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This paper discusses a spectral collocation method for numerically solving linear and nonlinear fractal Mobile/Immobile

transport model with Caputo and Caputo-Fabrizio fractional derivatives. In the time direction, a finite difference scheme

is used to approximate the differential term. Also, for space discretization, we apply the Chebyshev-spectral method. The

unconditional stability and convergence of the proposed method are investigated, which provides the theoretical basis of

the proposed method for solving the considered equation. Finally, some numerical experiments are considered to examine

the efficiency and applicability of it in the sense of accuracy and convergence ratio. Copyright c© 2009 John Wiley & Sons,

Ltd.
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1. Introduction

Fractional calculus investigates integrals and derivatives of non-integer order and is a classical mathematical field as old
as calculus itself [1]. Earlier, fractional calculus was considered as pure mathematics, but now the situation has changed
dramatically and fractional calculus become an attractive and important topic among engineers and applied scientists. It
is a useful tool for the description of memory and heredity effects [2]. In recent years, the application of fractional-order
derivatives has become popular due to its non-locality property, which is an essential property of many complex systems.
Various applications have been used in the modeling of different phenomena such as viscoelasticity, nanotechnology, financial
modeling, random walk, anomalous transport, control theory of dynamical systems, and biological modeling. This calculus
involves different definitions of the fractional operators as well as the Riemann- Liouville fractional derivative (R-L-FD),
Caputo fractional derivative (C-FD), Riesz fractional derivative (R-FD), Grunwald-Letnikov fractional derivative (G-R-FD),
Atangana-Beleanu derivative (A-BD) [3, 4]. Recently, the authors of [5] presented a new definition for a fractional derivative
without a singular kernel, which is named as Caputo-Fabrizio fractional derivative (C-F-FD). Indeed, the fractional models
with a singular kernel can not describe as the fluctuations of different scales and material heterogeneities. But, models with
C-F-FD can describe them. More fully-described work on physical and engineering processes with utilization of fractional order
derivatives can be found in [6, 7, 8, 9, 10, 11]. Many phenomena in physics, chemistry, finance, fluid mechanics, and other
sciences can be described successfully by fractional models using the fractional calculus [12, 13]. Doungmo Goufo and et al. [4]
presented comparative analysis between differential fractional operators for solving the nonlinear Kaup-Kupershmidt equation,
so that operators include the A-BD and C-F-FD which respectively follow the Mittag-Leffler law and the exponential law. In
[14], the authors proposed an analytical method to solve systems of the nonlinear fractional differential equations. El-Ajou and
et al. in [15] solved the time-fractional nonlinear dispersive partial differential equations in the sense of conformable fractional
derivative consisting the time-fractional nonlinear dispersive Boussinesq, time-fractional nonlinear dispersive Klein-Gordon and
time-fractional nonlinear dispersive B(2, 1, 1) partial differential equations. Kumar and et al. in [16] presented a comparative
study of the modified analytical methods based on of residual power series and auxiliary parameters approaches to solve the
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time-fractional Newell-Whitehead-Segel equations. Nonlinear dynamic and solution of a heat flux model presented by a partial
differential equation were analyzed in [17]. Atangana and Baleanu [18] proposed a new fractional derivative with non-local and
non-singular kernel for solving fractional heat in material with different scales and also those with heterogeneous media. Tateishi
and et al. [19] solved the fractional diffusion equation without external forces and subjected to the free diffusion boundary
conditions. In [20] the authors proposed fractal-fractional integrals and derivatives which predict the chaotic behavior of some
attractors from applied mathematics. The concept of fractional integrals and derivatives based on of the exponential and
Mittag-Leffler laws, are presented in [21, 22]. Furthermore fundamental differences among the exponential decay, power law,
Mittag-Leffler law and their possible applications in natural phenomena are discussed. Although many important works have
been presented on the theoretical analysis of fractional equations, the obtained solutions for most of them are not explicit.
Therefore, many scholars have proposed several numerical investigations based on stability and convergence analysis [23, 24].
A variety of numerical methods have been proposed for fractional differential equations [25, 26, 27].
The spectral methods were initially proposed for computations in fluid dynamics and were promoted generally by meteorologists
to investigate global weather modeling, and by fluid dynamicists to study isotropic turbulence. The spectral method also can
present an approximation to the solution of a differential equation using a truncated series of smooth basis functions. The critical
elements of the spectral methods are the basis functions and the test functions. The basis functions are used to approximate
the solution to a finite series of smooth basis functions. One of the aspects which individuates spectral methods compared to
finite element method is the choice of basis functions. These functions for spectral methods are infinitely differentiable global
functions, while basis functions for finite element method are only local. The widely-used basis functions include Fourier series,
Chebychev polynomials and Legendre polynomials. Fourier series are often used in the approximation of periodic functions,
while Chebychev polynomials and Legendre polynomials are used for non-periodic functions to avoid the Gibbs phenomenon.
The outstanding advantage of the spectral methods is that when the solution is smooth enough, the expansion coefficients
decay faster than any polynomial order. Then, only a few terms are enough to reach the acceptable accuracy, which Would
be preferable to studying problems with smooth enough solutions. Recently, spectral methods have been a well-known class of
approximation methods for the solution of partial differential equations [28]. The aim of [29] is a spectrally formulated finite
element approach for solving elastic waves in carbon nanotubes (CNT), where the frequency content of the new signal is at
terahertz level. Authors of [30] proposed a Lagrange-Galerkin spectral element method for obtaining the approximate solution
for the two-dimensional shallow water equations. Authors of [31] have presented a spectral element method on the basis of
Gauss-Lobatto-Legendre quadrature formulas, and finite difference Newmark’s explicit time advancing schemes for solving
acoustic wave equation. A numerical spectral method for the time-fractional subdiffusion equation with second-order accuracy
is presented in [32]. The aim of [33, 34] is to propose the spectral methods for the pricing of European options.
A fractal mobile/immobile transport for solute transport assumes power-law waiting times in the immobile zone, leading to a
time-fractional derivative in the mobile/immobile transport model. The FM/IT model describes a extensive family of problems,
including heat diffusion and ocean acoustic propagation in critical physical phenomena that behave essentially like heat diffusing
through a solid [35]. To approximate the FM/IT model, significant progress has been made. In this paper, we present a spectral
method to compute the approximate solution for FM/IT model with C-FD and C-F-FD [36, 37, 38, 39]:
FM/IT model with C-FD:
Case I: Linear FM/IT model with C-FD:

λ1
∂U(x, t)

∂t
+ λ2

C
0 ∂

α
t U(x, t) = γ1∂

2
xU(x, t)− γ2U(x, t) + f (x, t), (1)

Case II: Nonlinear FM/IT model with C-FD:

λ1
∂U(x, t)

∂t
+ λ2

C
0 ∂

α
t U(x, t) = γ∂2

xU(x, t) +Q(U) + f (x, t), (2)

where (x, t) ∈ Ω× (0, T ], Ω = (−1, 1), U = U(x, t) is a sufficiently differentiable function in Ω× [0, T ] and the term Q(U)

satisfies the following conditions:

• There exists a positive constant c such that |Q(U)| ≤ c |U|,

• There exists a positive constant c such that |QU(U)| ≤ c.

Also and the time-fractional derivative C
0 ∂

α
t U(x, t) is the C-FD defined by

C
0 ∂

α
t U(x, t) := (0I

1−α
t

∂U
∂t

)(x, t), 0 < α < 1,

in which 0It being the Riemann-Liouville fractional integral (0I
α
t U)(x, t) =

∫ t
0
U(x, s)να(t − s)ds with να(t) := tα−1

Γ(α)
.

FM/IT model with C-F-FD:
Case I: Linear FM/IT model with C-F-FD:

λ1
∂U(x, t)

∂t
+ λ2

CF
0 ∂αt U(x, t) = γ1∂

2
xU(x, t)− γ2U(x, t) + f (x, t), (3)

Case II: Nonlinear FM/IT model with C-F-FD:

λ1
∂U(x, t)

∂t
+ λ2

CF
0 ∂αt U(x, t) = γ∂2

xU(x, t) +Q(U) + f (x, t), (4)
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where the time-fractional derivative CF
0 ∂αt U(x, t) is the C-F-FD defined by

CF
0 ∂αt U(x, t) :=

∫ t

0

∂U(x, s)

∂s
ϑα(t − s)ds, 0 < α < 1,

in which ϑα(t) :=
exp(− α

1−α (t))
1−α .

The rest of this paper is organized as follows. In Sections 2 and 3, we present computational approaches to construct a

numerical solution for fractal Mobile/Immobile transport model with C-FD and C-F-FD. We prove the convergence and the

stability of the method in this section. Some test problems are presented, and the results are shown in Section 4, and we discuss

the numerical performance of our method. Finally, in Section 5, some concluding remarks are presented.

