References

1. Gorbalenya AE, Baker SC, Baric RS, et al. Severe acute respiratory syndrome-related coronavirus–The species and its viruses, a statement of the Coronavirus Study Group. BioRxiv. 2020.
2. Ng LF, Hiscox JA. Coronaviruses in animals and humans. BMJ.2020;m634.
3. Andersen KG, Rambaut A, Lipkin WI, et al. The proximal origin of SARS-CoV-2. Nat Med . 2020;1-3.
4. Gonzaalez JM, Gomez-Puertas P, Cavanagh D, Gorbalenya AE, Enjuanes L. A comparative sequence analysis to revise the current taxonomy of the family Coronaviridae. Archives Virol. 2003;148:2207–35.
5. Jackwood MW. What we know about avian corona virus infectious bronchitis virus (IBV) in poultry - and how that knowledge relates to the virus causing COVID-19 in humans. Amer Assoc Aman Pathol.2020.
6. Swayne DE, Suarez DL, Spackman E, et al. Domestic poultry and SARS coronavirus, southern China. Emer Infect Dis.  2004;10:914.
7. Almazan F, Sola I, Zuniga S, et al. Coronavirus reverse genetic systems: Infectious clones and replicons. Virus Res.2014;189:262-270.
8. Lu R, Zhao X, Li J, et al. Genomic characterization and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet.  2020;395:565-574.
9. Kenneth McIntosh, MD. Coronavirus disease 2019 (COVID-19). 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—24-february-2020 (26 February 2020, date last accessed).
10. WHO (World Health Organization). Coronavirus disease 2019 (COVID-19). 2020. https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—24-february-2020 (Accessed on February 26, 2020).
11. Cascella M, Rajnik M, Cuomo A, Dulebohn SC, Napoli RD, et al.Features, Evaluation and Treatment Coronavirus (COVID-19). Stat Pearls Publishing, Treasure Island FL. 2020.
12. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early transmission dynamics in Wuhan, China, of novel corona virus-infected pneumonia. N Engl J Med. 2020;382:1199-1207.
13. Wang W, Tang J, Wei F, et al. Updated understanding of the outbreak of 2019 novel corona virus (2019-nCoV) in Wuhan, China. J Med Virol. 2020;92:441-447.
14. Rothan HA and Byrareddy SN. The epidemiology and pathogenesis of coronavirus disease (COVID-19) Outbreak. J Autoimmuni.2020;109:102433.
15. Lei J, Li J, Li X, Qi X, et al. CT imaging of the 2019 novel corona virus (2019-nCoV) pneumonia. Radiology. 2020;295:18.
16. Ren LL, Wang YM, Wu ZQ, Xiang ZC, Guo L, Xu T, et al.Identification of a novel corona virus causing severe pneumonia in human: a descriptive study. Chinese Med J. 2020;1.
17. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel corona virus in Wuhan, China.Lancet. 2020;395:497-506.
18. Carlos WG, Cruz CSD, Cao B, Pasnick S, Jamil S, et al. Novel wuhan (2019-nCoV) corona virus. Am J Respir Crit Care Med.2020;201:7-8.
19. Assiri A, Al-Tawfifiq JA, Al-Rabeeah AA, Al-Rabiah FA, Al-Hajjar S, Al Barrak A, et al. Epidemiological, demographic, and clinical characteristics of 47 cases of Middle East respiratory syndrome corona virus disease from Saudi Arabia: a descriptive study. Lancet Infect Dis. 2013;13:752-761.
20. Phan LT, Nguyen TV, Luong QC, Nguyen TV, Nguyen HT, Le HQ, et al. Importation and human-to-human transmission of a novel corona virus in Vietnam. N Engl J Med. 2020;382:872-874.
21. Hassan S, Sheikh FN, Jamal S, et al. Coronavirus (COVID-19): A Review of Clinical Features, Diagnosis, and Treatment. Cureus.2020;123:7355.
