References
1. Peiris JS, Guan Y, Yuen KY. Severe acute respiratory syndrome. Nat Med 2004; 10: S88–S97. PubMed Abstract/FullText
2. Zaki AM, van Boheemen S, Bestebroer TM, Albert DME, Osterhaus DVM, Fouchier RAM. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N Engl J Med 2012; 367: 1814–1820. PubMed Abstract/FullText
3. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet 2020 PubMed Abstract/FullText
4. Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol 2007; 170: 1136–1147. PubMed PMC free article
5. Kawai T, Akira S. Signaling to NF-kappaB by toll-like receptors. Trends Mol Med 2007; 13: 460–469. PubMed Abstract/FullText
6. Ciaglia E, Vecchione C, Puca AA. COVID-19 infection and circulating ACE2 levels: Protective role in women and children. Front Pediatr 2020; 8: 206. PMC free article
7. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, Tan KS, Wang DY, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak–an update on the status. Mil Med Res 2020; 7: 11. PubMed PMC free article
8. Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203: 631–637. PubMed PMC free article
9. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007; 7: 353–364. PubMed
10. Carty M, Bowie AG. Recent insights into the role of toll-like receptors in viral infection. Clin Exp Immunol 2010; 161: 397–406. PubMed PMC free article
11. Totura AL, Whitmore A, Agnihothram S, Schäfer A, Katze MG, Heise MT, Baric RS. Toll-like receptor 3 signaling via TRIF contributes to a protective innate immune response to severe acute respiratory syndrome coronavirus infection. mBio 2015; 6: e00638–15. PubMed PMC free article
12. Yamamoto M, Sato S, Mori K, Hoshino K, Takeuch O, Takeda K, Akira S. Cutting edge: A novel Toll/IL-1 receptor domain-containing adapter that preferentially activates the IFN-β promoter in the toll-like receptor signaling. J Immunol 2002; 169: 6668–6672. Abstract/FullText
13. Hu YB, Dammer EB, Ren RJ, Wang G. The endosomal-lysosomal system: from acidification and cargo sorting to neurodegeneration. Transl Neurodegener 2015; 4: 18. PubMed PMC free article
14. Hamada A, Torre C, Drancourt M, Ghigo E. Trained immunity carried by non-immune cells. Front Microbiol 2019; 9: 3225. PubMed PMC free article
15. Wang R, Ahmed J, Wang G, Hassan I, Strulovici-Barel Y, Salit J, Mezey J, Crystal RG. Airway epithelial expression of toll-like receptor 5 is down-regulated in healthy smokers and smokers with chronic obstructive pulmonary disease. J Immunol 2012; 189: 2217–2225. PMC free article
16. Guillot L, Le Goffic R, Bloch S, Escriou N, Akira S, Chignard M, Si-Tahar M. Involvement of toll-like receptor 3 in the immune response of lung epithelial cells to double-stranded RNA and influenza A virus. J Biol Chem 2005; 280: 5571–5580. PubMed Abstract/FullText
17. Lafferty EI, Qureshi ST, Schnare M. The role of toll-like receptors in acute and chronic lung inflammation. J Inflamm (Lond) 2010; 7: 57. PMC free article
18. DeDiego ML, Nieto-Torres JL, Regla-Nava JA, Jimenez-Guardeño JM, Fernandez-Delgado R, Fett C, Castaño-Rodriguez C, Perlman S, et al. Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J Virol 2014; 88: 913–924. PubMed PMC free article
19. Vitiello M, Galdiero M, Finamore E, Galdiero S, Galdiero M. NF-κB as a potential therapeutic target in microbial diseases. Mol Biosyst 2012; 8:1108–1120. PubMed
20. Hayden MS, West AP, Ghosh S. NF-kappaB and the immune response. Oncogene 2006; 25: 6758–6780. PubMed Abstract/FullText
21. Baud V, Karin M. Is NF-κB a good target for cancer therapy? Hopes and pitfalls. Nat Rev Drug Discov 2009; 8: 33–40. PubMed PMC free article
22. Sun SC. Non-canonical NF-κB signaling pathway. Cell Res. 2011; 21: 71–85. PubMed PMC free article
23. Londhe P, Yu PY, Ijiri Y, Ladner KJ, Fenger JM, London C, Houghton PJ, Guttridge DC. Classical NF-κB metabolically reprograms sarcoma cells through regulation of hexokinase 2. Front Oncol 2018; 8: 104. PubMed PMC free article