2. FM/IT Model With C-FD

2.1. Linear FM/IT Model With C-FD

2.1.1. Discretization of Caputo Derivative and Semi-Discrete Scheme In this subsection, we deal with the linear FM/IT model
with C-FD. For (1), the initial condition:

U(x, t)|t=0 = h(x), x ∈ Ω, (5)

and the Dirichlet boundary conditions:

U(x, t)|x∈∂Ω = 0, t > 0, (6)

is considered.
For discretization of time variable, let tk := kδt, k = 0, 1, ..., N be an equidistant partition of [0, T ], where δt = T

N
. We analogize

the time-fractional derivative term by using the finite difference scheme:

C
0 ∂

α
t Uk+1(x) =

{
cα,δt [(Uk+1(x)− Uk(x)) +

∑k
j=1 dα,j (Uk+1−j (x)− Uk−j (x))], k ≥ 1

cα,δt(U1(x)− U0(x)), k = 0,
+ rk+1

1,U (x), (7)

where cα,δt = δt−α

Γ(2−α)
and dα,j = (j + 1)1−α − j1−α, (j = 1, 2, · · · , k).

Theorem 1 ([41]) For any 0 < α < 1, the coefficients of dα,j , j = 1, 2, · · · satisfies the following properties

• dα,0 = 1, dα,j , j = 0, 1, 2, · · · ;
• dα,k → 0 as k →∞;
• dα,j > dα,j+1, j = 0, 1, 2, · · · ;
• d−1

α,k ≤
(k+1)α

1−α ;

•
∑k−1

j=0 (dα,j+1 − dα,j ) + dα,k = dα,0;

•
∑k

j=0 dα,jδt
α ≤ (k + 1)αδtα.

Theorem 2 ([41]) For any 0 < α < 1, it holds

|rk+1
1,U (x)| ≤

c

Γ(2− α)
max
t∈(0,T ]

|∂2
t U(x, t)|δt2−α, − 1 ≤ k ≤ N − 1, ∀x ∈ Ω,

where c is independent of δt.

Also, the first order temporal derivative can be approximated as follows

∂Uk+1(x)

∂t
=
Uk+1(x)− Uk(x)

δt
+ rk+1

2,U (x), (8)

where the truncation error r k+1
2,U (x) satisfy |r k+1

2,U (x)| ≤ c maxt∈(0,T ] |∂2
t U(x, t)|δt, in which c is independent δt.

Substituting (7) and (8) into (1), we obtain

K1,α,δtUk+1(x)− c−1
α,δtγ1∂

2
xUk+1(x) = P I,αt U

k(x) + F k+1(x) +Rk+1
U (x), x ∈ Ω, (9)

where

P I,αt U
k(x) =

{
(K2,α,δt + λ2dα,1)U0(x), k = 0,

K2,α,δtUk(x) + λ2
∑k−1

j=1 (dα,j − dα,j+1)Uk−j (x) + λ2dα,kU0(x), k ≥ 1,

F k+1 = c−1
α,δt f (x, tk+1), k = 0, 1, · · · , N − 2, U0(x) = h(x),
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and

βα,δt =
Γ(2− α)

δt1−α , K1,α,δt = λ1βα,δt + λ2 + γ2c
−1
α,δt , K2,α,δt = λ1βα,δt + λ2(1− dα,1).

Furthermore the truncation error Rk+1
U (x) satisfy

|Rk+1
U (x)| ≤ |Rk+1

1,U (x)|+ |Rk+1
2,U (x)| ≤ cα max

t∈(0,T ]
|∂2
t U(x, t)|δt1+α,

in which Rk+1
1,U (x) = Γ(2− α)δtαrk+1

1,U (x) and Rk+1
2,U (x) = Γ(2− α)δtαrk+1

2,U (x).

Replacing Uk+1(x) by the approximate solution uk+1(x), we can obtain the following semi-discrete problem for (1) and (5)-(6),
which is given by:
Scheme L-I: Given u0 = h(x) and find uk+1 (k = 0, 1, 2, · · · , N − 2), such that{

K1,α,δtu
k+1(x)− c−1

α,δtγ1∂
2
x u

k+1(x) = P I,αt uk(x) + F k+1(x), x ∈ Ω,

uk+1|x∈∂Ω = 0,−1 ≤ k ≤ N − 1,
(10)

2.1.2. Spectral Approximation to Semi-Discrete Problem (10) Consider the Hilbert space of µ-measurable L2((−1, 1), dµ(x)),

where dµ(x) = w(x)dx = (1− x2)−
1
2 dx . The Hilbert space L2((−1, 1), dµ(x)) equipped with inner product

〈u, v〉0,ω =

∫ 1

−1
u(x)v(x)(1− x2)−

1
2 d(x).

Theorem 3 ([40]) Let PM denote the set of polynomials of degree≤ M. If BM be a sequence of orthogonal polynomials on
(−1, 1) of degree ≤ M, i.e.,

BM = {u ∈ PM |〈u, v〉0,ω = 0, ∀v ∈ PM−1},

then there exists a reproducing kernel KM : (−1, 1)× (−1, 1)→ R such that

u(x) = 〈u,KM(x, .)〉0,ω, ∀u ∈ PM ,∀x ∈ (−1, 1),

0 = 〈(x + 1)u,KM(−1, .)〉0,ω = 〈(1− x)u,KM(1, .)〉0,ω, ∀u ∈ PM−1.

Let {TM}M≥0 be the Chebyshev polynomials in L2((−1, 1), dµ(x)) with degree(PM) = M, we consider

qM(x) =
TM+2(x) + cMTM+1(x) + dMTM(x)

(1− x)(x + 1)
∈ PM ,

where

cM = −
[TM+2(1)TM(−1) + TM+2(−1)TM(1)]

[TM(−1)TM+1(1)− TM(1)TM+1(−1)]
,

dM = −
[TM+2(TM+1(−1) + TM+2(−1)TM+1(1)]

[TM(1)TM+1(−1)− TM(−1)TM+1(1)]
.

Hence, {qM}M≥0 is a sequence of orthogonal polynomials in L2((−1, 1), dµ̃(x)) equipped with inner product

〈u, v〉2,ω̃ =

∫ 1

−1
u(x)v(x)dµ̃(x), dµ̃(x) = ω̃(x)dx = (1− x)(x + 1)(1− x2)−

1
2 dx.

It is well known [40] that

KM−2(x, y) =

M−2∑
m=0

qm(x)qm(y)

‖qm‖2
2,ω̃

=
kM(qM−1(x)qM−2(y)− qM−2(x)qM−1(y))

kM+1‖qM−2‖2
0,ω̃

(x − y)
, x 6= y,

where KM−2(., y) ∈ PM−2 and −kM+1 < 0 is the leading coefficient of xM+1 in (x + 1)(1− x)qM−1(x).
We also have

KM−2(x, x) =

M−2∑
m=0

q2
m(x)

‖qm‖2
0,ω̃

=
kM(q

′
M−1(x)qM−2(x)− q′M−2(x)qM−1(x))

kM+1‖qM−2‖2
0,ω̃

.

Suppose that {zj}M−1
j=1 denote the M − 1 simple zero points of qM−1 on (−1, 1), then we have

KM−2(zi , zj ) =

M−2∑
m=0

qm(zi )qm(zj )

‖qm‖2
0,ω̃

=

 0, i 6= j

ω̃−1
i =

kMq
′
M−1

(zi )qM−2(zi )

kM+1‖qM−2‖0,ω̃
, i = j.

4 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–23

Prepared using mmaauth.cls



Mojtaba Fardi

Mathematical
Methods in the
Applied Sciences

Let {zj}Mj=0 denote the M + 1 simple zero points of (x + 1)(1− x)qM−1 on [−1, 1], it is shown in [40] that there exists a unique

set of quadrature weights {ωj}Mj=0 such that we have

∫ 1

−1
u(x)

1
√

1− x2
dx =

M∑
j=0

ωju(zj ), ∀u ∈ P2M−1, zj = − cos
πj

M
, j = 0, · · · ,M.

where
ωj =

π

σjM
, j = 0, 1, · · · ,M,

where

σj =

{
2, j = 0,M,

1, 1 ≤ j ≤ M − 1,

Now, we will give the representation of numerical solution to semi-discrete problem (10) in the space PM .
Given u0

M = IcMu
0 and find uk+1

M ∈ PM (k = 0, 1, 2, · · · , N − 1), such that{
K1,α,δtu

k+1
M (zi )− c−1

α,δtγ1∂
2
x u

k+1
M (zi ) = P I,αt ukM(zi ) + F k+1(zi ), 1 ≤ i ≤ M − 1,

uk+1
M (zi ) = 0, i = 0,M, − 1 ≤ k ≤ N − 1,

(11)

where

P I,αt ukM(zi ) =

{
(K2,α,δt + λ2dα,1)u0

M(zi ), k = 0,

K2,α,δtu
k
M(zi ) + λ2

∑k−1
j=1 (dα,j − dα,j+1)uk−jM (zi ) + λ2dα,ku

0
M(zi ), k ≥ 1,

and IcM : C[a, b]→ PN is the interpolation operator associated with {zi , ωi}Mj=0 such that

(IcMu)(zi ) = u(zi ), i = 0, 1, 2, · · · ,M.