22. Mao Y, Wei L, Junping W, Gang C, et al. Clinical and pathological characteristics of 2019 novel coronavirus disease (COVID-19): a systematic review. Fujian Acad of Med Sci. 2020;31.  
23. Ng DL, Al-Hosani F, Keating MK, et al. Clinicopathologic, immunohistochemical, and ultrastructural findings of a fatal case of Middle East respiratory syndrome coronavirus infection in the United Arab Emirates. Am J Pathol. 2016;186:652-58.
24. Shi H, Han X, Jiang N, et al. Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study [Published Online February 24, 2020]. Lancet Infect Dis.2020;20:425-434.
25. Liu Qian WR, Guoqiang Q, Yunyun W, et al. A report on the general observation of the necropsy of a newly developed coronavirus pneumonia. Fa Yi Xue Za Zhi. 2020;1004-5619.
26. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al.Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Res Med.  2020;8:420-422.
27. Chan JFW, Yuan S, Kok KH, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster.Lancet.  2020;395:514-523.
28. Tian S, Hu W, Niu L, Liu H, Xu H, Xiao S, et al. Pulmonary Pathology of Early Phase 2019 Novel Coronavirus (COVID-19) Pneumonia in two Patients with Lung Cancer. Preprints. 2020.
29. Heymann DL, Shindo N. COVID-19: what is next for public health?Lancet. 2020;395:542–545.
30. Zou L, Ruan F, Huang M, et al. SARS-CoV-2 viral load in upper respiratory specimens of infected patients. N Eng J Med.  2020;382:1177-1179.
31. Wikipedia. Diamond Princess (ship). https://en.wikipedia.org/wiki/ Diamond_Princess_(ship) 2020.
32. Bai Y, Yao L, Wei T, et al. Presumed asymptomatic carrier transmission of COVID-19. JAMA. 2020.
33. Hu Z, Song C, Xu C, et al. Clinical characteristics of 24 asymptomatic infections with COVID-19 screened among close contacts in Nanjing, China. Sci China Life Sci. 2020;1-6.
34. Sabino-Silva R, Jardim ACG, Siqueira WL. Coronavirus COVID-19 impacts to dentistry and potential salivary diagnosis. Clin Oral Investig. 2020;1-3.
35. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;395:507-513.
36. Jiang F, Deng L, Zhang L, et al. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gener Intern Med. 2020;1-5.
37. Pan L, Mu M, Ren HG, Yang P, Sun Y, Wang R. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: a descriptive, cross-sectional, multicenter study. Am J Gastroenterol . 2020;20.
38. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. 2020.
39. Sun P, Qie S, Liu Z, Ren J, Li K, Xi J. Clinical characteristics of 50466 hospitalized patients with 2019‐nCoV infection. J med virology. 2020.
40. Wu J, Liu J, Zhao X, Liu C, Wang W, Wang D, et al. Clinical Characteristics of Imported Cases of Coronavirus Disease 2019 (COVID-19) in Jiangsu Province: A Multicenter Descriptive Study. Clinic Infect Dis. 2020.
41. Du Z, Wang L, Cauchemez S, et al. Risk for transportation of 2019 novel coronavirus disease from Wuhan to other cities in China.Emerging Infect Dis. 2020;26.
42. Chen H, Guo J, Wang C, Luo F, Yu X, Zhang W, et al. Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records. Lancet. 2020;395:809-815.
43. Perlman S, Netland J. Coronaviruses post-SARS: update on replication and pathogenesis. Nat Rev Microbiol. 2009;7:439-450.
44. Chen Y, Liu Q, Guo D, et al. Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol.2020;2:418-423.
45. Chan JFW, To KKW, Tse H, Jin DY, Yuen KY, et al. Interspecies transmission and emergence of novel viruses: lessons from bats and birds. Trends Microbiol. 2013;21:544-555.
