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Numerical Investigation of the Fractal
Mobile /Immobile Transport Model with
Caputo and Caputo-Fabrizio Fractional
Derivatives using Finite difference/Spectral
Approximations

Mojtaba Fardi

This paper discusses a spectral collocation method for numerically solving linear and nonlinear fractal Mobile/Immobile
transport model with Caputo and Caputo-Fabrizio fractional derivatives. In the time direction, a finite difference scheme
is used to approximate the differential term. Also, for space discretization, we apply the Chebyshev-spectral method. The
unconditional stability and convergence of the proposed method are investigated, which provides the theoretical basis of
the proposed method for solving the considered equation. Finally, some numerical experiments are considered to examine
the efficiency and applicability of it in the sense of accuracy and convergence ratio. Copyright (©) 2009 John Wiley & Sons,
Ltd.
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1. Introduction

Fractional calculus investigates integrals and derivatives of non-integer order and is a classical mathematical field as old
as calculus itself [1]. Earlier, fractional calculus was considered as pure mathematics, but now the situation has changed
dramatically and fractional calculus become an attractive and important topic among engineers and applied scientists. It
is a useful tool for the description of memory and heredity effects [2]. In recent years, the application of fractional-order
derivatives has become popular due to its non-locality property, which is an essential property of many complex systems.
Various applications have been used in the modeling of different phenomena such as viscoelasticity, nanotechnology, financial
modeling, random walk, anomalous transport, control theory of dynamical systems, and biological modeling. This calculus
involves different definitions of the fractional operators as well as the Riemann- Liouville fractional derivative (R-L-FD),
Caputo fractional derivative (C-FD), Riesz fractional derivative (R-FD), Grunwald-Letnikov fractional derivative (G-R-FD),
Atangana-Beleanu derivative (A-BD) [3, 4]. Recently, the authors of [5] presented a new definition for a fractional derivative
without a singular kernel, which is named as Caputo-Fabrizio fractional derivative (C-F-FD). Indeed, the fractional models
with a singular kernel can not describe as the fluctuations of different scales and material heterogeneities. But, models with
C-F-FD can describe them. More fully-described work on physical and engineering processes with utilization of fractional order
derivatives can be found in [6, 7, 8, 9, 10, 11]. Many phenomena in physics, chemistry, finance, fluid mechanics, and other
sciences can be described successfully by fractional models using the fractional calculus [12, 13]. Doungmo Goufo and et al. [4]
presented comparative analysis between differential fractional operators for solving the nonlinear Kaup-Kupershmidt equation,
so that operators include the A-BD and C-F-FD which respectively follow the Mittag-Leffler law and the exponential law. In
[14], the authors proposed an analytical method to solve systems of the nonlinear fractional differential equations. El-Ajou and
et al. in [15] solved the time-fractional nonlinear dispersive partial differential equations in the sense of conformable fractional
derivative consisting the time-fractional nonlinear dispersive Boussinesq, time-fractional nonlinear dispersive Klein-Gordon and
time-fractional nonlinear dispersive B(2, 1, 1) partial differential equations. Kumar and et al. in [16] presented a comparative
study of the modified analytical methods based on of residual power series and auxiliary parameters approaches to solve the
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time-fractional Newell-Whitehead-Segel equations. Nonlinear dynamic and solution of a heat flux model presented by a partial
differential equation were analyzed in [17]. Atangana and Baleanu [18] proposed a new fractional derivative with non-local and
non-singular kernel for solving fractional heat in material with different scales and also those with heterogeneous media. Tateishi
and et al. [19] solved the fractional diffusion equation without external forces and subjected to the free diffusion boundary
conditions. In [20] the authors proposed fractal-fractional integrals and derivatives which predict the chaotic behavior of some
attractors from applied mathematics. The concept of fractional integrals and derivatives based on of the exponential and
Mittag-Leffler laws, are presented in [21, 22]. Furthermore fundamental differences among the exponential decay, power law,
Mittag-Leffler law and their possible applications in natural phenomena are discussed. Although many important works have
been presented on the theoretical analysis of fractional equations, the obtained solutions for most of them are not explicit.
Therefore, many scholars have proposed several numerical investigations based on stability and convergence analysis [23, 24].
A variety of numerical methods have been proposed for fractional differential equations [25, 26, 27].

The spectral methods were initially proposed for computations in fluid dynamics and were promoted generally by meteorologists
to investigate global weather modeling, and by fluid dynamicists to study isotropic turbulence. The spectral method also can
present an approximation to the solution of a differential equation using a truncated series of smooth basis functions. The critical
elements of the spectral methods are the basis functions and the test functions. The basis functions are used to approximate
the solution to a finite series of smooth basis functions. One of the aspects which individuates spectral methods compared to
finite element method is the choice of basis functions. These functions for spectral methods are infinitely differentiable global
functions, while basis functions for finite element method are only local. The widely-used basis functions include Fourier series,
Chebychev polynomials and Legendre polynomials. Fourier series are often used in the approximation of periodic functions,
while Chebychev polynomials and Legendre polynomials are used for non-periodic functions to avoid the Gibbs phenomenon.
The outstanding advantage of the spectral methods is that when the solution is smooth enough, the expansion coefficients
decay faster than any polynomial order. Then, only a few terms are enough to reach the acceptable accuracy, which Would
be preferable to studying problems with smooth enough solutions. Recently, spectral methods have been a well-known class of
approximation methods for the solution of partial differential equations [28]. The aim of [29] is a spectrally formulated finite
element approach for solving elastic waves in carbon nanotubes (CNT), where the frequency content of the new signal is at
terahertz level. Authors of [30] proposed a Lagrange-Galerkin spectral element method for obtaining the approximate solution
for the two-dimensional shallow water equations. Authors of [31] have presented a spectral element method on the basis of
Gauss-Lobatto-Legendre quadrature formulas, and finite difference Newmark’'s explicit time advancing schemes for solving
acoustic wave equation. A numerical spectral method for the time-fractional subdiffusion equation with second-order accuracy
is presented in [32]. The aim of [33, 34] is to propose the spectral methods for the pricing of European options.

A fractal mobile/immobile transport for solute transport assumes power-law waiting times in the immobile zone, leading to a
time-fractional derivative in the mobile/immobile transport model. The FM/IT model describes a extensive family of problems,
including heat diffusion and ocean acoustic propagation in critical physical phenomena that behave essentially like heat diffusing
through a solid [35]. To approximate the FM/IT model, significant progress has been made. In this paper, we present a spectral
method to compute the approximate solution for FM/IT model with C-FD and C-F-FD [36, 37, 38, 39]:

FM/IT model with C-FD:

Case I: Linear FM/IT model with C-FD:

OU(x, t)
ot

Case II: Nonlinear FM/IT model with C-FD:

A1 + X2 §ORU(x, t) = MB2U(x, t) — VU (x, t) + f(x, 1), (1)

OU(x, t)
ot

where (x,t) € Q x (0, T], Q= (-1,1), U =U(x, t) is a sufficiently differentiable function in Q x [0, T] and the term Q(U)
satisfies the following conditions:

A + X2 §ORU(x, t) = ¥O2U(x, t) + QU) + F(x, 1), (2)

e There exists a positive constant ¢ such that |Q(U)| < c|Ud],

e There exists a positive constant ¢ such that |Qu(U)| < c.
Also and the time-fractional derivative $822(x, t) is the C-FD defined by

So%U(x, t) = (0/3’0‘%)@, ), 0<a<l,
in which o/; being the Riemann-Liouville fractional integral (o/fU)(x, t) = fotu(x, S)va(t — s)ds with v (t) := ltfz;;
FM/IT model with C-F-FD:
Case I: Linear FM/IT model with C-F-FD:

OU(x, t)
ot

Case II: Nonlinear FM/IT model with C-F-FD:

A1 + X2 SFoRU(x, t) = 1182U(x, t) — yald(x, t) + F(x, t), (3)

Al% + X0 §Fo%U(x, t) = vA2U(x, t) + QU) + f(x, t), (4)
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where the time-fractional derivative $F8%2(x, t) is the C-F-FD defined by

toU(x, s)

Va(t—5s)ds, 0<a <1,
0s al )

SFodU(x, t) == /o

in which 84 (t) := 22CT50),

The rest of this paper is organized as follows. In Sections 2 and 3, we present computational approaches to construct a
numerical solution for fractal Mobile/Immobile transport model with C-FD and C-F-FD. We prove the convergence and the
stability of the method in this section. Some test problems are presented, and the results are shown in Section 4, and we discuss
the numerical performance of our method. Finally, in Section 5, some concluding remarks are presented.