24. Panday A, Inda ME, Bagam, P, Sahoo A, Osorio D, Batra S. Transcription factor NF-κB: An update on intervention strategies. Arch Immunol Ther Exp (Warsz) 2016; 64: 463–483. Abstract
25. Schmitz ML, Kracht M, Saul VV. The intricate interplay between RNA viruses and NF-Κb. Biochim Biophys Acta 2014; 1843: 2754–2764. Abstract/FullText
26. Zhao J, He S, Minassian A, Li J, Feng P. Recent advances on viral manipulation of NF-κB signaling pathway. Curr Opin Virol 2015; 15: 103–111. Abstract/FullText
27. Kany S, Vollrath JT, Relja B. Cytokines in inflammatory disease. Int J Mol Sci 2019; 20: 6008. PMC free article
28. Meusel TR, Imani F. Viral induction of inflammatory cytokines in human epithelial cells follows a p38 mitogen-activated protein kinase-dependent but NF-kappa B-independent pathway. J Immunol 2003; 171: 3768–3774. PubMed Abstract/FullText
29. Coperchini F, Chiovato L, Croce L, Magri F, Rotondi M. The Cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine Growth Factor Rev 2020. Abstract/FullText
30. Hor-Yue Tan, Ning Wang, Sha Li, Hong M, Wang X, Feng Y. The reactive oxygen species in macrophage polarization: Reflecting its dual role in progression and treatment of human diseases. Oxid Med Cell Longev 2016; 2016: 2795090. Abstract/FullText
31. Whisner CM, Athena Aktipis C. The role of the microbiome in cancer initiation and progression: how microbes and cancer cells utilize excess energy and promote one another’s growth. Curr Nutr Rep 2019; 8: 42–51. PubMed Abstract/FullText
32. Short KR, Kroeze EJBV, Fouchier RAM, Kuiken T. Pathogenesis of influenza-induced acute respiratory distress syndrome. Lancet Infect Dis 2014; 14: 57–69. Abstract
33. Gregory CD, Devitt A. The macrophage and the apoptotic cell: an innate immune interaction viewed simplistically? Immunology 2004; 113: 1–14. PMC free article
34. Cani PD, Jordan BF. Gut microbiota-mediated inflammation in obesity: a link with gastrointestinal cancer. Nat Rev Gastroenterol Hepatol 2018; 15: 671–682. PubMed
35. Han YW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr Opin Microbiol 2015; 23: 141–147. PubMed PMC free article
36. Shchipkova AY, Nagaraja HN, Kumar PS. Subgingival microbial profiles of smokers with periodontitis. J Dent Res 2010; 89: 1247–1253. PubMed PMC free article
37. Park SR, Kim DJ, Han SH, Kang MJ, Lee JY, Jeong YJ, Lee SJ, Kim TH, et al. Diverse toll-like receptors mediate cytokine production by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Infect Immun 2014; 82: 1914–1920. PubMed PMC free article
38. Naldini A, Carraro F. Role of inflammatory mediators in angiogenesis. Curr Drug Targets Inflamm Allergy 2005; 4: 3–8. PubMed PDF
39. Gallo O, Franchi A, Magnelli L, Sardi I, Vannacci A, Boddi V, Chiarugi V, Masini E. Cyclooxygenase-2 pathway correlates with VEGF expression in head and neck cancer. Implications for tumor angiogenesis and metastasis. Neoplasia 2001; 3: 53–61. PubMed PMC free article
40. Neag MA, Mocan A, Echeverría J, Pop RM, Bocsan CI, Crişan G, Buzoianu AD. Berberine: Botanical occurrence, traditional uses, extraction methods, and relevance in cardiovascular, metabolic, hepatic, and renal disorders. Front Pharmacol. 2018; 9: 557. PubMed PMC free article
41. Li W, Hua B, Saud SM, Lin H, Hou W, Matter MS, Jia L, Colburn NH, et al. Berberine regulates AMP-activated protein kinase signaling pathways and inhibits colon tumorigenesis in mice. Mol Carcinog 2015; 54: 1096–1009. PubMed PMC free article
42. Wang H, Zhu C, Ying Y, Luo L, Huang D, Luo Z. Metformin and berberine, two versatile drugs in treatment of common metabolic diseases. Oncotarget 2017; 9: 10135–10146. PubMed PMC free article
43. Jeong HW, Hsu KC, Lee JW, Ham M, Huh JY, Shin HJ, Kim WS, Kim JB. Berberine suppresses proinflammatory responses through AMPK activation in macrophages. Am J Physiol Endocrinol Metab 2009; 296: E955–E964. PubMed Abstract/FullText