46. Perlman S. Another decade, another coronavirus. N Eng J Med.2020;382:760-762.
46. Wu F, Zhao S, Yu B, Chen YM, Wang W, Hu Y, et al. Complete genome characterization of a novel coronavirus associated with severe human respiratory disease in Wuhan. China. bioRxiv. 2020.
47. Li F. Structure, function, and evolution of coronavirus spike proteins. Annu Rev Virol. 2016; 3:237-261.
48. Ji W, Wang W, Zhao X, Zai J, Li X, et al. Cross‐species transmission of the newly identified coronavirus 2019‐nCoV. J Med Virol. 2020;92:433-440.
49. Madhugiri R, Fricke M, Marz M, Ziebuhr J, et al. Coronavirus cis-acting RNA elements. In Adv Virus Res. 2016;96:127-163.
50. Song Z, Xu Y, Bao L, Zhang L, Yu P, Qu Y, Qin C, et al. From SARS to MERS, thrusting coronaviruses into the spotlight. Virus.2019;11:59.
51. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579:270-273.
52. Walls AC, Tortorici MA, Frenz B, Snijder J, Li W, Rey FA, et al. Glycan shield and epitope masking of a coronavirus spike protein observed by cryo-electron microscopy. Nat Struct Mol Biol.2016;23:899.
53. Walls AC, Tortorici MA, Bosch BJ, Frenz B, Rottier PJ, Di-Maio F, et al. Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer. Nature. 2016;531:114-117.
54. Kirchdoerfer RN, Cottrell CA, Wang N, Pallesen J, Yassine HM, Turner HL, et al. Pre-fusion structure of a human coronavirus spike protein. Nature. 2016;531:118-121.
55. Yuan Y, Cao D, Zhang Y, Ma J, Qi J, Wang Q, et al. Cryo-EM structures of MERS-CoV and SARS-CoV spike glycoproteins reveal the dynamic receptor binding domains. ‎Nat Commun. 2017;8:15092.
56. Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Luo C, et al. Cryo-EM structure of infectious bronchitis coronavirus spike protein reveals structural and functional evolution of coronavirus spike proteins. PLoS Pathog. 2018;14:e1007009.
57. Shang J, Zheng Y, Yang Y, Liu C, Geng Q, Tai W, Li F, et al. Cryo-electron microscopy structure of porcine deltacoronavirus spike protein in the prefusion state. J Virol. 2018;92: e01556-17.
58. Song W, Gui M, Wang X, Xiang Y, et al. Cryo-EM structure of the SARS coronavirus spike glycoprotein in complex with its host cell receptor ACE2. PLoS Pathog. 2018;14:1007236.
59. Li F, Berardi M, Li WH, Farzan M, Dormitzer PR, Harrison SC, et al. Conformational states of the severe acute respiratory syndrome coronavirus spike protein ectodomain. J Virol. 2006;80:6794–800.
60. Walls AC, Tortorici MA, Snijder J, et al. Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion. Proc Natl Acad Sci USA. 2017;114:11157-11162.
61. Heald-Sargent T, Gallagher T, et al. The coronavirus spike protein and acquisition of fusion competence. Virus.2012;4: 557-580.
62. Millet JK, Whittaker G. Host cell entry of Middle East respiratory syndrome coronavirus after two-step, furin-mediated activation of the spike protein. Proc Natl Acad Sci USA. 2014; 111:15214-15219.
63. Chen Z, Pei D, Jiang L, Song Y, Wang J, Wang H, Qiu M, et al. Antigenicity analysis of different regions of the severe acute respiratory syndrome coronavirus nucleocapsid protein. Clin Chem.2004;50:988-995.
64. Lin X, Gong Z, Xiao Z, Xiong J, Fan B, Liu J, et al. Novel coronavirus pneumonia outbreak in 2019: computed tomographic findings in two cases. Korean J Radiol. 2020;21: 365-368.