2. FM/IT Model With C-FD

2.1. Linear FM/IT Model With C-FD

2.1.1. Discretization of Caputo Derivative and Semi-Discrete Scheme In this subsection, we deal with the linear FM/IT model
with C-FD. For (1), the initial condition:

U(x, t)|t=0 = h(x), x € Q, (5)
and the Dirichlet boundary conditions:
U(X, t)lxean =0, t >0, (6)

is considered.
For discretization of time variable, let tx := kdt, k =0, 1, ..., N be an equidistant partition of [0, T], where §t = % We analogize
the time-fractional derivative term by using the finite difference scheme:

k _ gk k k41— k-
e R e Ty o R e A S ) ()

where cy 5t = % and doj =G+ 1) =1 (=1,2,--+ k).

Theorem 1 ([41]) For any 0 < oo < 1, the coefficients of dnj,j = 1,2, - - satisfies the following properties

® dyo=1, dp;,j=0,1,2,---;

dok —+ 0 as k — oo,

doj > dojr1.0=0,1,2,--;
-1 (k+1)2 |

d&.k < 1-a '

Zf;ol(da,ﬂrl - da,J) + dok = da,0;

S0 a0t < (k +1)%6t%,

Theorem 2 ([41]) For any 0 < o < 1, it holds

Klog < — S B2U(x. )61, —1<k<N—1, Vx€Q
ML 01 < g gy o BRUCL IS, — 1< kSN -1 WxeQ

where c is independent of §t.
Also, the first order temporal derivative can be approximated as follows

aukJrl(X) Z/{kJrl(X) 7Uk(X)
= +
ot ot

(), (8)

where the truncation error ryj;'(x) satisfy |rs5 (x)| < c maxee(o.1 187U(x, t)|8t, in which ¢ is independent §t.

Substituting (7) and (8) into (1), we obtain

K15t TH(x) = e 5mOZUTH(x) = PLoU  (x) + FF () + R (x), x € Q, (9)
where
laqg 1k (]CQ.a,(St + >\2da.l)u0(x)v k=0,
ProUt(x) = K k-1 i o
K2,a,6tu (X) + >\2 Zj:1 (dO(,j - da,J+1)u J(X) + >\2da,ku (X), k 2 1,
FFl = b f(x tin), k=01, N =2, U%(x) = h(x),
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and

r2-—a) _
Ba,st = Tsria K1a6t = MBast + A2 + ’Y2Ca,(1;tv K25t = MBast + A2(1 — da,1)-

Furthermore the truncation error R);"*(x) satisfy
IR0l < IR (0L + IR (O] < e max (87U (x, £)lot™,
te(0,
91 (x) and RETH(x) = T(2 — a)dtry )t (x).

in which R’{Ll(x) =T(2—a)dt*r '
Replacing U*™ (x) by the approximate solution u***(x), we can obtain the following semi-discrete problem for (1) and (5)-(6)

which is given by:

Scheme L-I: Given u° = h(x) and find v*™ (k=0,1,2,---, N — 2), such that
K050k (x) = ¢ 5mO2ukH (x) = PLouk(x) + FF(x), x € Q, (10)
U leon =0 -1< k< N-1,

2.1.2. Spectral Approximation to Semi-Discrete Problem (10) Consider the Hilbert space of u-measurable L=((—1, 1), du(x))
where du(x) = w(x)dx = (1 — x2)~Zdx. The Hilbert space L2((—1,1), du(x)) equipped with inner product

1 1
(o= [ ulav( =) Ed().

Theorem 3 ([40]) Let Py denote the set of polynomials of degree< M. If By, be a sequence of orthogonal polynomials on
(=1,1) of degree < M, i.e.,
Buv = {u € Pul(u, V)ow =0, YV € Py_1},

then there exists a reproducing kernel Ky : (—1,1) x (—1,1) — R such that
u(x) = (u, Kmu(x, Dow, Yu € Py, Vx € (=1,1),
=({(x+ Du, Kpu(=1, )ow = (1 =x)u, Kp(1, )ow, Yu€Py_1.

Let {Twm}m>o0 be the Chebyshev polynomials in L2((—1, 1), du(x)) with degree(Pu) = M, we consider

Tm2(x) + e Tpm1(x) + dyTv(x) € Py,

qM(X) (1—x)(x+1)
where
e = _Ime2W)Tam(=1) + T2 (=1 T (1)]
M [T~ T (1) = T ()T (-1
d _ [Trs2(Trr1 (1) + T2 (1) Tam1(1)]
M T (DT (—1) = T (DT ()]

Hence, {gm}m>0 is a sequence of orthogonal polynomials in L2(( 1), du(x)) equipped with inner product

1 1
(U V)om = /71 u(x)v(x)di(x), di(x) = @(x)dx = (1 — x)(x + 1)(1 — x*)"2dx.

It is well known [40] that
km(am-1)am—2(y) — au—2(x)gm-1(y)) x4y
knrillam—2 |13 5 (x = y)

“”f () am(y) _

KI\/I*Z(va) = 2
laml2,

m=0
where Ky_2(.,y) € Py_o and —kpi1 < O is the leading coefficient of xM* in (x +1)(1 — x)gu_1(x)

km(qM L) am—2(x) = qy,_o(x)qu— 1(X))

m(x)
Kp—2(x, x) = =
Z llamll3 5 ks llam—2|I3 5

We also have

Suppose that {ZJ}M ! denote the M — 1 simple zero points of quy—1 on (—1, 1), then we have

M-2
M2 guz)amlz) [ O , i#d
EICENEDY TamlZ. ) @l = iy @@
m=0 Amllo & i kvtillam—los =7

Copyright (© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-23
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Let {z}}Z, denote the M + 1 simple zero points of (x + 1)(1 — x)gum-1 on [—1, 1], it is shown in [40] that there exists a unique
set of quadrature weights {w;}!, such that we have

Y .
o
/ u(x)\/idx_ZwJu(zj) Yu € Poy—1,z = cosM,J:O,-n,IVI.
where -
=——,/=0,1 M
i oM J
where

Now, we will give the representation of numerical solution to semi-discrete problem (10) in the space Py.
Given u}y = I5;u° and find vl € Py (k=10,1,2,--- , N — 1), such that

Kasetnd () = e sm0Fuy () = Pi%ufy(z) + FFH(z) 1< i< M -1, (1)
uiti(z)=0,i=0M —1<k<N-1,
where
plak (z) = (K2,a,6t + AZda,l)URA(Zi)v _ k=0,
¢ s Ko.asetfy(20) + Xo 32001 (day — daji1)ujy” (20) + Aoda ki (2), k> 1,
and Iy, : Cla, b] — Py is the interpolation operator associated with {z,,w,}j/-‘io such that
(Iyu)(zi) =u(z), i=0,1,2,---, M.
An approximant u,’fﬂ to u* can be obtained by calculating a truncated series based on
. (x+ 1)1 = x)qu-1(x)
Py = span{$;(x),; =0,1,--- , M}, ¢j(x) = 7
! g ((x+ DT = x)gm-1(x)) |x=z(x — 2))
as
Uk (x) & ujg(x) = POV,
where
®(x) = (¢o(x), P1(x), -, dm(x)),
and
V= ovfviT
Also ddxmcb(x) can be expressed in the following matrix form
dm
Z5 () = ®()D", m> 1,
where ,
D= [D/j] = [¢j(zr)]r /,_j =0,1,---, M, D" :M
m
The entries of the first-order differentiation matrix D are determined by
((—a)(b=x)am-1(3)) | —HE =0
X—a)(b=X)dm-1(X)) Ix=z : ; /+
> i ) : gj (— 1) J . . ..
b — oo 10N gy a-z)" 7 = = #J4, 0<ij< M,
Y ((x=a)(b=x)am—1 ()" [x=z L co = 1Zij< M1,
2= (b—x)am 100 bz, 1= HD
- =2z 2M: +l' i :J — M,
where
[ 2 j=0M
TV 1L 1<j<M-1
Then, we approximate 87 uf, by
BT Uk (x) := d(x)DT{v}K, m>1.
Thus, we have:
M
Cuig(z) =Y (DM)yv i m>1, 1<i<M-1.
Jj=0
Math. Meth. Appl. Sci. 2009, 00 1-23 Copyright © 2009 John Wiley & Sons, Ltd.
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Therefore, it follows that

J

S0 [Krasedy = o 3m (D)) v = FFi(z), 1<i<M -1, (12)
O(20){v}H = O(zm){v} ! =0.

where

FF™(z) = Plufy(z) + FF™H(z), 1< i< M—1.