44. Zou K, Li Z1, Zhang Y, Zhang H, Li B, Zhu W, Shi J, Jia Q, Li Y. Advances in the study of berberine and its derivatives: a focus on anti-inflammatory and anti-tumor effects in the digestive system. Acta Pharmacol Sin 2017; 38: 157–167. PubMed PMC free article
45. Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 2017; 9: pii: E1021. PubMed PMC free article
46. Eslamparast T, Poustchi H, Zamani F, Sharafkhah M, Malekzadeh R, Hekmatdoost A. Synbiotic supplementation in nonalcoholic fatty liver disease: A randomized, double-blind, placebo-controlled pilot study. Am J Clin Nutr 2014; 99: 535–542. PubMed Abstract/FullText
47. Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C, Li M, Zhang C, et al. Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One 2012; 7: e42529. PubMed Abstract/FullText
48. Yu YN, Yu TC, Zhao HJ, Sun T, Chen H, Chen H, An H, Weng Y, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget 2015; 6: 32013–32026. PubMed PMC free article
49. Mirhadi E, Rezaee M, Malaekeh-Nikouei B. Nano strategies for berberine delivery, a natural alkaloid of Berberis. Biomed Pharmacother 2018; 104: 465–473. PubMed
50. Feng R, Shou JW, Zhao ZX, He C, Ma C, Huang M, Fu J, Tan X, et al. Transforming berberine into its intestine-absorbable form by the gut microbiota. Sci Rep 2015; 5: 12155. PMC free article
51. Majumdar S, Lamothe B, Aggarwal BB. Thalidomide suppresses NF-κB activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester. J Immunol 2002; 168: 2644–2651. PubMed Abstract/FullText
52. Davis DW, Herbst RS, Abbruzzese JL. Antiangiogenic cancer therapy; CRC Press Book. Conventional Therapeutics with Antiangiogenic Activity page 301-327; page 316 Ref. 222
53. Adamo V, Franchina T, Adamo B, Scandurra G, Scimone A. Brain metastases in patients with non-small cell lung cancer: focus on the role of chemotherapy. Ann Oncol 2006; 17: ii73–ii75. PubMed PDF
54. Tempfer CB, Schultheis B, Hilal Z, Dogan A, Rezniczek GA. Thalidomide and lenalidomide for recurrent ovarian cancer: A systematic review of the literature. Oncol Lett 2017: 14: 3327–3336. PubMed PMC free article
55. Gonzalez A, Sahaza JH, Ortiz BL, Restrepo A, Cano LE. Production of pro-inflammatory cytokines during the early stages of experimental Paracoccidioides brasiliensis infection. Med Mycol 2003; 41: 391–399. PubMed
56. Keifer JA, Guttridge DC, Ashburner BP, Baldwin AS. Inhibition of NF-kappa B activity by thalidomide through suppression of ikappaB kinase activity. J Biol Chem 2001; 276: 22382–22387.
57. Rehman W, Arfons LM, Lazarus HM. The rise, fall and subsequent triumph of thalidomide: lessons learned in drug development. Ther Adv Hematol. 2011; 2: 291–308. PubMed PMC free article
58. Pang LY, Hurst EA, Argyle DJ. Cyclooxygenase-2: A role in cancer stem cell survival and repopulation of cancer cells during therapy. Stem Cells Int 2016; 2016: 2048731. PubMed PMC free article
59. Chan PC, Liao MT, Hsieh PS. The dualistic effect of COX-2-mediated signaling in obesity and insulin resistance. Int J Mol Sci 2019; 20: 3115. PubMed PMC free article
60. Liu Q, Zhou Y, Yang Z. The cytokine storm of severe influenza and development of immunomodulatory therapy. Cell Mol Immunol 2016; 13: 3–10. Abstract/FullText
61. Maloney JP, Gao L. Proinflammatory cytokines increase vascular endothelial growth factor expression in alveolar epithelial cells. Mediators Inflamm 2015; 2015: 387842. PubMed PMC free article
62. Hada M, Mizutari K. A case of advanced pancreatic cancer with remarkable response to thalidomide, celecoxib and gemcitabine. Gan To Kagaku Ryoho 2004; 31: 959–961. PubMed
63. Hada M, Horiuchi T. A case report of chemotherapy with thalidomide, celecoxib and gemcitabine in the treatment of patients with brain metastases from lung cancer. No Shinkei Geka 2005; 33: 1021–1026. PubMed
64. Sareddy GR, Geeviman K, Ramulu C, Babu PP. The nonsteroidal anti-inflammatory drug celecoxib suppresses the growth and induces apoptosis of human glioblastoma cells via the NF-κB pathway. J Neurooncol 2012; 106: 99–109. Abstract