An approximant ukM to uk can be obtained by calculating a truncated series based on

PM = span{φj (x), j = 0, 1, · · · ,M}, φj (x) =
(x + 1)(1− x)qM−1(x)

((x + 1)(1− x)qM−1(x))
′ |x=zj (x − zj )

as

uk(x) ≈ ukM(x) := Φ(x){v}k ,

where
Φ(x) = (φ0(x), φ1(x), · · · , φM(x)),

and
{v}k = (vk0 , v

k
1 , · · · , vkM)T .

Also dm

dxm
Φ(x) can be expressed in the following matrix form

dm

dxm
Φ(x) = Φ(x)Dm, m ≥ 1,

where
D = [Di j ] = [φ

′
j (zi )], i , j = 0, 1, · · · ,M, Dm = DD · · ·D︸ ︷︷ ︸

m

.

The entries of the first-order differentiation matrix D are determined by

Di j =


((x−a)(b−x)qM−1(x))

′ |x=zi

((x−a)(b−x)qM−1(x))
′ |x=zj

(zi−zj )
, i 6= j,

((x−a)(b−x)qM−1(x))
′′ |x=zi

2((x−a)(b−x)qM−1(x))
′′ |x=zi

, i = j.

=


− 2M2+1

6
, i = j = 0,

σi
σj

(−1)i+j

zi−zj
, i 6= j, 0 ≤ i , j ≤ M,

− zi
2(1−z2

k
)
, i = j, 1 ≤ i , j ≤ M − 1,

2M2+1
6

, i = j = M,

where

σj =

{
2, j = 0,M,

1, 1 ≤ j ≤ M − 1.

Then, we approximate ∂mx u
k
M by

∂mx u
k
M(x) := Φ(x)Dm{v}k , m ≥ 1.

Thus, we have:

∂mx u
k
M(zi) =

M∑
j=0

(Dm)i jv
k
j , m ≥ 1, 1 ≤ i ≤ M − 1.

Math. Meth. Appl. Sci. 2009, 00 1–23 Copyright c© 2009 John Wiley & Sons, Ltd. 5
Prepared using mmaauth.cls



Mathematical
Methods in the
Applied Sciences Mojtaba Fardi

Therefore, it follows that { ∑M
j=0

[
K1,α,δtδi j − c−1

α,δtγ1(D2)i j

]
vk+1
j = zk+1(zi ), 1 ≤ i ≤ M − 1,

Φ(z0){v}k+1 = Φ(zM){v}k+1 = 0.
(12)

where

zk+1(zi ) = P I,αt ukM(zi ) + F k+1(zi ), 1 ≤ i ≤ M − 1.

Let us denote

(A)i j = K1,α,δtδi j − c−1
α,δtγ1(D2)i j , 1 ≤ i ≤ M − 1, 0 ≤ j ≤ M,

(A)0j = δ0j , (A)Mj = δMj , 0 ≤ j ≤ M,
{b}k+1 = (0,zk+1(z1),zk+1(z2), · · · ,zk+1(zM−1), 0)T ,

{v}k+1 = (vk+1
0 , vk+1

1 , · · · , vk+1
M )T ,

then, the linear system (12) reduces to

A{v}k+1 = {b}k+1, k = 0, 1, · · · , N − 2.

We define the corresponding discrete inner product as

〈u, v〉M =

M∑
j=0

ωju(zj )v(zj ),

which induces the norm ‖u‖M = (〈u, u〉M,ω)
1
2 and satisfies

〈u, v〉M = 〈u, v〉0,ω, ∀u, v : u.v ∈ P2M−1.

Consider the weight Sobolov space Hr ((−1, 1), dµ(x)) as

Hr ((−1, 1), dµ(x)) = {u ∈ L2((−1, 1), dµ(x)) : ‖u‖r,ω = (

r∑
j=0

‖∂xu‖2
0,ω)

1
2 <∞},

Moreover, we set H1
0((−1, 1), dµ(x)) = {u ∈ L2((−1, 1), dµ(x)) : ∂xu ∈ L2((−1, 1), dµ(x)), u(−1) = u(1) = 0}.

We also introduce the the bilinear form over H1
0((−1, 1), dµ(x)) as

aω〈u, v〉 = 〈∂xu, ω−1∂x (vω)〉0,ω =

∫ b

a
∂xu∂x (vω)dx, ∀u, v ∈ H1

0((−1, 1), dµ(x)).

Let us denote XM = {vM |vM ∈ PM , vM(z0) = vM(zM) = 0.}, we can reformulate the scheme (11) as the following:
S-A(L-I): Find the spectral approximation uk+1

M ∈ XM (k = 0, 1, 2, · · · , N − 1), such that for all vM ∈ XM :

K1,α,δt〈uk+1
M , vM〉M + c−1

α,δtγ1aω〈uk+1
M , vM〉 = 〈P I,αt ukM , vM〉M + 〈IcMF

k+1, vM〉M . (13)

2.1.3. Stability Analysis

Lemma 1 ([42])For any u ∈ PM , we have

‖u‖0,ω ≤ ‖u‖M ≤
√

2‖u‖0,ω.

Lemma 2 ([42]) If u ∈ H1
0((−1, 1), dµ(x)), then there holds

‖u‖0,ω ≤ c‖∂xu‖0,ω,

where c is positive constant independent of u.

Lemma 3 ([42]) For any u ∈ H1
0((−1, 1), dµ(x)), we have

|aω〈u, u〉| ≤ c‖∂xu‖0,ω,

aω〈u, u〉 ≥
1

4
‖∂xu‖2

0,ω,

where c is positive constant independent of u.
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Lemma 4 ([43]) (Discrete Gronwall inequality) Let {fi}∞i=1 and {gi}∞i=1 are nonnegative sequences and c is a nonnegative

constant. If

fi ≤ c +

i−1∑
j=0

gj fj , i ≥ 0,

then

fi ≤ c
∏

0≤j≤i−1

(1 + gj) ≤ ce
∑i−1
j=0

gj , i ≥ 0.

Lemma 5 Let uk+1
M ∈ XM , k = 0, 1, · · · , N − 1 be the solution of scheme (13). Then the following inequality is holds

‖uk+1
M ‖2

M + ‖∂xuk+1
M ‖2

0,ω ≤ C1,α,δt

(
‖u0
M‖

2
M + ‖IcMF

k+1‖2
M

)
eC2,α,δt (dα,0−dα,k ),

where C1,α,δt and C2,α,δt are positive constants.

Proof 1 Setting vM = uk+1
M , we get

K1,α,δt〈uk+1
M , uk+1

M 〉M + c−1
α,δtγ1aω〈uk+1

M , uk+1
M 〉 = 〈P I,αt ukM , u

k+1
M 〉M + 〈IcMF

k+1, uk+1
M 〉M , (14)

where

〈P I,αt ukM , u
k+1
M 〉M = K2,α,δt〈ukM , u

k+1
M 〉M + λ2

k−1∑
j=1

(dα,j − dα,j+1)〈uk−jM , uk+1
M 〉M + λ2dα,k 〈u0

M , u
k+1
M 〉M .