Let us denote

(A)jj = K1a5:0ij — ¢ 5:m(D?)yj, 1<i<M—1,0<j <M,
(A)oj =d0j, (A)mj=0mj, 0 <M,

(b} =0, F*" (1), F** N (22), -+ F M (zm-1).0)T,
{V}k+1 — (V5<+1, Vf+1, . V/l\<4+1)T’

then, the linear system (12) reduces to
AV}t = (b}*! k=0,1,--- ,N—2.

We define the corresponding discrete inner product as

M
(wn =D wu(z)v(z),

J=0

which induces the norm ||u||p = ({u, u)Mvm)% and satisfies

(u,vim = (U, V)ow, Yu,v:uv e Popy_q.

Consider the weight Sobolov space H"((—1, 1), du(x)) as

H((—1,1), du(x)) = {u € L2((=1,1), du(x)) : [lullrw = (3 10.tl13)? < oo},

Jj=0

Moreover, we set Ha((—1,1), du(x)) = {u € L3((=1,1), du(x)) : xu € L3((—1,1), du(x)), u(—1) = u(1) = 0}.
We also introduce the the bilinear form over H3((—1,1), du(x)) as

aw(u, v) = Bt w0k (vw))ow = /b Oxudx(vw)dx, Yu,v € Hé((—l, 1), du(x)).

Let us denote Xy = {vm|vm € Pu, vm(20) = vm(zm) = 0.}, we can reformulate the scheme (11) as the following:

S-A(L-1): Find the spectral approximation uf™ € Xy (k=0,1,2,---, N — 1), such that for all vy € Xp:
Kiase (Uit v + ¢ seman (U™ v = (PEuly, vy + (i FE v - (13)
2.1.3. Stability Analysis
Lemma 1 ([42])For any u € Py, we have
lullow < llullm < V2| ullow-
Lemma 2 ([42]) If u € Hy((—1,1), du(x)), then there holds
[lullo.w < clloxullow.
where ¢ is positive constant independent of u.
Lemma 3 ([42]) For any u € H3((—1,1), du(x)), we have
[aw(u, u)| < clloxullo.w,
1
aw(u, uy > ZHGXUH(Q),W
where ¢ is positive constant independent of u.
Copyright (© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-23
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Lemma 4 ([43]) (Discrete Gronwall inequality) Let {fi}2, and {gi}72, are nonnegative sequences and c is a nonnegative
constant. If

J=0
then
i<c J[ @+g)< ceXi0%, > 0.
0<j<i-1
Lemma b Let ukJrl €Xm, k=0,1,---, N —1 be the solution of scheme (13). Then the following inequality is holds

ek 10 + 10 13 < Caaeat (Il + 115 FFTTI3y ) eCamot(Caodan),

where Cy 45: and Co o 5¢ are positive constants.

Proof 1 Setting vy = uly?, we get
K1a5t<uk+l k+1>M 4 Co( 5t’Ylaw<Uk+1, k+l> _ <PlauM u[l\(/’-l-l)M + </,f/’/:k+1’ UI‘(A+1>M' (14)
where
k-1
(PEufy, Y v = Kaaot (Ukp ufd v + A2 D (daj — 1)U Y b Xoda k(U Ul Y
=1

Using the following inequality

1 o2
ab<ga +—b2 VO # 0,
we have
k—1
<7>;v°‘u;muk“m<ic2a5t(||uM||M+—H URD) + Xe S (day — dae) (1?13
Jj=1

’Cz ot
*||Uk+1||M)+>\2dak(HUMHM+*llukHllM)§>\1ﬁa,arllufﬂllfﬂ+ 20 g M I

k—1
A2y, k
X2 D (day — doysn)llup 170 + *(da 1= do )l IR+ Aadakllufglizy + T“HUKA“II%A- (15)
Jj=0

Noting Lemma 3 and using (14) and (15), we have

-1
C Y1 IC
k 0t k 2 k 112 2,00t |k 2
Kiastllug ™t + LHBXUMJAHOJUleﬁa.ét”ul\/lHM""TaH up i
k—1
+ AzZ(da,J—dajﬂ)uumfnw—(dm o i)l uf 17
J=0

A2da k
+ Nedallufylld, + %”U;\}HH%\A + (I P g,

Using Lemmas 1 and 2, it follows that

a, 5th1

Koo A2 >\2d K
(Kl,a,gt = SO = T2t — dak) = = ) g IR+~ 10k IR
k—1
< MBastllufgllf + Ao D (g — dayr) s 134 + Ao il 13
j=0
k—1 )
FUGFH U < V2MBastlufilif o + A2 D (day — daye)lluf 13
Jj=0
F Ao,k llufyll7s + TP Ul v < V2eMBastllOxufyl3
k—1
X2 D (daj = dajs) g 13+ NadaillufglFy + U P uf o m (16)
j=0
We know
1 3
</C Fk+1 uk+1 Iy < 7”“‘ /_—k+1”2 4+ = >\LB 5 +>\2 ”uk+1”2 ) 17
. MM S 300 1) | I g aBear 2l )
Math. Meth. Appl. Sci. 2009, 00 1-23 Copyright © 2009 John Wiley & Sons, Ltd.
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In view of (16) and (17), we have
C—1
Y26y, 5tH“k+1HM + = ||ax k+1||0w < V2eMBa 6t||a><ulw||ow

k4142
IR

1
+>‘Zz(dak i = daser D) 13 + Xoda s llufy I3, + m\\’m

Jj=1
k

)x [6} \fc : )
> 1o, 6t Z(dcx k—j — a,k7j+1)”6><ujM”g,w + >\2 Z(da,k—j - da,k7j+1)||ujM”%/7

1—daa = =
1
o i lufll3) + Il FE13,.
G HIEMEM T 3(X1Base + A2) ' M M
If
. -1 Cz;(liﬂl
Crase = min{Y2Cy 50 —,— 1
A1Bas V2c¢
C2,a,5t = max{>\2, 110(7;1}
i

we can get the following inequality

C 5 . .
Z 200 (e — o s ) ([l |3 + 118y 113,

k+1 k+1
llupy 13+ 18x iy ™ 113 C
i=1 1,a,0t

IN

L 15, F*L12,.
3C1.a5t(MBast + A2)

+ C;a 5t>\2da,k”ul(\)ﬂl|%ﬂ+
Noting Lemma 4, we have

ecl .0t

VSR, + 10l B < [ €L s hadl il iy 2y + 228 (0 0= )
—_ a, ’
M ¢ Lot MM 3C1 a6t (MBasst + )

Therefore

M1+ 10t 1B < Coange (Nl + 15 FH 45, ) eC2eorllancd,

C
} and Coaot = zoot

where C = max{C;
1l,a,6t = { C1 a0t

Aody

1
1 a,0t K1 3C1 a5t 1Bast TA2)

Theorem 4 Let uf;' € Xy, k=0,1,---, N — 1 be the solution of scheme (13). Then the scheme (13) is unconditionally stable
in the sense that for all §t > 0.

