj M, Kek TL, Salleh MZ, et al.Nodamura virus B2 amino terminal domain sensitivity to small interfering
RNA. Microbiol Immunol. 2015;59:299-304.
67. Simmons G, Zmora P, Gierer S, et al. Proteolytic activation of the
SARS-coronavirus spike protein: cutting enzymes at the cutting edge of
antiviral research. Antivir Res. 2013;100:605-614.
68. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, et al.Efficient activation of the severe acute respiratory syndrome
coronavirus spike protein by the transmembrane protease TMPRSS2. J
Virol. 2010;84:12658-12664.
69. Bertram S, Glowacka I, Müller MA, Lavender H, Gnirss K, Nehlmeier I,
et al. Cleavage and activation of the severe acute respiratory
syndrome coronavirus spike protein by human airway trypsin-like
protease. J Virol. 2011;85:13363-13372.
70. Belouzard S, Chu VC, Whittaker G. R. Activation of the SARS
coronavirus spike protein via sequential proteolytic cleavage at two
distinct sites. Proceed Nati Acad Sci. 2009;106:5871-5876.
71. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial
role of angiotensin converting enzyme 2 (ACE2) in SARS
coronavirus–induced lung injury. Nat Med. 2005;11:875–879.
72. Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfeerle S, et
al. Evidence that TMPRSS2 Activates the Severe Acute Respiratory
Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral
Control by the Humoral Immune Response. J Virol.2011;85:4122–4134.
73. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, et al.
TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by
TMPRSS2 augments entry driven by the severe acute respiratory syndrome
coronavirus spike protein. J Virol. 2014;88:1293-1307.
74. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S,
Gallagher TA. Transmembrane Serine Protease Is Linked to the Severe
Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus
Entry. J Virol. 2011;85:873–882.
75. Rabi FA, Al-Zoubi MS, Kasasbeh GA, Salameh DM, et al.SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far.Pathogens. 2020;9:231.
76. Xu Y, Lou Z, Liu Y, Pang H, Tien P, Gao GF, et al. Crystal
structure of severe acute respiratory syndrome coronavirus spike protein
fusion core. J Biol Chem. 2004;279:49414-49419.
77. Tortorici MA, Veesler D. Structural insights into coronavirus
entry. Adv Virus Res. 2019;105: 93-116.
78. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus
spike protein is a class I virus fusion protein: structural and
functional characterization of the fusion core complex. J
Virol. 2003;77:8801-8811.
79. Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ,
et al. Coronavirus cell entry occurs through the endo-/lysosomal
pathway in a proteolysis-dependent manner. PLoS Pathog. 2014;10.
80. Park JE, Li K, Barlan A, Fehr A, Perlman S, et al.Proteolytic processing of Middle East respiratory syndrome coronavirus
spikes expands virus tropism. Proceed Natio Acad Sci.2016;113:12262-12267.
81. Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, et al. Cryo-electron
microscopy structures of the SARS-CoV spike glycoprotein reveal a
prerequisite conformational state for receptor binding. Cell Res.2017;27:119-129.
82. Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, et
al. PImmunogenicity and structures of a rationally designed
prefusion MERS-CoV spike antigen. Proceed Natio Acad Sci.2017;114:E7348-E7357.
83. Madu IG, Roth SL, Belouzard S Whittaker GR. Characterization of a
highly conserved domain within the severe acute respiratory syndrome
coronavirus spike protein S2 domain with characteristics of a viral
fusion peptide. J Virol. 2009;83:7411-7421.
84. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al.
Angiotensin-converting enzyme 2 is a functional receptor for the SARS
coronavirus. Nature. 2003;426:450-454.
85. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, et al.Tissue distribution of ACE2 protein, the functional receptor for SARS
coronavirus. A first step in understanding SARS pathogenesis. J
Pathol: J Pathol Soc Great Brit Ireland. 2004;203:631-637.
86. Young BE, Ong SWX, Kalimuddin S, Low J G, et al.Epidemiologic features and clinical course of patients infected with
SARS-CoV-2 in Singapore. JAMA. 2020.
87. Walls AC, Xiong X, Park YJ, Tortorici MA, et al. Unexpected
receptor functional mimicry elucidates activation of coronavirus
fusion. Cell. 2019;176:1026-1039.
88. Xiong X, Tortorici MA, Snijder J, Yoshioka C, Walls AC, et
al. Glycan shield and fusion activation of a deltacoronavirus
spike glycoprotein fine-tuned for enteric infections. J
Virol. 2018;92:e01628-17.
89. Lindenbach BD, Rice CM. Molecular biology of
flaviviruses. Advan Virus Res. 2003;59:23-62.
90. Rossen JWA, De Beer R, Godeke GJ, Raamsman MJB, Horzinek MC, et
al. The viral spike protein is not involved in the polarized
sorting of coronaviruses in epithelial cells. J
Virol. 1998;72:497-503.
91. Yang Y, Liu C, Du L, Jiang S, Shi Z, et al. Two mutations
were critical for bat-to-human transmission of Middle East respiratory
syndrome coronavirus. J Virol. 2015;89:9119-9123.
92. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential
therapy for COVID-19. Lancet Infect Dis. 2020.
93. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical
characteristics of 138 hospitalized patients with 2019 novel
coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020.
94. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. Complete
reference from online. A Trial of Lopinavir–Ritonavir in Adults
Hospitalized with Severe Covid-19. New Eng J Med. 2020.
95. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case
of the Index Patient Who Caused Tertiary Transmission of Coronavirus
Disease 2019 in Korea: The Application of Lopinavir/Ritonavir for the
Treatment of COVID-19 Pneumonia Monitored by Quantitative RT-PCR.J Korean Med Sci. 2020;35:e79.
96. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease
2019 (COVID-19). Drug Discover Therap. 2020;14:58-60.
97. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and
hydroxychloroquine as available weapons to fight COVID-19. Inter J
Antimicrob Agents. 2020.
98. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A
systematic review on the efficacy and safety of chloroquine for the
treatment of COVID-19. J Critical Care. 2020.
99. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown
apparent efficacy in treatment of COVID-19 associated pneumonia in
clinical studies. BioScience Trends. 2020.
100. Touret F, Lamballerie XD. Of chloroquine and COVID-19.Antiviral Res. 2020;177:104762.
101. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et
al. Hydroxychloroquine and azithromycin as a treatment of COVID-19:
results of an openlabel non-randomized clinical trial. Inter J
Antimicrob Agents. 2020.
102. Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma
therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect
Dis. 2005;24:44–46.
103. Lai ST. Treatment of severe acute respiratory syndrome. Eur J
Clin Microbiol Infect Dis. 2005;24:583–91.
104. Soo YO, Cheng Y, Wong R, et al. Retrospective comparison of
convalescent plasma with continuing high-dose methylprednisolone
treatment in SARS patients. Clin Microbiol Infect.2004;10:676–78.
105. WHO. Use of convalescent whole blood or plasma collected from
patients recovered from Ebola virus disease for transfusion, as an
empirical treatment during outbreaks 2014.
http://apps.who.int/iris/rest/bitstreams/604045/retrieve (accessed Feb
20, 2020).
106. Arabi Y, Balkhy H, Hajeer AH. Feasibility, safety, clinical, and
laboratory effects of convalescent plasma therapy for patients with
Middle East respiratory syndrome coronavirus infection: a study
protocol. Springerplus. 2015;4:709.
107. Su B, Wang Y, Zhou R, Jiang T, Zhang H, Li Z, et al. Efficacy and
tolerability of lopinavir/ritonavir- and efavirenz-based initial
antiretroviral therapy in HIV-1- infected patients in a tertiary care
hospital in Beijing, China. Front Pharmacol. 2019;10:1472.
108. Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et
al. Role of lopinavir/ritonavir in the treatment of SARS: Initial
virological and clinical findings. Thorax. 2004;59:252-256.
109. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad
spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad, Ser B,
Phys Biol Sci. 2007;93:449-463.
110. Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential
countermeasure against neglected and emerging RNA viruses.Antiviral Res. 2018;153:85-94.
111. News.
http://www.szdsyy.com/News/0a6c1e58-e3d0-4cd1-867ad5524bc59cd6.html
(accessed February 22, 2020). (in Chinese).
112. Stockman LJ, Bellamy R, Garner P. SARS: Systematic review of
treatment effects. PLoS Med. 2006;3:e343.
113. News: Abidol and darunavir can effectively inhibit coronavirus
http://www.sd.chinanews. com/2/2020/0205/70145.html (accessed February
21, 2020). (in Chinese).
114. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Gotte M. The
antiviral compound remdesivir potently inhibits RNA-dependent RNA
polymerase from Middle East respiratory syndrome coronavirus. J
Biol Chem. 2020.
115. Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic
efficacy of remdesivir and combination lopinavir, ritonavir, and
interferon beta against MERS-CoV. Nat Commun. 2020;11:222.
116. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak
of global health concern. Lancet. 2020;395:470–473.
117. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel
coronavirus in the United States. N Engl J Med. 2020.
118. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine
effectively inhibit the recently emerged novel coronavirus (2019- nCoV)
in vitro. Cell Res. 2020.
119. De-Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T.
Prophylactic and therapeutic remdesivir (GS-5734) treatment in the
rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci
USA. 2020.
120. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019
(COVID-19): The epidemic and the challenges. Intern J Antimicrob
Agents. 2020;55:105924.
121. Savarino A, Di-Trani L, Donatelli I, Cauda R, Cassone A. New
insights into the antiviral effects of chloroquine. Lancet Infect
Dis. 2006;6:67–9.
122. Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D, et
al. Design and synthesis of hydroxyferroquine derivatives with
antimalarial and antiviral activities. J Med Chem.2006;49:2845-2849.
123. Miller DK, Lenard J. Antihistaminics, local anesthetics, and other
amines as antiviral agents. Proc Natl Acad Sci USA.1981;78:3605–3609.
124. Shimizu Y, Yamamoto S, Homma M, Ishida N. Effect of chloroquine on
the growth of animal viruses. Arch fur die Gesamte
Virusforschung. 1972;36:93–104.
125. Inglot AD. Comparison of the antiviral activity in vitro of some
non-steroidal anti-inflammatory drugs. J Gen Virol.1969;4:203–214.
126. Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, et al. Anti-malaria drug
chloroquine is highly effective in treating avian influenza A H5N1 virus
infection in an animal model. Cell Res. 2013;23:300–302.
127. Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its
hydroxyl analogue to face bacterial, fungal and viral infections in the
21st century. Int J Antimicrob Agents. 2007;30:297–308.
128. Keyaerts E, Vijgen L, Maes P, Neyts J, Ranst MV. In vitroinhibition of severe acute respiratory syndrome coronavirus by
chloroquine. Biochem Biophys Res Commun. 2004;323, 264–268.
129. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of
chloroquine on viral infections: an old drug against today’s diseases.Lancet Infect Dis. 2003;3:722–727.
130. Marmor MF, Kellner U, Lai TY, Melles RB, Mieler WF. American
Academy of Ophthalmology. Recommendations on Screening for Chloroquine
and Hydroxychloroquine Retinopathy (2016 Revision).Ophthalmology. 2016;123:1386-94.
131. Frisk-Holmberg M, Bergqvist Y, Englund U. Chloroquine intoxication
[letter]. Br J Clin Pharmacol. 1983;15:502–503.