Using the following inequality

ab ≤
1

2Θ2
a2 +

Θ2

2
b2, ∀Θ 6= 0,

we have

〈P I,αt ukM , u
k+1
M 〉M ≤ K2,α,δt(‖ukM‖

2
M +

1

4
‖uk+1
M ‖2

M) + λ2

k−1∑
j=1

(dα,j − dα,j+1)(‖uk−jM ‖
2
M

+
1

4
‖uk+1
M ‖2

M) + λ2dα,k(‖u0
M‖

2
M +

1

4
‖uk+1
M ‖2

M) ≤ λ1βα,δt‖ukM‖
2
M +

K2,α,δt

4
‖uk+1
M ‖2

M

+λ2

k−1∑
j=0

(dα,j − dα,j+1)‖uk−jM ‖
2
M +

λ2

4
(dα,1 − dα,k)‖uk+1

M ‖2
M + λ2dα,k‖u0

M‖
2
M +

λ2dα,k

4
‖uk+1
M ‖2

M . (15)

Noting Lemma 3 and using (14) and (15), we have

K1,α,δt‖uk+1
M ‖2

M +
c−1
α,δtγ1

4
‖∂xuk+1

M ‖2
0,ω ≤ λ1βα,δt‖ukM‖

2
M +

K2,α,δt

4
‖uk+1
M ‖2

M

+ λ2

k−1∑
j=0

(dα,j − dα,j+1)‖uk−jM ‖
2
M +

λ2

4
(dα,1 − dα,k)‖uk+1

M ‖2
M

+ λ2dα,k‖u0
M‖

2
M +

λ2dα,k

4
‖uk+1
M ‖2

M + 〈IcMF
k+1, uk+1

M 〉M ,

Using Lemmas 1 and 2, it follows that(
K1,α,δt −

K2,α,δt

4
−
λ2

4
(dα,1 − dα,k)−

λ2dα,k

4

)
‖uk+1
M ‖2

M +
c−1
α,δtγ1

4
‖∂xuk+1

M ‖2
0,ω

≤ λ1βα,δt‖ukM‖
2
M + λ2

k−1∑
j=0

(dα,j − dα,j+1)‖uk−jM ‖
2
M + λ2dα,k‖u0

M‖
2
M

+〈IcMF
k+1, uk+1

M 〉M ≤
√

2λ1βα,δt‖ukM‖
2
0,ω + λ2

k−1∑
j=0

(dα,j − dα,j+1)‖uk−jM ‖
2
M

+λ2dα,k‖u0
M‖

2
M + 〈IcMF

k+1, uk+1
M 〉M ≤

√
2cλ1βα,δt‖∂xukM‖

2
0,ω

+λ2

k−1∑
j=0

(dα,j − dα,j+1)‖uk−jM ‖
2
M + λ2dα,k‖u0

M‖
2
M + 〈IcMF

k+1, uk+1
M 〉M (16)

We know

〈IcMF
k+1, uk+1

M 〉M ≤
1

3(λ1βα,δt + λ2)
‖IcMF

k+1‖2
M +

3

4
(λ1βα,δt + λ2)‖uk+1

M ‖2
M . (17)
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In view of (16) and (17), we have

γ2c
−1
α,δt‖u

k+1
M ‖2

M +
c−1
α,δtγ1

4
‖∂xuk+1

M ‖2
0,ω ≤

√
2cλ1βα,δt‖∂xukM‖

2
0,ω

+λ2

k∑
j=1

(dα,k−j − dα,k−j+1)‖ujM‖
2
M + λ2dα,k‖u0

M‖
2
M +

1

3(λ1βα,δt + λ2)
‖IcMF

k+1‖2
M

≤
λ1βα,δt

√
2c

1− dα,1

k∑
j=1

(dα,k−j − dα,k−j+1)‖∂xujM‖
2
0,ω + λ2

k∑
j=1

(dα,k−j − dα,k−j+1)‖ujM‖
2
M

+λ2dα,k‖u0
M‖

2
M +

1

3(λ1βα,δt + λ2)
‖IcMF

k+1‖2
M .

If

C1,α,δt = min{γ2c
−1
α,δt ,

c−1
α,δtγ1

4
},

C2,α,δt = max{λ2,
λ1βα,δt

√
2c

1− dα,1
},

we can get the following inequality

‖uk+1
M ‖2

M + ‖∂xuk+1
M ‖2

0,ω ≤
k∑
j=1

C2,α,δt

C1,α,δt
(dα,k−j − dα,k−j+1)(‖ujM‖

2
M + ‖∂xujM‖

2
0,ω)

+ C−1
1,α,δtλ2dα,k‖u0

M‖
2
M +

1

3C1,α,δt(λ1βα,δt + λ2)
‖IcMF

k+1‖2
M .

Noting Lemma 4, we have

‖uk+1
M ‖2

M + ‖∂xuk+1
M ‖2

0,ω ≤

(
C−1

1,α,δtλ2dα,k‖u0
M‖

2
M +

‖IcMF
k+1‖2

M

3C1,α,δt(λ1βα,δt + λ2)

)
e

C2,α,δt
C1,α,δt

(dα,0−dα,k )
,

Therefore

‖uk+1
M ‖2

M + ‖∂xuk+1
M ‖2

0,ω ≤ C1,α,δt

(
‖u0
M‖

2
M + ‖IcMF

k+1‖2
M

)
eC2,α,δt (dα,0−dα,k ),

where C1,α,δt = max{C−1
1,α,δtλ2dα,k ,

1
3C1,α,δt (λ1βα,δt+λ2)

} and C2,α,δt =
C2,α,δt

C1,α,δt
.

Theorem 4 Let uk+1
M ∈ XM , k = 0, 1, · · · , N − 1 be the solution of scheme (13). Then the scheme (13) is unconditionally stable

in the sense that for all δt > 0.

Proof 2 Let ũk+1
M ∈ XM , k = 0, 1, · · · , N − 1 is the approximate solution of the scheme (13) with the initial condition ũ0

M .
Noting Lemma 8, we obtain

‖uk+1
M − ũk+1

M ‖2
M + ‖∂xuk+1

M − ∂x ũk+1
M ‖2

0,ω ≤ C1,α,δt‖u0
M − ũ

0
M‖

2
Me

C2,α,δt (dα,0−dα,k ).

Therefore the following inequality is holds

‖uk+1
M − ũk+1

M ‖2
M ≤ C1,α,δt‖u0

M − ũ
0
M‖

2
Me

C2,α,δt (dα,0−dα,k ).

This completes the proof of Theorem 4.

2.1.4. Error Analysis

Lemma 6 ([44]) For any u ∈ Hr ((−1, 1), dµ(x)), the following estimate holds

‖u − IcMu‖s,ω ≤ cM2s−r‖u‖r,ω, r >
1

2
, 0 ≤ s ≤ r, (18)

where c is a positive constant.

Lemma 7 ([44]) Let ΠM be the orthogonal projection operator defined by

ΠM := L2((−1, 1), dµ(x))→ PM , (19)

〈u − ΠMu, v〉0,ω = 0, ∀v ∈ PM . (20)

then the following estimate holds

‖u − ΠMu‖s,ω ≤ cM
3s
2 −r‖u‖r,ω, r ≥ 0, 0 ≤ s ≤ 1, (21)

where c is a positive constant.

8 Copyright c© 2009 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2009, 00 1–23
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Lemma 8 ([44]) Let Π1,0
M be the orthogonal projection operator defined by

Π1,0
M := H1

0((−1, 1), dµ(x))→ XM , (22)

aω〈Π1,0
M u − u, v〉 = 0, ∀v ∈ XM . (23)

then the following estimate holds

‖u − Π1,0
M u‖s,ω ≤ cM

s−r‖u‖r,ω, r ≥ 1, 0 ≤ s ≤ 1, (24)

where c is a positive constant.

Lemma 9 ([44]) For any u ∈ Hr ((−1, 1), dµ(x)), r > 1
2

, the following estimate holds

|〈E(u), v〉0,ω| = |〈u, v〉M − 〈u, v〉0,ω| ≤ c{‖u − ΠM−1u‖0,ω + ‖u − IcMu‖0,ω}‖v‖0,ω, ∀v ∈ PM , (25)

where c is a positive constant.

Lemma 10 For 0 < α < 1, 0 ≤ k ≤ N − 1, it holds

K1,α,δt〈ek+1
M , vM〉M + c−1

α,δtγ1aω〈ek+1
M , vM〉 = K2,α,δt〈ekM , vM〉M + λ2

k−1∑
j=1

(dα,j − dα,j+1)〈ek−jM , vM〉M

+ λ2dα,k 〈e0
M , vM〉M + 〈δk+1, vM〉0,ω, ∀vM ∈ XM . (26)

where
ek+1
M = uk+1

M − Π1,0
M U

k+1,

and
〈δk+1, vM〉0,ω = 〈δk+1

1 , vM〉0,ω + 〈δk+1
2 , vM〉0,ω + 〈δk+1

3 , vM〉0,ω,

in which

〈δk+1
1 , vM〉0,ω = c−1

α,δt〈(Id − Π1,0
M )(λ1∂tUk+1 + λ2

C
0 ∂

α
t Uk+1 + γ2Uk+1), vM〉0,ω,

〈δk+1
2 , vM〉0,ω = −c−1

α,δt〈E(λ1∂tΠ
1,0
M U

k+1 + λ2
C
0 ∂

α
t Π1,0

M U
k+1 + γ2Π1,0

M U
k+1), vM〉0,ω,

〈δk+1
3 , vM〉0,ω = 〈E(F k+1), vM〉0,ω + 〈rk+1

Π1,0
M
U
, vM〉M ,

and r k+1

Π1,0
M
U

= O(δt1+α).