Proof 2 Let uk+1 €Xu, k=0,1,---,N —1 is the approximate solution of the scheme (13) with the initial condition .
Noting Lemma 8, we obtain
Huk+1 ~k+1||M + ||8Xuk+1 6X~k+1”0w < Cl aét”ul\/l _ UM||2 Co.0,5t(do,0— oy, k)

Therefore the following inequality is holds

llugy ™™ = T < Crasellugy — Gyl e 2ear(Gao=dan),
This completes the proof of Theorem 4.
2.1.4. Error Analysis
Lemma 6 ([44]) For any u € H'((—1,1), du(x)), the following estimate holds
_ 1
lu—Ifgullse < M ullrw, r> 5,0 <s<r, (18)

where ¢ is a positive constant.

Lemma 7 ([44]) Let My be the orthogonal projection operator defined by

My = L2((=1,1), du(x)) = P, (19)
(u=Tyu, V)ow =0, Vv € Pu. (20)
then the following estimate holds
lu = Mutllso < MF 7 |lullrw, r>0, 0<s<1, (21)
where c is a positive constant.
E Copyright (© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-23
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Lemma 8 ([44]) Let My be the orthogonal projection operator defined by

My = Ho((—1,1), du(x)) — Xu, (22)
aw(Myu—u,v) =0, Vv € Xy. (23)

then the following estimate holds
lu— Tl ullsew < M ullrw, r>1, 0<s<1, (24)

where c is a positive constant.

Lemma 9 ([44]) For any u € H"((—1,1), du(x)), r > %, the following estimate holds
KE(u), viowl = Ku, vim — {u, viowl < c{llu = Mu—rullow + llu = IyullowHIvliow, Vv € Py, (25)

where c is a positive constant.

Lemma 10 ForO<a<1,0< k<N -1, it holds

k-1
Kiastlef ™ vmim + o semavef vm) = Koase(ely vdm + X2 > (day — dajsr){efy”, vin)um
=1
+ Xoda el vimdm + (5T vidow. Vv € Xu. (26)
where
K41 _  k+1  (L0s k41
et =uftt =Ny
and
(T vidow = (0K vindow + (05 vivdow + (05T vindow,
in which

G5 vidow = 3 5e(Ula = M) A8 Y + X §ORUNTT + 7ol ), vin) o,
(5T vidow = = 5 (EBe MU 4 X §8F MU 4+ v PU ), vig)o,w,

G5 vdow = (E(FF™), vmdow + <f|f|f’,oluy VM) M.
M

k1 _ lta
and r”if“ =0(6t%).

Proof 3 We know a, (M3 U, vin) = aw (U™, vm), therefore we can write
Ca5eMau (MU v = —c 5 (B 4 Xo §OFUNTT + 7l TY), vi)ow + o 5o (FKTE vindow, (27)
Furthermore, we have

K1t (MU vy g — (PLATIEAUR, v i

= o (OB MU 4+ Xo G 8 M PUNTT 4+ oMU ), v — (r;fgu, v, (28)
M

where rg;&u = O(6t').
Now, from (27) and (28), it easily conclude that
K1a,st (MUY v + ¢ 5 aw (MUK v = (PEATPUY vy
~ e {OnBU !+ X §ORUMHT + U ), via)ow + (X vindow
a5 {uOeMPU T 4 80 §0F MU + oMU, v = (s vin)
= (PeMPUS v = e (aBU T 422 GORUH 4+ aU ) Vo w
0o b (B MU + X §0F MPUH + 2 MPU ), vin)o,w
— st {OB MU 4 2o §0F NP + MU ), vig)o.w
5 (MBeMPU T+ Xp §OF MU+ 2 NEU ), i)

Y vdow — (f;folu’ VM) M
M

Math. Meth. Appl. Sci. 2009, 00 1-23 Copyright © 2009 John Wiley & Sons, Ltd.
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and therefore
K1 a5 (MU vy + ¢ ,5t’Y1aw<|_|1 LU vy = (PLETUR v
— (g = MEYOuBU 4+ X2 FOFUNTY + 7l ), i) o

25t (EQuaeMPUA T 2§07 MUK 4+ N PU ), vi)o

+<Fk+1v V) 0w — <r|-|1 0y’ VM) M. (29)
Let eyt = uf* — Ny2UM. From (13) and (29), we obtain
Kiaselef ™ vimdm + ¢ 5t’Ylaw<eM i) = (PEefy vindm
+eq (g = MEDY MU + Xy §OURTE + pold* ), viy)o.w
;}St<E(>\latHh’0L{k+l + >\2 860‘ ﬂbouk_'—l + ’ank/'louk-*—l), VM>0,w
(30)

(E(FY), vmdow + (r n;rOu VMM,

and therefore we can write
= (P{%efy. vimdm + (65 vvdow.

Kiastlef ™ vmim + cq5emau (e, vi)
where
(6" vindow = (05 vidow + (B8 vinow + (051, vindow,
in which
G5 vmdow = € 5e((la = M BUTT + X5 §ORUNTT + Ut ), vi)ow,
<5l2<+1, Vl\/l>0,w _ a §t<E(>‘16fH1 Ouk+1 + X Caa I—Il Ouk+1 +7 [—ll Ouk+1) VM>
and

(G5 vidow = (E(FF™), vindow + r|1+°u VM) M-

It easily conclude that

k—1
Kiaot(er ™ vmim + c senavlef ovm) = Koasr(ely vdm + X2 D (daj — dajs1){€fy”, vin)
Jj=1

+ Xodasled vmdm + (6T vndow, Vv € X

This completes the proof of Lemma 10.

Theorem 5 £ 02U € L>((0, T]; H'((—1,1),du(x))), r>1, thenfor 0 < a <1,0< k < N — 1, it holds

—Q
2Bilét(dm,o*da,k)

t ~ ~
||U/@,+l||%4 < <5’11>\2(1 - a)ﬁ””%ﬂ”%ﬂ + DiausM™ + Dz,a,u5f2> e

where D1 qu.r and Do oy are positive constants.

Proof 4 We have
k—1 _
(PLoely, e < Koose (eIl + —|| K2 4 2a S (day — dags1) (el 13
j=1
ICQ A2,a,0t H k+1H2

k+1 2 k
*lle I+ Xodak (lupgllig + *lle w13 < MBasellen i

k—1
200,k
X2 Y (doj = dagrn)lle; HWr—(dal da ) lley I + Xado kel + e - (31)
J=0

Noting Lemmas 1, 3 and using (31), we have
k-1

le k+1HM+>\QZ(da,j aJ+1)HeMJHM

6t'71 k12 K2 2,06t
‘e, ll6xer; It < ABastllenslln + Ta\
Jj=0

/Claét”ekH“M +

)\Qd k
+ f(dal—dak)lle”lll + Nadokllef Il + = Nl IR+ 6 el ow.
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It follows that

Y1
( (xlﬁaaf+x2>+fyzcm) ekt + st "‘” el 12,
k—1
< MBasellely)+ 2o S (b — dassn)lle IRy + Nodailley I3, + (34 el Do, (32)
J=0

Using Lemmas 8 and 9, we obtain

(65 ey Mol Cogel (g = M) (B + 0 GOUE + 4 1)), e Mol

_ 1
D1,aubt*M™2" + 7 MBase + x2)llef I3, (33)

IA

|<5k+1 k+1

ey ow a5t|<E(>\16tﬂ1°uk“ Ao §8% MLOUKHL L0kt vy o |

< Doqult*M™ + = (>\15a 5t + >\2)||ek+1||M,

and
@5 e oal < HEF™), e Moul + [(rhie, . el
_ 1
S Dy rSt*M ™ 4D, o gy 8% + 2 (MBasst + x2)llef IR (34)
In view of (32), (33) and (34), we have
71 =
'72Hek+1HI\/I+ EHaXekJFIHM S Alca,étﬁa,ét”ell\(ﬂniﬂ+>\2Ca,5t Z(da,j aj+1)||eMj”M
j=0