65. Cui L, Wang H, Ji Y, Yang J, Xu S, Huang X, Guo D, et al. The nucleocapsid protein of coronaviruses acts as a viral suppressor of RNA silencing in mammalian cells. J Virol. 2015; 89:9029-9043.
66. Ali PSS, John J, Selvaraj M, Kek TL, Salleh MZ, et al.Nodamura virus B2 amino terminal domain sensitivity to small interfering RNA. Microbiol Immunol. 2015;59:299-304.
67. Simmons G, Zmora P, Gierer S, et al. Proteolytic activation of the SARS-coronavirus spike protein: cutting enzymes at the cutting edge of antiviral research. Antivir Res. 2013;100:605-614.
68. Matsuyama S, Nagata N, Shirato K, Kawase M, Takeda M, et al.Efficient activation of the severe acute respiratory syndrome coronavirus spike protein by the transmembrane protease TMPRSS2. J Virol. 2010;84:12658-12664.
69. Bertram S, Glowacka I, Müller MA, Lavender H, Gnirss K, Nehlmeier I, et al. Cleavage and activation of the severe acute respiratory syndrome coronavirus spike protein by human airway trypsin-like protease. J Virol.  2011;85:13363-13372.
70. Belouzard S, Chu VC, Whittaker G. R. Activation of the SARS coronavirus spike protein via sequential proteolytic cleavage at two distinct sites. Proceed Nati Acad Sci. 2009;106:5871-5876.
71. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus–induced lung injury. Nat Med. 2005;11:875–879.
72. Glowacka I, Bertram S, Muller MA, Allen P, Soilleux E, Pfeerle S, et al. Evidence that TMPRSS2 Activates the Severe Acute Respiratory Syndrome Coronavirus Spike Protein for Membrane Fusion and Reduces Viral Control by the Humoral Immune Response. J Virol.2011;85:4122–4134.
73. Heurich A, Hofmann-Winkler H, Gierer S, Liepold T, Jahn O, et al. TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein. J Virol. 2014;88:1293-1307.
74. Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher TA. Transmembrane Serine Protease Is Linked to the Severe Acute Respiratory Syndrome Coronavirus Receptor and Activates Virus Entry. J Virol. 2011;85:873–882.
75. Rabi FA, Al-Zoubi MS, Kasasbeh GA, Salameh DM, et al.SARS-CoV-2 and Coronavirus Disease 2019: What We Know So Far.Pathogens. 2020;9:231.
76. Xu Y, Lou Z, Liu Y, Pang H, Tien P, Gao GF, et al. Crystal structure of severe acute respiratory syndrome coronavirus spike protein fusion core. J Biol Chem. 2004;279:49414-49419.
77. Tortorici MA, Veesler D. Structural insights into coronavirus entry. Adv Virus Res.  2019;105: 93-116.
78. Bosch BJ, van der Zee R, de Haan CA, Rottier PJ. The coronavirus spike protein is a class I virus fusion protein: structural and functional characterization of the fusion core complex. J Virol.  2003;77:8801-8811.
79. Burkard C, Verheije MH, Wicht O, van Kasteren SI, van Kuppeveld FJ, et al. Coronavirus cell entry occurs through the endo-/lysosomal pathway in a proteolysis-dependent manner. PLoS Pathog.  2014;10.
80. Park JE, Li K, Barlan A, Fehr A, Perlman S, et al.Proteolytic processing of Middle East respiratory syndrome coronavirus spikes expands virus tropism. Proceed Natio Acad Sci.2016;113:12262-12267.
81. Gui M, Song W, Zhou H, Xu J, Chen S, Xiang Y, et al. Cryo-electron microscopy structures of the SARS-CoV spike glycoprotein reveal a prerequisite conformational state for receptor binding. Cell Res.2017;27:119-129.
82. Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, et al. PImmunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proceed Natio Acad Sci.2017;114:E7348-E7357.