Proof 3 We know aω〈Π1,0
M U

k+1, vM〉 = aω〈Uk+1, vM〉, therefore we can write

c−1
α,δtγ1aω〈Π1,0

M U
k+1, vM〉 = −c−1

α,δt〈(λ1∂tUk+1 + λ2
C
0 ∂

α
t Uk+1 + γ2Uk+1), vM〉0,ω + c−1

α,δt〈f
k+1, vM〉0,ω, (27)

Furthermore, we have

K1,α,δt〈Π1,0
M U

k+1, vM〉M − 〈P I,αt Π1,0
M U

k , vM〉M
= c−1

α,δt〈(λ1∂tΠ
1,0
M U

k+1 + λ2
C
0 ∂

α
t Π1,0

M U
k+1 + γ2Π1,0

M U
k+1), vM〉M − 〈rk+1

Π1,0
M
U
, vM〉M , (28)

where r k+1

Π1,0
M
U

= O(δt1+α).

Now, from (27) and (28), it easily conclude that

K1,α,δt〈Π1,0
M U

k+1, vM〉M + c−1
α,δtγ1aω〈Π1,0

M U
k+1, vM〉 = 〈P I,αt Π1,0

M U
k , vM〉M

−c−1
α,δt〈(λ1∂tUk+1 + λ2

C
0 ∂

α
t Uk+1 + γ2Uk+1), vM〉0,ω + 〈F k+1, vM〉0,ω

+c−1
α,δt〈(λ1∂tΠ

1,0
M U

k+1 + λ2
C
0 ∂

α
t Π1,0

M U
k+1 + γ2Π1,0

M U
k+1), vM〉M − 〈rk+1

Π1,0
M
U
, vM〉M

= 〈P I,αt Π1,0
M U

k , vM〉M − c−1
α,δt〈(λ1∂tUk+1 + λ2

C
0 ∂

α
t Uk+1 + γ2Uk+1), vM〉0,ω

+c−1
α,δt〈(λ1∂tΠ

1,0
M U

k+1 + λ2
C
0 ∂

α
t Π1,0

M U
k+1 + γ2Π1,0

M U
k+1), vM〉0,ω

−c−1
α,δt〈(λ1∂tΠ

1,0
M U

k+1 + λ2
C
0 ∂

α
t Π1,0

M U
k+1 + γ2Π1,0

M U
k+1), vM〉0,ω

+c−1
α,δt〈(λ1∂tΠ

1,0
M U

k+1 + λ2
C
0 ∂

α
t Π1,0

M U
k+1 + γ2Π1,0

M U
k+1), vM〉M

+〈F k+1, vM〉0,ω − 〈rk+1

Π1,0
M
U
, vM〉M
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and therefore

K1,α,δt〈Π1,0
M U

k+1, vM〉M + c−1
α,δtγ1aω〈Π1,0

M U
k+1, vM〉 = 〈P I,αt Π1,0

M U
k , vM〉M

−c−1
α,δt〈(Id − Π1,0

M )(λ1∂tUk+1 + λ2
C
0 ∂

α
t Uk+1 + γ2Uk+1), vM〉0,ω

+c−1
α,δt〈E(λ1∂tΠ

1,0
M U

k+1 + λ2
C
0 ∂

α
t Π1,0

M U
k+1 + γ2Π1,0

M U
k+1), vM〉0,ω

+〈F k+1, vM〉0,ω − 〈rk+1

Π1,0
M
U
, vM〉M , (29)

Let ek+1
M = uk+1

M − Π1,0
M U

k+1. From (13) and (29), we obtain

K1,α,δt〈ek+1
M , vM〉M + c−1

α,δtγ1aω〈ek+1
M , vM〉 = 〈P I,αt ekM , vM〉M

+c−1
α,δt〈(Id − Π1,0

M )(λ1∂tUk+1 + λ2
C
0 ∂

α
t Uk+1 + γ2Uk+1), vM〉0,ω

−c−1
α,δt〈E(λ1∂tΠ

1,0
M U

k+1 + λ2
C
0 ∂

α
t Π1,0

M U
k+1 + γ2Π1,0

M U
k+1), vM〉0,ω

〈E(F k+1), vM〉0,ω + 〈rk+1

Π1,0
M
U
, vM〉M , (30)

and therefore we can write

K1,α,δt〈ek+1
M , vM〉M + c−1

α,δtγ1aω〈ek+1
M , vM〉 = 〈P I,αt ekM , vM〉M + 〈δk+1, vM〉0,ω,

where
〈δk+1, vM〉0,ω = 〈δk+1

1 , vM〉0,ω + 〈δk+1
2 , vM〉0,ω + 〈δk+1

3 , vM〉0,ω,

in which

〈δk+1
1 , vM〉0,ω = c−1

α,δt〈(Id − Π1,0
M )(λ1∂tUk+1 + λ2

C
0 ∂

α
t Uk+1 + γ2Uk+1), vM〉0,ω,

〈δk+1
2 , vM〉0,ω = −c−1

α,δt〈E(λ1∂tΠ
1,0
M U

k+1 + λ2
C
0 ∂

α
t Π1,0

M U
k+1 + γ2Π1,0

M U
k+1), vM〉0,ω.

and

〈δk+1
3 , vM〉0,ω = 〈E(F k+1), vM〉0,ω + 〈rk+1

Π1,0
M
U
, vM〉M .

It easily conclude that

K1,α,δt〈ek+1
M , vM〉M + c−1

α,δtγ1aω〈ek+1
M , vM〉 = K2,α,δt〈ekM , vM〉M + λ2

k−1∑
j=1

(dα,j − dα,j+1)〈ek−jM , vM〉M

+ λ2dα,k 〈e0
M , vM〉M + 〈δk+1, vM〉0,ω, ∀vM ∈ XM .

This completes the proof of Lemma 10.

Theorem 5 If ∂2
t U ∈ L∞((0, T ];Hr ((−1, 1), dµ(x))), r ≥ 1, then for 0 < α < 1, 0 ≤ k ≤ N − 1, it holds

‖uk+1
M ‖2

M ≤

(
B−1

1 λ2(1− α)
t−αk

Γ(2− α)
‖u0
M‖

2
M + D̃1,α,U ,fM

−2r + D̃2,α,Uδt
2

)
e
B2,α,δt
B1

(dα,0−dα,k )
,

where D̃1,α,U ,f and D̃2,α,U are positive constants.

Proof 4 We have

〈P I,αt ekM , e
k+1
M 〉M ≤ K2,α,δt(‖ekM‖

2
M +

1

4
‖ek+1
M ‖2

M) + λ2

k−1∑
j=1

(dα,j − dα,j+1)(‖ek−jM ‖2
M

+
1

4
‖ek+1
M ‖2

M) + λ2dα,k(‖u0
M‖

2
M +

1

4
‖ek+1
M ‖2

M) ≤ λ1βα,δt‖ekM‖
2
M +

K2,α,δt

4
‖ek+1
M ‖2

M

+λ2

k−1∑
j=0

(dα,j − dα,j+1)‖ek−jM ‖2
M +

λ2

4
(dα,1 − dα,k)‖ek+1

M ‖2
M + λ2dα,k‖e0

M‖
2
M +

λ2dα,k

4
‖ek+1
M ‖2

M . (31)

Noting Lemmas 1, 3 and using (31), we have

K1,α,δt‖ek+1
M ‖2

M +
c−1
α,δtγ1

8
‖∂xek+1

M ‖2
M ≤ λ1βα,δt‖ekM‖

2
M +

K2,α,δt

4
‖ek+1
M ‖2

M + λ2

k−1∑
j=0

(dα,j − dα,j+1)‖ek−jM ‖2
M

+
λ2

4
(dα,1 − dα,k)‖ek+1

M ‖2
M + λ2dα,k‖e0

M‖
2
M +

λ2dα,k

4
‖ek+1
M ‖2

M + 〈δk+1, ek+1
M 〉0,ω,
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It follows that (
3

4
(λ1βα,δt + λ2) + γ2c

−1
α,δt

)
‖ek+1
M ‖2

M +
c−1
α,δtγ1

8
‖∂xek+1

M ‖2
M

≤ λ1βα,δt‖ekM‖
2
M + λ2

k−1∑
j=0

(dα,j − dα,j+1)‖ek−jM ‖2
M + λ2dα,k‖e0

M‖
2
M + 〈δk+1, ek+1

M 〉0,ω, (32)