+ XoCastdaklleflty + Draurs M~ + Doaudt®. (35)
If

By = min{72, %},

A
B2.a,5t = max{A2cq,st, M}
1—daa
Noting dax < (1 — a)k™, we can get the following inequality
Boas
lef 1R+ el 1 < 3 T2 (o = g )l + el l13)
Jj=1
—a
+B7 (1 - a)ﬁ““/wﬂ/w + Di1,apt,fM™" + Dy qudt>.
Noting Lemma 4, we have
lug M3 < a3+ 18xufy MG
1
A2(1 — o)t ~ A0~
< <1r(2_a)kuu;’4uﬁﬂ + Brag M + Doyt | e B (0 %), (36)
Corollary 1 /07U € L=((0, T]; H' ((—1,1), du(x))), r>1, then for 0 < a <1,0< k < N — 1, it holds
JUKTY — uf I3, < Drallefyllds + DoawsM ™2 + Daaudt?,
where 51,01, 5g,a,u_f and 53,0@{ are positive constants.
Proof 5 Using of triangle inequality and (36), we have
Huk+l _ u;\(4+1||%ﬂ < I|uk+1 _ ﬂ/l\’AOUk+1I|%/, 4 ||U;\(4+1 _ ﬂ/l\hOUk+1I|%ﬂ < Iluk+1 _ I—l}\,ﬂOUk#»l”%/’
BzBlét (da,()*doz,k). (37)

Br'xo(1—a)t,® _ - B
(MUOM%A + D1aufM™2 + Dagudt?® | e

Noting Lemmas 1 and 8 and using (37), we have

Ukt — UK/IHH%A < Dialleyllds + Daopr.s M2 + Do qudt?,

which completes the proof.
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2.2. Nonlinear FM/IT Model With C-FD

2.2.1. Semi-Discrete Scheme and Spectral Approximation In this subsection, we consider the nonlinear FM/IT model with
C-FD with the following conditions

U(x, t)|t=0 = h(x), x €Q,, (38)
and
U(X, t)|xean =0, t>0,. (39)

Using Taylor series expansion, we have

QUY) = QUO) + Ou(Us)B:U(x, tr)6t, k=0 (40)
QUK = 20Uk) — QK1) + O(6t2), k> 1.
Substituting (7), (8) and (40) into (2), we obtain
Alva,gtukﬂ(x) — c;ét')'@fukﬂ(x)
_ 1oty sk 20(UR) — QA + FFI(x), k>1, k+1
= PU (X)+{ QUO) + F(x), k=0, + Ry (%), (41)
where
Plogi(x) = { Az 5t (x) + Xo S/ (Ao = oy ) )UK (X) 4+ Ao kU(x), k> 1,
t (Az,a6t + A2da,1)UO(X), k=0,
FRHL = e 5, F(x tkg1), k=0,1,--+ N =2, U(x) = h(x),
and
re2-—
,Ba,ét = %: -Al,a,ét = Alﬁa,ét + >\2: A2,oz,6t = Xlﬁa,ét + >\2(1 - da,l)'

Furthermore the truncation error Rf,“(x) satisfy
k
IR (0] < ca max [0FU(x, DI3E .
Replacing U**1(x) by the approximate solution u**1(x), we can obtain the following semi-discrete problem for (2) and (38)-

(39), which is given by:
Scheme N-I: Given u° = h(x) and find v*™* (k=0,1,2,--- , N — 1), such that

k1 _ 1 a2 k+1 _ pla,k () +Fl.xeqQ, k=0,
Al sl cavét'yaxu =PMu" + { 20(uF) — QA1) + FK1 x €, k> 1, (42)
U yean =0, -1 < k<N -1, (43)
Now, we will give the representation of numerical solution to semi-discrete problem (42)-(43) in the space Xu.
S-A(N-1): Find the spectral approximation u’™" € Xy (k=0,1,2,---, N — 1), such that for all viy € Xp:
Al,a,ét(uvlv VMM + c;%t'yawu,‘\‘/,ﬂ, V)
_ pla, k (I5290uRp). v m + (15 FY v m, k=0,
= (PL vl o +{ (215, Q(uly) — 15,00l ). Vi + UG FH L v, k> L. (44)
2.2.2. Stability Analysis
Lemma 11 Let uf' € Xy, k=0,1,---, M — 1 be the solution of scheme (44). Then the following inequalities are hold
lupglig + 18xupl1f .0 < CraselllinFH I,
and
e 130 + 10l B < Cose (1613 + 175 I, ) eCamstdao=dass),
where Ci o5t, Coa5t and Czq5: are positive constants.
Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-23
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Proof 6 Setting vy = uly?, we get

Araor (U™ uf ™ m + o sevaw(ug ™ ug™)

_ loa, k  k+1 </C (U/\/]) u/\/]>M+<IC Flu /\//>Mr k=0,
- <Pt Upps Upy > { <2/ Q(UM) — ¢ Q(ul,\(d 1) Uk+1>M + <Ic I:k+1 ;\(/7+1>M' k> 1. (45)
We know
(AMBast + A2
(Az,a5t + A2do1)(Uy updm < MaBast + X2)lufyllZy + %)llukﬂllﬁm (46)
and
Ao k-1
2,
('P,_{’auk k+1>M < >\1Ba,5tHull\(AH%A = t” k-*—1||l\/l+>\222(dou ozj+1)||uMJHM
Jj=0
>\2 )\zd
22 (dat — gl IR+ Ao kUl + S Ry, k> 1. (47)
Using Lemmas 1, 2 and 3 and applying Egs. (45), (46) and (47), we obtain
3(A1Ba,st + A2) 5 il
+HUMHM Catt 18xupgllf . < A1Bast + X2)llufylly
H{I Q). up)m + (15 F* ,uMm < V2a(MBast + X2)l18xuy 3
H{I5 Q). ui)m + (5 FY uidm < V2e(MaBase + X2)[18x iy 13
(A1Bast + A2) 2
(G P2 + NG OE3,) + 2 T 220 ud|12,, k =0, 48
(Alﬁa,5t+>\z)(H mF g+ 1 Cup) ) 5 [l (48)
We know that there exists a positive constants ¢ such that |Q(U)| < c|U|. Then, we conclude that
-1
(MBast + A2) Ca.5tY 12 12
=2 " |u + =2 ||6xu < — IS, F
S22 by LU NS oo et LA [
2
) o2 /5 012
2c1(\ X2)|@ . k=0,
+(>\15a,6t+>\2)”uM”M+ c1(A1Ba.st + A2)10xtpg 15,
If
- ABast T A2) CasY
Cuase = min 21028 22) sy
c2 /3
C — ,V2a (A A2)}
20,6t = max{(>‘lﬁa.6t+>\2) c1(MBast + A2)}
we can get the following inequality
1 Coa,t
lupllag + 18xupgllf e < W15 FH IR+ === lu i + llexugll
MM UMlow = S B+ ) M M T (upallg s Upll5 w)-
Now, noting Lemma 4, we obtain
Nupallin + 118xtpgllp.e < CraselllfnF I3
2,06t
where C S— N —
1'0‘"& T CrastMBasttA2)
For k > 1, it can also be shown
3(A1Ba.s5t + A2) 6’Y
= R et o w3, < MaBasellulyll
+X2 Z(da,j Ao 1)U 713 + Aol il Ufg 13y + (215 QCuky) — 15 QCuf ™). uff o
k-1
+<“@le+1 u;\(A+1>M < fxlﬁa 6t||uI\/IHOm +>\2 Z(daj C!j+l)||qu||M
Jj=0
Ao ok llufg g + (215 Quf) = 15wy ™). ug ™ Y + (T FR uf
k-1
< V2a M BastlOctfgld o + A2 D (day — dar) gy 135 + Ao il Uyl
Jj=0
1 (MBast + A2)
+ Ich+12+2/cQuk _ICQU + .
Oy (P 1215 Q) = 1 @l IR + 22522 1
K
< V2eM1Ba st 0y lI5 0 + A2 D (dok—s — davkmjr )1ty [174 + Aol il Uy 1134
j=1
1 (AMBast +A2) | ki1p2
(I F* M I+ 263 lugg I3y + Sllugy ) + ~————=llug 13-
ey (P I+ 2Ny + B 1) + 2222
Math. Meth. Appl. Sci. 2009, 00 1-23 Copyright © 2009 John Wiley & Sons, Ltd.
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and therefore