83. Madu IG, Roth SL, Belouzard S Whittaker GR. Characterization of a highly conserved domain within the severe acute respiratory syndrome coronavirus spike protein S2 domain with characteristics of a viral fusion peptide. J Virol.  2009;83:7411-7421.
84. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450-454.
85. Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ, et al.Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol: J Pathol Soc Great Brit Ireland. 2004;203:631-637.
86. Young BE, Ong SWX, Kalimuddin S, Low J G, et al.Epidemiologic features and clinical course of patients infected with SARS-CoV-2 in Singapore. JAMA. 2020.
87. Walls AC, Xiong X, Park YJ, Tortorici MA, et al. Unexpected receptor functional mimicry elucidates activation of coronavirus fusion. Cell.  2019;176:1026-1039.
88. Xiong X, Tortorici MA, Snijder J, Yoshioka C, Walls AC, et al. Glycan shield and fusion activation of a deltacoronavirus spike glycoprotein fine-tuned for enteric infections. J Virol.  2018;92:e01628-17.
89. Lindenbach BD, Rice CM. Molecular biology of flaviviruses. Advan Virus Res. 2003;59:23-62.
90. Rossen JWA, De Beer R, Godeke GJ, Raamsman MJB, Horzinek MC, et al. The viral spike protein is not involved in the polarized sorting of coronaviruses in epithelial cells. J Virol.  1998;72:497-503.
91. Yang Y, Liu C, Du L, Jiang S, Shi Z, et al. Two mutations were critical for bat-to-human transmission of Middle East respiratory syndrome coronavirus. J Virol. 2015;89:9119-9123.
92. Chen L, Xiong J, Bao L, Shi Y. Convalescent plasma as a potential therapy for COVID-19. Lancet Infect Dis. 2020.
93. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020.
94. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. Complete reference from online. A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19. New Eng J Med. 2020.
95. Lim J, Jeon S, Shin HY, Kim MJ, Seong YM, Lee WJ, et al. Case of the Index Patient Who Caused Tertiary Transmission of Coronavirus Disease 2019 in Korea: The Application of Lopinavir/Ritonavir for the Treatment of COVID-19 Pneumonia Monitored by Quantitative RT-PCR.J Korean Med Sci. 2020;35:e79.
96. Dong L, Hu S, Gao J. Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discover Therap. 2020;14:58-60.
97. Colson P, Rolain JM, Lagier JC, Brouqui P, Raoult D. Chloroquine and hydroxychloroquine as available weapons to fight COVID-19. Inter J Antimicrob Agents. 2020.
98. Cortegiani A, Ingoglia G, Ippolito M, Giarratano A, Einav S. A systematic review on the efficacy and safety of chloroquine for the treatment of COVID-19. J Critical Care. 2020.
99. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. BioScience Trends. 2020.
100. Touret F, Lamballerie XD. Of chloroquine and COVID-19.Antiviral Res. 2020;177:104762.
101. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an openlabel non-randomized clinical trial. Inter J Antimicrob Agents. 2020.
102. Cheng Y, Wong R, Soo YO, et al. Use of convalescent plasma therapy in SARS patients in Hong Kong. Eur J Clin Microbiol Infect Dis. 2005;24:44–46.
103. Lai ST. Treatment of severe acute respiratory syndrome. Eur J Clin Microbiol Infect Dis. 2005;24:583–91.
104. Soo YO, Cheng Y, Wong R, et al. Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect.2004;10:676–78.
105. WHO. Use of convalescent whole blood or plasma collected from patients recovered from Ebola virus disease for transfusion, as an empirical treatment during outbreaks 2014. http://apps.who.int/iris/rest/bitstreams/604045/retrieve (accessed Feb 20, 2020).
106. Arabi Y, Balkhy H, Hajeer AH. Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: a study protocol. Springerplus. 2015;4:709.