Using Lemmas 8 and 9, we obtain

|〈δk+1
1 , ek+1

M 〉0,ω| = c−1
α,δt |〈(Id − Π1,0

M )((λ1∂tUk+1 + λ2
C
0 ∂

α
t Uk+1 + γ2Uk+1)), ek+1

M 〉0,ω|

≤ D1,α,Uδt
αM−2r +

1

4
(λ1βα,δt + λ2)‖ek+1

M ‖2
M , (33)

|〈δk+1
2 , ek+1

M 〉0,ω = c−1
α,δt |〈E(λ1∂tΠ

1,0
M U

k+1 + λ2
C
0 ∂

α
t Π1,0

M U
k+1 + γ2Π1,0

M U
k+1), vM〉0,ω|

≤ D2,α,Uδt
αM−2r +

1

4
(λ1βα,δt + λ2)‖ek+1

M ‖2
M ,

and

|〈δk+1
3 , ek+1

M 〉0,ω| ≤ |〈E(F k+1), ek+1
M 〉0,ω|+ |〈rk+1

Π1,0
M
U
, ek+1
M 〉M |

≤ D3,α,f δt
αM−2r +D

4,α,Π1,0
M
Uδt

2+α +
1

4
(λ1βα,δt + λ2)‖ek+1

M ‖2
M . (34)

In view of (32), (33) and (34), we have

γ2‖ek+1
M ‖2

M +
γ1

8
‖∂xek+1

M ‖2
M ≤ λ1cα,δtβα,δt‖ekM‖

2
M + λ2cα,δt

k−1∑
j=0

(dα,j − dα,j+1)‖ek−jM ‖2
M

+ λ2cα,δtdα,k‖e0
M‖

2
M + D̃1,α,U ,fM

−2r + D̃2,α,Uδt
2. (35)

If

B1 = min{γ2,
γ1

8
},

B2,α,δt = max{λ2cα,δt ,
λ1cα,δtβα,δt

1− dα,1
},

Noting dα,k ≤ (1− α)k−α, we can get the following inequality

‖ek+1
M ‖2

M + ‖∂xek+1
M ‖2

M ≤
k∑
j=1

B2,α,δt

B1
(dα,k−j − dα,k−j+1)(‖e jM‖

2
M + ‖∂xe jM‖

2
M)

+B−1
1 λ2(1− α)

t−αk
Γ(2− α)

‖u0
M‖

2
M + D̃1,α,U ,fM

−2r + D̃2,α,Uδt
2.

Noting Lemma 4, we have

‖uk+1
M ‖2

M ≤ ‖uk+1
M ‖2

M + ‖∂xuk+1
M ‖2

0,ω

≤

(
B−1

1 λ2(1− α)t−αk
Γ(2− α)

‖u0
M‖

2
M + D̃1,α,U ,fM

−2r + D̃2,α,Uδt
2

)
e
B2,α,δt
B1

(dα,0−dα,k )
, (36)

Corollary 1 If ∂2
t U ∈ L∞((0, T ];Hr ((−1, 1), dµ(x))), r ≥ 1, then for 0 < α < 1, 0 ≤ k ≤ N − 1, it holds

‖Uk+1 − uk+1
M ‖2

M ≤ D̂1,α‖e0
M‖

2
M + D̂2,α,U ,fM

−2r + D̂2,α,Uδt
2,

where D̂1,α, D̂2,α,U ,f and D̂3,α,U are positive constants.

Proof 5 Using of triangle inequality and (36), we have

‖Uk+1 − uk+1
M ‖2

M ≤ ‖U
k+1 − Π1,0

M Uk+1‖2
M + ‖uk+1

M − Π1,0
M Uk+1‖2

M ≤ ‖U
k+1 − Π1,0

M Uk+1‖2
M

+

(
B−1

1 λ2(1− α)t−αk
Γ(2− α)

‖u0
M‖

2
M + D̃1,α,U ,fM

−2r + D̃2,α,Uδt
2

)
e
B2,α,δt
B1

(dα,0−dα,k )
. (37)

Noting Lemmas 1 and 8 and using (37), we have

‖Uk+1 − uk+1
M ‖2

M ≤ D̂1,α‖e0
M‖

2
M + D̂2,α,U ,fM

−2r + D̂2,α,Uδt
2,

which completes the proof.
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2.2. Nonlinear FM/IT Model With C-FD

2.2.1. Semi-Discrete Scheme and Spectral Approximation In this subsection, we consider the nonlinear FM/IT model with
C-FD with the following conditions

U(x, t)|t=0 = h(x), x ∈ Ω, , (38)

and

U(x, t)|x∈∂Ω = 0, t > 0, . (39)

Using Taylor series expansion, we have{
Q(U1) = Q(U0) +QU (Uϑ)∂tU(x, tτ )δt, k = 0

Q(Uk+1) = 2Q(Uk)−Q(Uk−1) +O(δt2), k ≥ 1.
(40)

Substituting (7), (8) and (40) into (2), we obtain

A1,α,δtUk+1(x) − c−1
α,δtγ∂

2
xUk+1(x)

= P I,αt U
k(x) +

{
2Q(Uk)−Q(Uk−1) + F k+1(x), k ≥ 1,

Q(U0) + F 1(x), k = 0,
+Rk+1

U (x), (41)

where

P I,αt U
k(x) =

{
A2,α,δtUk(x) + λ2

∑k−1
j=1 (dα,j − dα,j+1)Uk−j (x) + λ2dα,kU0(x), k ≥ 1,

(A2,α,δt + λ2dα,1)U0(x), k = 0,

F k+1 = c−1
α,δt f (x, tk+1), k = 0, 1, · · · , N − 2, U0(x) = h(x),

and

βα,δt =
Γ(2− α)

δt1−α , A1,α,δt = λ1βα,δt + λ2, A2,α,δt = λ1βα,δt + λ2(1− dα,1).

Furthermore the truncation error Rk+1
U (x) satisfy

|Rk+1
U (x)| ≤ cα max

t∈(0,T ]
|∂2
t U(x, t)|δt1+α.

Replacing Uk+1(x) by the approximate solution uk+1(x), we can obtain the following semi-discrete problem for (2) and (38)-
(39), which is given by:
Scheme N-I: Given u0 = h(x) and find uk+1 (k = 0, 1, 2, · · · , N − 1), such that

A1,α,δtu
k+1 − c−1

α,δtγ∂
2
x u

k+1 = P I,αt uk +

{
Q(u0) + F 1, x ∈ Ω, k = 0,

2Q(uk)−Q(uk−1) + F k+1, x ∈ Ω, k ≥ 1,
(42)

uk+1|x∈∂Ω = 0,−1 ≤ k ≤ N − 1, (43)

Now, we will give the representation of numerical solution to semi-discrete problem (42)-(43) in the space XM .
S-A(N-I): Find the spectral approximation uk+1

M ∈ XM (k = 0, 1, 2, · · · , N − 1), such that for all vM ∈ XM :

A1,α,δt〈uk+1
M , vM〉M + c−1

α,δtγaω〈u
k+1
M , vM〉

= 〈P I,αt ukM , vM〉M +

{
〈IcMQ(u0

M), vM〉M + 〈IcMF
1, vM〉M , k = 0,

〈2IcMQ(ukM)− IcMQ(uk−1
M ), vM〉M + 〈IcMF

k+1, vM〉M , k ≥ 1.
(44)

2.2.2. Stability Analysis

Lemma 11 Let uk+1
M ∈ XM , k = 0, 1, · · · ,M − 1 be the solution of scheme (44). Then the following inequalities are hold

‖u1
M‖

2
M + ‖∂xu1

M‖
2
0,ω ≤ C1,α,δt‖IcMF

1‖2
M ,

and

‖uk+1
M ‖2

M + ‖∂xuk+1
M ‖2

0,ω ≤ C2,α,δt

(
‖u0
M‖

2
M + ‖IcMF

k+1‖2
M

)
eC3,α,δt (dα,0−dα,k ),

where C1,α,δt , C2,α,δt and C3,α,δt are positive constants.
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Proof 6 Setting vM = uk+1
M , we get

A1,α,δt〈uk+1
M , uk+1

M 〉M + c−1
α,δtγaω〈u

k+1
M , uk+1

M 〉

= 〈P I,αt ukM , u
k+1
M 〉M +

{
〈IcMQ(u0

M), u1
M〉M + 〈IcMF

1, u1
M〉M , k = 0,

〈2IcMQ(ukM)− IcMQ(uk−1
M ), uk+1

M 〉M + 〈IcMF
k+1, uk+1

M 〉M , k ≥ 1.
(45)

We know

(A2,α,δt + λ2dα,1)〈u0
M , u

1
M〉M ≤ (λ1βα,δt + λ2)‖u0

M‖
2
M +

(λ1βα,δt + λ2)