(A1Ba,st + A2)
4

1 2c2
< (X 2 )) e, da, u)
- ( 2 (AM1Bast + A2) ((1 — da,1) * (dal - da2) Z( et = el

fc 1B ;
Yol Z(dak = dak—jr)1Bxihy 113

I

k (51’ k
lluyy Iy + =7~ RN M 15w

Fade illuylliy + WA F - (49)

(MBa,st + A2)
If

(MBast + A2) C;,%n}

Crast = min{

4 "4

2¢2 c? V212180 5t
C = max{| A2 + ( 2 2 )) 20,
a0t {< 2 (>\15a,5t + >\2) (1 - da,l) (doz,l - doz,Z) 1—das }

we can get the following inequality
C2 5 . .
lupy™ 13 + 0™ 50 < Z G (ks = dasemge) Ul + 181 13.)
Jj=1
1
+ 1a5t>\2dak||uMHM+ ||I;\:4Fk+1||%4

1,a,5t(>\16a.6t + >\2)

Noting Lemma 4, we have

H k+1” 4 ||axuk+1H0w < C2a 5t <||UM|| + ”/,(\SAFIHJH%A) ecs‘a,ét(dao*da,k)’

_ -1 1 _ s
where Caa5t = Max{Cy , 5, A20a k. 7C1,a,m(%1ﬁam+kz)} and C3 o5t = T;ai‘

Theorem 6 Let uf™ € Xy, k=0,1,---, M — 1 be the solution of scheme (44). Then the scheme (44) is unconditionally stable
in the sense that for all t > 0.

Proof 7 The proof is similar to proof of Theorem 4.

3. FM/IT Model With C-F-FD

3.1. Linear FM/IT Model with C-F-FD

3.1.1. Discretization of Caputo-Fabrizio Derivative and Semi-Discrete Scheme In this subsection, we deal with the FM/IT
model with C-F-FD. For (3), the initial condition:

Ux, B)]e=0 = h(x), x €Q, (50)
and the Dirichlet boundary conditions:
Z/{(X, t)|X€aQ:O, t>0, (51)

is considered.
For discretization of time variable, let tx := kdt, k=0,1,---, N be an equidistant partition of [0, T], where 0t = % We
analogize the time-fractional derivative term by using the finite difference scheme:

CF eyt (x) = { Cast[DERL UF () = UK(X)) + 3214 Dgfjl(uJ’(x) — W), /; i (1J + (), (52)

Ca,5¢Dg 1 (UM (x) —U°(x)).

where Caor = (adt) ™" and DL = exp(— 2L (k+1—))) —exp(— 2L (k—j+2), (=1,2,--- . k+1).

Theorem 7 ([45]) For any 0 < o < 1, the coefficients ongfjl, Jj=1,2,---,k+ 1 satisfies the following properties

o DL >0,V <k+1,
. Dk+1 <Dk+1 V< K

ki _ 1 k+l 2
® Di1 =Dy Dy =D;,

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-23
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. (D DS Sexp(£2);

k+1 k+1 k+1 __ k+1 2
J: (Daj+1 - Da'j ) + Dal - D Da,l'

Theorem 8 ([45]) For any 0 < o < 1, it holds

i 6 Z/l(x s)

k
I’u+1(X) =

s=; eXP(— & (tk+1 — 5))ds,

2a
n, k“(x)| < 7e><p(17) nzax |82U(x, t)|6t?, —1<k<N-—1, ¥x€Q,
a t€(0,T]

where §; € (tj—1, tj) and c is independent of 0t.

Substituting (52) and (8) into (3), we obtain

By g ot TH(x) — T 50U (x) = PIMOUR(x) + FFH () + RETH(X), x €Q (53)
where
Pllayk(e) = { v DL UC), . k=0,
Ba st (x) + Ao Y17 H(DEEL, — DEEOU () + M DEN U (x), k> 1,
FKHl = 5, f(x tip1), k=01, N =2, U(x) = h(x),
and

Biast = Ao+ AoDh g + 72507,(1&' Baast = Ao+ Ao(DL 1 — D2 1).

Furthermore, we have )
RETGOI < — ep(7=2) max [9U(x I8, ~1<k<N-1 ¥xeQ
a 1 — o’ te(0,7]

Replacing U**1(x) by the approximate solution u*™(x), we can obtain the following semi-discrete problem for (3) and (50)-

(51), which is given by:

Scheme L-II: Given u° = h(x) and find u**! (k=0,1,2,--- , N — 1), such that:
Bl,a,étuk+1(x) - E;yét'YlagukJrl(X) = 7Dt”'O(Uk(X) + Fk“(x),x €q, (54)
Ui =0, -1 < k<N -1,

3.1.2. Spectral Approximation to Semi-Discrete Problem (54) Now, we will give the representation of numerical solution to
semi- discrete problem (54) in the space P.
Given uyy = I5;u° and find uf;t € Py (k=10,1,2,---, N — 1), such that:

BiastufH(z) — € 6t7162uk+1(z) Plouk (z) + FF (), 1< i< M -1, (55)
upf(z)=0,i=0M —1<k<N-1,
where
’P”'O‘uk (Z) _ ()\10( + >\2D<§,1)URA(Z’) k = s
£ooMAE By o sty (21) + X Zk I(Déﬁl Dk“)uj (z) + XDET0(z),  k>1,
We can reformulate the scheme (55) as the following:
S-A(L-11): Find the spectral approximation uj; ! € X (k=0,1,2,---, N — 2), such that for all viy € Xu:
Brast (Ul vdm + Sy 5emaw (g™ v = (P ugy v + (15 F v . (56)

Similar to the previous section, the approximate solution uf, can be obtained by calculating a truncated series based on

Py = span{¢;(x),j =0,1,---, M} as the following

Uk (x) = uff/,(x) = d(x){v}.

Therefore, we get

> [Bl.a,5r5u - Egét’Yl(Dz)u] Vit =kl (z), 1<i<M -1, (57)
P(z0){v} Tt = d(zy){v} =o0.
where
F (@) = Piufy(z) + FFN (), 1< i< M -1,
Math. Meth. Appl. Sci. 2009, 00 1-23 Copyright © 2009 John Wiley & Sons, Ltd.
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Let us denote
(B)jj = Brastdij — Ty 5m(D?)jj, 1<i<M—1,0<j <M,
(B)oj = b0, (B)mj=0m;, 0 <M,

(S =0, F N (20), F Y (2), - F ¥ (2me1),0)T
{V}k+1 (Vk+1 1k+1' e vl;\<ﬂ+1)T'

then, the linear system (57) reduces to

B{v}**! = {c}**, k=0,1,--- N—2.

Theorem 9 Let uf™ € Xy, k=0,1,---, M — 1 be the solution of scheme (56). Then the scheme (56) is unconditionally stable
in the sense that for all §t > 0.

Proof 8 We know |[uf™|low < c||0xufy  low. Set

=1
oc,éthI
4

Ala\ﬁc
(D1 — Dan)

I3

Cra5t = Min{728, 5,

2

Co,05t = max{Xz,
therefore similar to the proof of Lemma 11, we can get the following inequality

k
Coa,6t
Nul 12, + lloxul 2, < Z—Claat(vgﬁl DED 1y 13 + 10wty |13.0)
s

1
15 FE13,.,

+ XCih s DEttlu +
2 1t s i 3C1ast(Mia 4+ XD ;)

Noting Lemma 4, we have

t(pl,-DEM)
lug i + l0xuy M 3w < (IluMIIMJrII/MFk“II%A) Cmf o (58)

k+1 1 _ Gt
where Cy a5t = ma><{>\2C1 wstPat s —361“&“1&“2%1)} and Coq 5t = e

Using (58), the following inequality is holds

o ~ k+1
luft = T3, < Nl = T3, + 1Beuls ™ — 0l I3y < Cuaatlluly — G3yl13 e 0t Pai—Par),

This completes the proof of Theorem 9.