107. Su B, Wang Y, Zhou R, Jiang T, Zhang H, Li Z, et al. Efficacy and tolerability of lopinavir/ritonavir- and efavirenz-based initial antiretroviral therapy in HIV-1- infected patients in a tertiary care hospital in Beijing, China. Front Pharmacol. 2019;10:1472.
108. Chu CM, Cheng VCC, Hung IFN, Wong MML, Chan KH, Chan KS, et al. Role of lopinavir/ritonavir in the treatment of SARS: Initial virological and clinical findings. Thorax. 2004;59:252-256.
109. Furuta Y, Komeno T, Nakamura T. Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proc Jpn Acad, Ser B, Phys Biol Sci. 2007;93:449-463.
110. Delang L, Abdelnabi R, Neyts J. Favipiravir as a potential countermeasure against neglected and emerging RNA viruses.Antiviral Res. 2018;153:85-94.
111. News. http://www.szdsyy.com/News/0a6c1e58-e3d0-4cd1-867ad5524bc59cd6.html (accessed February 22, 2020). (in Chinese).
112. Stockman LJ, Bellamy R, Garner P. SARS: Systematic review of treatment effects. PLoS Med. 2006;3:e343.
113. News: Abidol and darunavir can effectively inhibit coronavirus http://www.sd.chinanews. com/2/2020/0205/70145.html (accessed February 21, 2020). (in Chinese).
114. Gordon CJ, Tchesnokov EP, Feng JY, Porter DP, Gotte M. The antiviral compound remdesivir potently inhibits RNA-dependent RNA polymerase from Middle East respiratory syndrome coronavirus. J Biol Chem. 2020.
115. Sheahan TP, Sims AC, Leist SR, et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun. 2020;11:222.
116. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020;395:470–473.
117. Holshue ML, DeBolt C, Lindquist S, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020.
118. Wang M, Cao R, Zhang L, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019- nCoV) in vitro. Cell Res. 2020.
119. De-Wit E, Feldmann F, Cronin J, Jordan R, Okumura A, Thomas T. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci USA. 2020.
120. Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Intern J Antimicrob Agents. 2020;55:105924.
121. Savarino A, Di-Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6:67–9.
122. Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D, et al. Design and synthesis of hydroxyferroquine derivatives with antimalarial and antiviral activities. J Med Chem.2006;49:2845-2849.
123. Miller DK, Lenard J. Antihistaminics, local anesthetics, and other amines as antiviral agents. Proc Natl Acad Sci USA.1981;78:3605–3609.
124. Shimizu Y, Yamamoto S, Homma M, Ishida N. Effect of chloroquine on the growth of animal viruses. Arch fur die Gesamte Virusforschung. 1972;36:93–104.
125. Inglot AD. Comparison of the antiviral activity in vitro of some non-steroidal anti-inflammatory drugs. J Gen Virol.1969;4:203–214.
126. Yan Y, Zou Z, Sun Y, Li X, Xu KF, Wei Y, et al. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013;23:300–302.
127. Rolain JM, Colson P, Raoult D. Recycling of chloroquine and its hydroxyl analogue to face bacterial, fungal and viral infections in the 21st century. Int J Antimicrob Agents. 2007;30:297–308.
128. Keyaerts E, Vijgen L, Maes P, Neyts J, Ranst MV. In vitroinhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 2004;323, 264–268.
129. Savarino A, Boelaert JR, Cassone A, Majori G, Cauda R. Effects of chloroquine on viral infections: an old drug against today’s diseases.Lancet Infect Dis. 2003;3:722–727.
130. Marmor MF, Kellner U, Lai TY, Melles RB, Mieler WF. American Academy of Ophthalmology. Recommendations on Screening for Chloroquine and Hydroxychloroquine Retinopathy (2016 Revision).Ophthalmology. 2016;123:1386-94.
131. Frisk-Holmberg M, Bergqvist Y, Englund U. Chloroquine intoxication [letter]. Br J Clin Pharmacol. 1983;15:502–503.