4
‖u1
M‖

2
M , (46)

and

〈P I,αt ukM , u
k+1
M 〉M ≤ λ1βα,δt‖ukM‖

2
M +

A2,α,δt

4
‖uk+1
M ‖2

M + λ2

k−1∑
j=0

(dα,j − dα,j+1)‖uk−jM ‖
2
M

+
λ2

4
(dα,1 − dα,k)‖uk+1

M ‖2
M + λ2dα,k‖u0

M‖
2
M +

λ2dα,k

4
‖uk+1
M ‖2

M , k ≥ 1. (47)

Using Lemmas 1, 2 and 3 and applying Eqs. (45), (46) and (47), we obtain

3(λ1βα,δt + λ2)

4
‖u1
M‖

2
M +

c−1
α,δtγ

4
‖∂xu1

M‖
2
0,ω ≤ (λ1βα,δt + λ2)‖u0

M‖
2
M

+〈IcMQ(u0
M), u1

M〉M + 〈IcMF
1, u1

M〉M ≤
√

2c1(λ1βα,δt + λ2)‖∂xu0
M‖

2
0,ω

+〈IcMQ(u0
M), u1

M〉M + 〈IcMF
1, u1

M〉M ≤
√

2c1(λ1βα,δt + λ2)‖∂xu0
M‖

2
0,ω

+
1

(λ1βα,δt + λ2)
(‖IcMF

1‖2
M + ‖IcMQ(u0

M)‖2
M) +

(λ1βα,δt + λ2)

2
‖u1
M‖

2
M , k = 0, (48)

We know that there exists a positive constants c2 such that |Q(U)| ≤ c2|U|. Then, we conclude that

(λ1βα,δt + λ2)

4
‖u1
M‖

2
M +

c−1
α,δtγ

4
‖∂xu1

M‖
2
0,ω ≤

1

(λ1βα,δt + λ2)
‖IcMF

1‖2
M

+
c2

2

(λ1βα,δt + λ2)
‖u0
M‖

2
M +
√

2c1(λ1βα,δt + λ2)‖∂xu0
M‖

2
0,ω, k = 0,

If

C1,α,δt = min{
λ1βα,δt + λ2)

4
,
c−1
α,δtγ

4
},

C2,α,δt = max{
c2

2

(λ1βα,δt + λ2)
,
√

2c1(λ1βα,δt + λ2)},

we can get the following inequality

‖u1
M‖

2
M + ‖∂xu1

M‖
2
0,ω ≤

1

C1,α,δt(λ1βα,δt + λ2)
‖IcMF

1‖2
M +

C2,α,δt

C1,α,δt
(‖u0

M‖
2
M + ‖∂xu0

M‖
2
0,ω).

Now, noting Lemma 4, we obtain

‖u1
M‖

2
M + ‖∂xu1

M‖
2
0,ω ≤ C1,α,δt‖IcMF

1‖2
M ,

where C1,α,δt = e

C2,α,δt
C1

C1,α,δt (λ1βα,δt+λ2)
.

For k ≥ 1, it can also be shown

3(λ1βα,δt + λ2)

4
‖uk+1
M ‖2

M +
c−1
α,δtγ

4
‖∂xuk+1

M ‖2
0,ω ≤ λ1βα,δt‖ukM‖

2
M

+λ2

k−1∑
j=0

(dα,j − dα,j+1)‖uk−jM ‖
2
M + λ2dα,k‖u0

M‖
2
M + 〈2IcMQ(ukM)− IcMQ(uk−1

M ), uk+1
M 〉M

+〈IcMF
k+1, uk+1

M 〉M ≤
√

2λ1βα,δt‖ukM‖
2
0,ω + λ2

k−1∑
j=0

(dα,j − dα,j+1)‖uk−jM ‖
2
M

+λ2dα,k‖u0
M‖

2
M + 〈2IcMQ(ukM)− IcMQ(uk−1

M ), uk+1
M 〉M + 〈IcMF

k+1, uk+1
M 〉M

≤
√

2c1λ1βα,δt‖∂xukM‖
2
0,ω + λ2

k−1∑
j=0

(dα,j − dα,j+1)‖uk−jM ‖
2
M + λ2dα,k‖u0

M‖
2
M

+
1

(λ1βα,δt + λ2)
(‖IcMF

k+1‖2
M + ‖2IcMQ(ukM)− IcMQ(uk−1

M )‖2
M) +

(λ1βα,δt + λ2)

2
‖uk+
M ‖

2
M

≤
√

2cλ1βα,δt‖∂xukM‖
2
0,ω + λ2

k∑
j=1

(dα,k−j − dα,k−j+1)‖ujM‖
2
M + λ2dα,k‖u0

M‖
2
M

+
1

(λ1βα,δt + λ2)
(‖IcMF

k+1‖2
M + 2c2

2‖ukM‖
2
M + c2

2‖uk−1
M ‖2

M) +
(λ1βα,δt + λ2)

2
‖uk+1
M ‖2

M .
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and therefore

(λ1βα,δt + λ2)

4
‖uk+1
M ‖2

M +
c−1
α,δtγ

4
‖∂xuk+1

M ‖2
0,ω

≤
(
λ2 +

1

(λ1βα,δt + λ2)

(
2c2

2

(1− dα,1)
+

c2
2

(dα,1 − dα,2)

)) k∑
j=1

(dα,k−j − dα,k−j+1)‖ujM‖
2
M

+

√
2c1λ1βα,δt

1− dα,1

k∑
j=1

(dα,k−j − dα,k−j+1)‖∂xujM‖
2
0,ω

+λ2dα,k‖u0
M‖

2
M +

1

(λ1βα,δt + λ2)
‖IcMF

k+1‖2
M . (49)

If

C1,α,δt = min{
(λ1βα,δt + λ2)

4
,
c−1
α,δtγ

4
},

C2,α,δt = max{
(
λ2 +

1

(λ1βα,δt + λ2)

(
2c2

2

(1− dα,1)
+

c2
2

(dα,1 − dα,2)

))
,

√
2c1λ1βα,δt

1− dα,1
},

we can get the following inequality

‖uk+1
M ‖2

M + ‖∂xuk+1
M ‖2

0,ω ≤
k∑
j=1

C2,α,δt

C1,α,δt
(dα,k−j − dα,k−j+1)(‖ujM‖

2
M + ‖∂xujM‖

2
0,ω)

+ C−1
1,α,δtλ2dα,k‖u0

M‖
2
M +

1

C1,α,δt(λ1βα,δt + λ2)
‖IcMF

k+1‖2
M .

Noting Lemma 4, we have

‖uk+1
M ‖2

M + ‖∂xuk+1
M ‖2

0,ω ≤ C2,α,δt

(
‖u0
M‖

2
M + ‖IcMF

k+1‖2
M

)
eC3,α,δt (dα,0−dα,k ),

where C2,α,δt = max{C−1
1,α,δtλ2dα,k ,

1
C1,α,δt (λ1βα,δt+λ2)

} and C3,α,δt =
C2,α,δt

C1,α,δt
.

Theorem 6 Let uk+1
M ∈ XM , k = 0, 1, · · · ,M − 1 be the solution of scheme (44). Then the scheme (44) is unconditionally stable

in the sense that for all δt > 0.

Proof 7 The proof is similar to proof of Theorem 4.

3. FM/IT Model With C-F-FD

3.1. Linear FM/IT Model with C-F-FD

3.1.1. Discretization of Caputo-Fabrizio Derivative and Semi-Discrete Scheme In this subsection, we deal with the FM/IT
model with C-F-FD. For (3), the initial condition:

U(x, t)|t=0 = h(x), x ∈ Ω, (50)

and the Dirichlet boundary conditions:

U(x, t)|x∈∂Ω = 0, t > 0, (51)

is considered.
For discretization of time variable, let tk := kδt, k = 0, 1, · · · , N be an equidistant partition of [0, T ], where δt = T

N
. We

analogize the time-fractional derivative term by using the finite difference scheme:

CF
0 ∂αt Uk+1(x) =

{
c̄α,δt [Dk+1

α,k+1(Uk+1(x)− Uk(x)) +
∑k

j=1D
k+1
α,j (U j (x)− U j−1(x))], k ≥ 1

c̄α,δtD1
α,1(U1(x)− U0(x)), k = 0,

+ rk+1
U (x), (52)

where c̄α,δt = (αδt)−1 and Dk+1
α,j = exp(− αδt

1−α (k + 1− j))− exp(− αδt
1−α (k − j + 2)), (j = 1, 2, · · · , k + 1).

Theorem 7 ([45]) For any 0 < α < 1, the coefficients of Dk+1
α,j , j = 1, 2, · · · , k + 1 satisfies the following properties

• Dk+1
α,j > 0, ∀j ≤ k + 1;

• Dk+1
α,j ≤ D

k+1
α,j+1, ∀j ≤ k;

• Dk+1
α,k+1 = D1

α,1, D
k+1
α,k = D2

α,1;
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• (D1
α,1)−1 ≤ 1−α

αδt
exp( αδt

1−α );

•
∑k−1

j=1 (Dk+1
α,j+1 −D

k+1
α,j ) +Dk+1

α,1 = Dk+1
α,k = D2

α,1.