3.2. Nonlinear FM/IT Model with C-F-FD

3.2.1. Semi-Discrete Scheme and Spectral Approximation In this subsection, we consider the nonlinear FM/IT model with
C-F-FD with the following conditions

U(x, t)]t=0 = h(x), x € Q, (59)
and
U(x, t)|xean =0, t >0, (60)

where (x, t) € Q x (0, T] in which © = (-1, 1).
Substituting (8), (40) and (52) into (4), we obtain

Stast THx)  — 50U (x)
_ pllagk QUP) + F1(x), k=0, 1
- 771: u (X) + { 2Q(uk) _ Q(uk—l) + ,:k+1(x)' k 2 1’ +R1,{ (X)r (61)
where
Pty () = | (St + 22D UK. k=0,
t T S2astt(x) + 2o XS (DEL = DEFOUI(x) + 0DETUO(x), k> 1,
FRHl =& 5, f(x tkp1), k=0,1,- N =2, U(x) = h(x),
Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-23

Prepared using mmaauth.cls



Mathematical
Methods in the
Mojtaba Fardi Applied Sciences

|
and

Stast =AM+ XDl Soast = Aa+ (DL —D321).

Furthermore the truncation error Rlﬁ“(x) satisfy

20

IREF (%)) < £ exp( ) max |82U(x, t)[6t?, —1< k< N—1, Vx €.
a te(0,T]

l—«

Replacing U***(x) by the approximate solution u*™(x), we can obtain the following semi-discrete problem for (4) and (59)-
(60), which is given by:
Scheme N-II: Given u° = h(x) and find u**! (k=0,1,2,---, N — 1), such that

kil =1 a2, ktloy _ plla, k Q(u°) + F1(x), k=0,
Stastt " (x) Cavéf’yaxu (x) =P u (x) + { ZQ(uk) _ Q(uk—l) + Fk“(x), k> 1, (62)
uHieon =0, -1 < k<N -1, (63)
Now, we will give the representation of numerical solution to semi-discrete problem (62)-(63) in the space Xy.
S-A(N-II): Find the spectral approximation uf;* € Xy (k =0,1,2,---, N — 1), such that for all viy € Xu:
Stast{ufst vimm + E;V}St'yau,(uk/,‘*'l, Vi)
_ il k Q). vmym + I FY v k=0,
= (P vaadw { (2Q(uy) — Quly ™). viahwa + U5 F< v, k> L. (84)
Similar to Theorem 6, we have the following theorem:
Theorem 10 Let ul' € Xy, k=0,1,---, N — 1 be the solution of scheme (64). Then the scheme (64) is unconditionally

stable in the sense that for all 6t > 0.

4. Ilustrative Test Problems and Discussion

We have studied some numerical examples to test the performance of the proposed methods. We illustrate the accuracy and
stability of the proposed methods by performing S-A(L-1), S-A(L-11), S-A(N-1) and S-A(N-II) for different values of M and N.
1. (Error measurement criterion) As the exact solution is known, the maximum absolute error e¥" and the root mean square

error eMN are measured with the following formulas:

M,N __ N N
e = max, U™ (zi) — up(z)1,

and

M

1
el J T 2 (@) - (@),

i=0

As the exact solution is unknown, the maximum absolute error EM'V and the root mean square error EX:N are measured with

the following formulas:
EMN = max |ulN(z) — ?N(z
WY = max [u(z) — i} (2),

and

M
1 N/2
e J T 2 (@) — uly@P,

i=0
2. (Convergence ratio) As the exact solution is known, the convergence ratio is given by
eM.N/2:|

Ratio; = log, %
€00

As the exact solution is unknown, the convergence ratio is given by

EMN/2
Ratios = log, %
DIV

Math. Meth. Appl. Sci. 2009, 00 1-23 Copyright © 2009 John Wiley & Sons, Ltd.
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o N 40 80 160 320
0.2 eV N 2.8854e-3 1.4547e-3 7.3821e-4 3.7989%¢-4
eM N 1.2761e-3 6.3907e-4 3.2019e-4 1.6101e-4

Ratio; - 0.9880 0.9786 0.9584
0.5 eMN 3.0444e-3 1.5119e-3 7.5821e-4 3.8662e-4
eMN 1.3485e-3 6.6533e-4 3.2951e-4 1.6422e-4

Ratio; - 1.0098 0.9957 0.9717
0.9 eMN 4.5480e-3 2.2382¢-3 1.1056e-3 5.5148e-4
eMN 2.0218e-3 9.9060e-4 4.8502¢-4 2.3790e-4

Ratio; - 1.0229 1.0175 1.0034

Table 1. S-A(L-1): The maximum absolute error €™ and the root mean

square error e} for different values of a with M = 13 (Example 1-Case ).

Example 1 /n this example, we deal with the following time-fractional mobile/immobile transport equation:

oV(x, t)

A
T

+ 22 §8%V(x, t) = 1182V(x, t) — 120xV(x, t) + g(x, 1), (65)

where (x, t) € (—1,1) x (0, 1].
We introduce the following transformation:

Vix, t) = eDOu(x, 1), fr(x) = % (66)
1

Using the transformation (66), the equation (65) becomes

OU(x, t)
ot

A1 + A2 §O%U(x, t) = y182U(x, t) — kyld(x, t) + F(x, t), (67)

N

i
"

where ky = 2 and f(x, t) = g(x, t)e ),

Case I: We consider (65) with the following terms

Parameters: M1 =1, =1,7m=17=1,

Force term: f(x,t) = (3t2 + 4t3w?) sin(2mwx) + 237w cos(2mx) +
Initial condition: V(x,0) =0,

Dirichlet boundary conditions: V(—1,t) =V(1,t) =0.

6132 sin(27x)
r4—a)

Then the exact solution V is given by V(x, t) = t>sin(27x).

Using the transformation V(x, t) = e2U(x, t), we have Kk, = :, f(x,t) = e 3g(x, t).

In Table 1, we present the maximum absolute error €V, the root mean square error eM:Y and the convergence ratio in the
computed solutions of S-A(L-1) for Example 1-Case | with o = 0.2,0.5,0.9. From the obtained data in Table 1, we can observe
that the convergence ratios in temporal direction are close to theoretical convergence order (TCO) i.e. TCO = 1 as we expected
from Corollary 1. To check the spatial accuracy, we present the maximum absolute error eV and the root mean square error

eMN for a = 0.2,0.9 with respect to the polynomial degree M for N = 160 in Figures ?? (al-a2).

Case II: As another example, we consider (65) with the following terms

Parameters: M1 =1, =1,7v1=1,7=1,

Source term: f(x,t) = 6t2(x?> — 1) — 2t3 + 2¢3x,

Initial condition: V(x,0) =0,

Dirichlet boundary conditions: V(—1,t) =V(1,t)=0.

The exact solution V is unknown.

Using the transformation V(x, t) = e2U(x, t), we have Kk, = 3 f(x,t) = e 3g(x, t).

Experimental Results of S-A(L-1): Table 2 presents the experimental results of S-A(L-l) in temporal direction based on
Chebyshev polynomials for Example 1-Case Il with o = 0.1, 0.3. From the obtained results given in Table 2, we observe that,
the numerical results agree precisely with the theoretical rate of convergence of Corollary 1. Also, the detailed observation of
changes of logyo[eM™N] and logyo[eM:¥] against N for o = 0.6,0.9 are plotted in Figures ?? (a3-a4).

Copyright © 2009 John Wiley & Sons, Ltd.
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Figure 1. S-A(L-1): The changes of eV and e} against M for o = 0.2,0.9 with N = 160 (Example 1-Case I).
a=0.1 a=0.3
N EVN EM.Y Ratio> EVN EM.Y Ratio>
20 | 2.3309e-2 1.9121e-2 - 3.3069e-2 1.8981le-2 -
40 | 1.6993e-2 9.7546e-3 0.9710 1.6605e-2 9.5308e-3 1.0416
80 | 8.5781e-3 4.9442e-3  0.9862 8.2903e-3 4.7584e-3 0.9544
160 | 4.3083e-3 2.4731e-3 0.9935 4.1324e-3  2.3719e-3 1.0044
Table 2. S-A(L-1): The maximum absolute error E" and the root mean
square error EMY for different values of a with M = 15 (Example 1-Case II).
------ log(MA-Err) log(RMS-Err) ----+- log(MA-Err) log(RMS-Err)
1.4 1
1.6+
2 . _ s
g’l‘ 2.2+ g _2]
% 2.4 ?
= =
S 56 S 5]
2.84
-3.2 T T T T T T T T ’
20 40 60 80 100 120 140 160 20 40 60 80 100 120 140 160
N N
(a3) a=0.6 (a4) a=0.9

Figure 2. S-A(L-1): The changes of log;o(e¥N) and log;o(eMN) against N for different values of a with M = 15 (Example 1-Case I1).

Example 2 Consider (2) on (—1,1) x (0, 1] with the following terms

Parameters: \1 =1, =1,v=1,

Nonlinear term : Q(U) = U3,

Source term: f(x,t) = (e *(3t%sin(wx) — t3sin(mwx) + 2t3 cos(mwx)m + t3 sin(wx)mw?
+t% 2 sin(mx) — t%e =2 sin(mwx) cos?(mwx)) + %),

Initial condition: U(x,0) =0,

Dirichlet boundary conditions : U(—1,t) =U(1,t) =0.

The exact solution of Example 2 is given by U(x, t) = t3e™ sin(mx).
Experimental Results of S-A(N-I): Table 3 presents the experimental results of S-A(N-1) in temporal direction based on
Chebyshev polynomials for Example 2 with o« = 0.2,0.4,0.7.

Example 3 Consider (3) on (—1,1) x (0, 1] with the following terms

Parameters: M1 =1, X =1,y =17=1,

Source term: f(x,t) = 3elsin(2mx) — e=tia sin(27x) + 4et sin(2mwx) w2,
Initial condition: U(x,0) = sin(2mx),

Dirichlet boundary conditions: U(—1,t) =U(1,t) =0.

Math. Meth. Appl. Sci. 2009, 00 1-23 Copyright © 2009 John Wiley & Sons, Ltd.
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o N 80 160 320
0.2 eV 5.8856e-3 2.5207e-3 1.1484e-3
eM N 2.7491e-3 1.1990e-3 5.5324e-4

Ratio; - 1.2234 1.1342
0.4 eMN 5.9068e-3 2.5320e-3 1.1531e-3
eM N 2.7565e-3 1.2032e-3 5.5480e-3

Ratio; - 1.2221 1.1348
0.7 eMN 6.4313e-3 2.7753e-3 1.2613e-3
eM N 3.0081e-3 1.3200e-3 6.0670e-4

Ratio; - 1.2125 1.1377

Table 3. S-A(N-I): The maximum absolute error €™ and the root mean

square error e} for different values of a with M = 16 (Example 2).

a=0.2 a=04
N eMN e Ratio; eV eM N Ratio;
10 3.3029e-3 2.0883e-3 - 4.7579e-3  3.0082e-3 -
20 1.6915e-3 1.0694e-3 0.9654 2.5442e-3  1.6086e-3  0.9031
40 | 8.5607e-4 5.4126e-4 0.9825 1.3160e-3  8.3204e-4 0.9511
80 4.3066e-4 2.7229e-4 0.9912 6.6929e-4 4.2317e-4 0.9755
160 | 2.1598e-4 1.3656e-4 0.9956 3.375e-4 2.1340e-4 0.9877
320 | 1.0816e-4 6.8385e-5 0.9977 1.6947e-4 1.0715e-4 0.9939
a=0.7 a=0.8
N eMnN eMn Ratio; eMN e Ratio;
10 | 2.5040e-2 1.5831e-2 - 6.2126e-2  3.9280e-2 -
20 1.5109e-2 9.5528e-3  0.7288 4.0299e-2 2.5479e-2 0.6244
40 8.2872e-3 5.2396e-3 0.8664 2.2915e-2 1.4488e-2 0.8144
80 | 4.3385e-3 2.7431e-3  0.9337 1.2213e-2  7.7215e-3  0.9079
160 | 2.2195e-3 1.4033e-3 0.9670 6.3035e-3  3.9855e-3  0.9542
320 | 1.1225e-3 7.0973e-3 0.9835 3.2021e-3  2.0246e-3 0.9771

Table 4. S-A(L-11): The maximum absolute error €™ and the root mean
square error eM: for different values of o with M = 17 (Example 3).

The exact solution of Example 3 is given by U(x, t) = e' sin(2mx).

Experimental Results of S-A(L-1l): Table 4 presents the experimental results of S-A(L-1l) in temporal direction based on
Chebyshev polynomials for Example 3 with o = 0.2,0.4,0.7,0.8. From the obtained results given in Table 4, we observe that,
the numerical results agree precisely with the theoretical rate of convergence. More detailed observation of changes of log; [eo"ﬁ'N ]
and logyo[eM:N] against N fora = 0.1,0.15, 0.6, 0.81 are plotted in Figures ?? (cl-c4). To check the spatial accuracy, we present
the maximum absolute error €X' and the root mean square error eM:Y fora = 0.1,0.15, 0.6, 0.81 with respect to the polynomial

degree M for N = 160 in Figures 77 (c5-c8).

Example 4 Consider (3) on (—1,1) x (0, 1] with the following terms

Parameters: A1 =1, =1v9=1,
Nonlinear term : Q(U) = —sin(U),
at
Source term: f(x,t) = 2elsin(mx) — e=T+alha sin(rx) + el sin(mwx)m? + sin(e! sin(mx)),
Initial condition: U(x,0) = sin(mx),
Dirichlet boundary conditions: U(—1,t) =U(1,t) =0.

The exact solution of Example 4 is given by U(x, t) = e' sin(mx).
Experimental Results of S-A(N-I1): Table 5 presents the experimental results of S-A(N-I1) in temporal direction based on
Chebyshev polynomials for Example 4 with o = 0.1, 0.15, 0.6.

Copyright © 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1-23
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Figure 3. S-A(L-11): The changes of log;o(e/"N) and log;o(eMN) against N for different values of o with M = 17 (Example 3).
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Figure 4. S-A(L-11): The changes of eM" and eMN against M for o = 0.1,0.15,0.6,0.81 with N = 320 (Example 3).
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a N 80 160 320

0.1 eV 1.4117e-3 7.2585e-3 3.6786e-3
eM N 8.6583e-3 4.4498e-3 2.2547e-4

Ratio; - 0.9597 0.9805
0.15 eMN 1.4445e-3 7.4247e-4 3.7635e-4
eM N 8.8597e-4 4.5517e-4 2.3067e-4

Ratio; - 0.9602 0.9803
0.6 eMn 6.8372e-3 3.4971e-3 1.7683e-3
eM N 4.1907e-3 2.1433e-3 1.0837e-3

Ratio; . 0.9672 0.9838

Table 5. S-A(N-II): The maximum absolute error €X' and the root mean
square error e} for different values of a with M = 16 (Example 4).

5. Conclusion

In this paper, a spectral method is developed to solve FM/IT model with C-FD and C-F-FD. Furthermore, the unconditional
stability and convergence of the numerical method are discussed, which provides the theoretical basis of the proposed method.
The proposed method is computationally capable due to its simple implementation but with reasonable accuracy. It can be easily
viewed from obtained numerical solutions and error norms that this is an excellent method to achieve a numerical solution of
the time-fractional Mobile/Immobile transport model.
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