Theorem 8 ([45]) For any 0 < α < 1, it holds

rk+1
U (x) = −

1

1− α

k+1∑
j=1

∫ tj

tj−1

(s − t
j− 1

2
)
∂2U(x, s)

∂s2
|s=ςj exp(−

α

1− α
(tk+1 − s))ds,

|rk+1
U (x)| ≤

c

α
exp(

2α

1− α
) max
t∈(0,T ]

|∂2
t U(x, t)|δt2, − 1 ≤ k ≤ N − 1, ∀x ∈ Ω,

where ςj ∈ (tj−1, tj) and c is independent of δt.

Substituting (52) and (8) into (3), we obtain

B1,α,δtUk+1(x)− c̄−1
α,δtγ1∂

2
xUk+1(x) = P II,αt Uk(x) + F k+1(x) +Rk+1

U (x), x ∈ Ω (53)

where

P II,αt Uk(x) =

{
(λ1α+ λ2D1

α,1)U0(x), k = 0,

B2,α,δtUk(x) + λ2
∑k−1

j=1 (Dk+1
α,j+1 −D

k+1
α,j )U j (x) + λ2Dk+1

α,1 U0(x), k ≥ 1,

F k+1 = c̄−1
α,δt f (x, tk+1), k = 0, 1, · · · , N − 2, U0(x) = h(x),

and

B1,α,δt = λ1α+ λ2D1
α,1 + γ2c̄

−1
α,δt , B2,α,δt = λ1α+ λ2(D1

α,1 −D2
α,1).

Furthermore, we have

|Rk+1
U (x)| ≤

c

α
exp(

2α

1− α
) max
t∈(0,T ]

|∂2
t U(x, t)|δt2, − 1 ≤ k ≤ N − 1, ∀x ∈ Ω.

Replacing Uk+1(x) by the approximate solution uk+1(x), we can obtain the following semi-discrete problem for (3) and (50)-
(51), which is given by:
Scheme L-II: Given u0 = h(x) and find uk+1 (k = 0, 1, 2, · · · , N − 1), such that:{

B1,α,δtu
k+1(x)− c̄−1

α,δtγ1∂
2
x u

k+1(x) = P II,αt uk(x) + F k+1(x), x ∈ Ω,

uk+1|x∈∂Ω = 0,−1 ≤ k ≤ N − 1,
(54)

3.1.2. Spectral Approximation to Semi-Discrete Problem (54) Now, we will give the representation of numerical solution to
semi-discrete problem (54) in the space PM .
Given u0

M = IcMu
0 and find uk+1

M ∈ PM (k = 0, 1, 2, · · · , N − 1), such that:{
B1,α,δtu

k+1
M (zi )− c̄−1

α,δtγ1∂
2
x u

k+1
M (zi ) = P II,αt ukM(zi ) + F k+1(zi ), 1 ≤ i ≤ M − 1,

uk+1
M (zi ) = 0, i = 0,M, − 1 ≤ k ≤ N − 1,

(55)

where

P II,αt ukM(zi ) =

{
(λ1α+ λ2D1

α,1)u0
M(zi ), k = 0,

B2,α,δtu
k
M(zi ) + λ2

∑k−1
j=1 (Dk+1

α,j+1 −D
k+1
α,j )ujM(zi ) + λ2Dk+1

α,1 u
0(zi ), k ≥ 1,

We can reformulate the scheme (55) as the following:
S-A(L-II): Find the spectral approximation uk+1

M ∈ XM (k = 0, 1, 2, · · · , N − 2), such that for all vM ∈ XM :

B1,α,δt〈uk+1
M , vM〉M + c̄−1

α,δtγ1aω〈uk+1
M , vM〉 = 〈P II,αt ukM , vM〉M + 〈IcMF

k+1, vM〉M . (56)

Similar to the previous section, the approximate solution ukM can be obtained by calculating a truncated series based on
PM = span{φj(x), j = 0, 1, · · · ,M} as the following

uk(x) ≈ ukM(x) := Φ(x){v}k .

Therefore, we get { ∑M
j=0

[
B1,α,δtδi j − c̄−1

α,δtγ1(D2)i j

]
vk+1
j = zk+1(zi ), 1 ≤ i ≤ M − 1,

Φ(z0){v}k+1 = Φ(zM){v}k+1 = 0.
(57)

where

zk+1(zi ) = P II,αt ukM(zi ) + F k+1(zi ), 1 ≤ i ≤ M − 1,
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Let us denote

(B)i j = B1,α,δtδi j − c̄−1
α,δtγ1(D2)i j , 1 ≤ i ≤ M − 1, 0 ≤ j ≤ M,

(B)0j = δ0j , (B)Mj = δMj , 0 ≤ j ≤ M,
{c}k+1 = (0,zk+1(z1),zk+1(z2), · · · ,zk+1(zM−1), 0)T ,

{v}k+1 = (vk+1
0 , vk+1

1 , · · · , vk+1
M )T ,

then, the linear system (57) reduces to

B{v}k+1 = {c}k+1, k = 0, 1, · · · , N − 2.

Theorem 9 Let uk+1
M ∈ XM , k = 0, 1, · · · ,M − 1 be the solution of scheme (56). Then the scheme (56) is unconditionally stable

in the sense that for all δt > 0.

Proof 8 We know ‖uk+1
M ‖0,ω ≤ c‖∂xuk+1

M ‖0,ω. Set

C1,α,δt = min{γ2c̄
−1
α,δt ,

c̄−1
α,δtγ1

4
},

C2,α,δt = max{λ2,
λ1α
√

2c

(D1
α,1 −D2

α,1)
},

therefore similar to the proof of Lemma 11, we can get the following inequality

‖uk+1
M ‖2

M + ‖∂xuk+1
M ‖2

0,ω ≤
k∑
j=1

C2,α,δt

C1,α,δt
(Dk+1

α,j+1 −D
k+1
α,j )(‖ujM‖

2
M + ‖∂xujM‖

2
0,ω)

+ λ2C
−1
1,α,δtD

k+1
α,1 ‖u

0
M |

2
M +

1

3C1,α,δt(λ1α+ λ2D1
α,1)
‖IcMF

k+1‖2
M ,

Noting Lemma 4, we have

‖uk+1
M ‖2

M + ‖∂xuk+1
M ‖2

0,ω ≤
(
‖u0
M‖

2
M + ‖IcMF

k+1‖2
M

)
e

C2,α,δt
C1,α,δt

(D1
α,1−D

k+1
α,1 )

. (58)

where C1,α,δt = max{λ2C
−1
1,α,δtD

k+1
α,1 ,

1

3C1,α,δt (λ1α+λ2D1
α,1)
} and C2,α,δt =

C2,α,δt

C1,α,δt
.

Using (58), the following inequality is holds

‖uk+1
M − ũk+1

M ‖2
M ≤ ‖u

k+1
M − ũk+1

M ‖2
M + ‖|∂xuk+1

M − ∂x ũk+1
M ‖2

M ≤ C1,α,δt‖u0
M − ũ

0
M‖

2
Me

C2,α,δt (D1
α,1−D

k+1
α,1 ).

This completes the proof of Theorem 9.

3.2. Nonlinear FM/IT Model with C-F-FD

3.2.1. Semi-Discrete Scheme and Spectral Approximation In this subsection, we consider the nonlinear FM/IT model with
C-F-FD with the following conditions

U(x, t)|t=0 = h(x), x ∈ Ω, (59)

and

U(x, t)|x∈∂Ω = 0, t > 0, (60)

where (x, t) ∈ Ω× (0, T ] in which Ω = (−1, 1).
Substituting (8), (40) and (52) into (4), we obtain

S1,α,δtUk+1(x) − c̄−1
α,δtγ∂

2
xUk+1(x)

= P II,αt Uk(x) +

{
Q(U0) + F 1(x), k = 0,

2Q(Uk)−Q(Uk−1) + F k+1(x), k ≥ 1,
+Rk+1

U (x), (61)

where

P II,αt Uk(x) =

{
(S2,α,δt + λ2D1

α,1)U0(x), k = 0,

S2,α,δtUk(x) + λ2
∑k−1

j=1 (Dk+1
α,j+1 −D

k+1
α,j )U j (x) + λ2Dk+1

α,1 U0(x), k ≥ 1,

F k+1 = c̄−1
α,δt f (x, tk+1), k = 0, 1, · · · , N − 2, U0(x) = h(x),
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and

S1,α,δt = λ1α+ λ2D1
α,1, S2,α,δt = λ1α+ λ2(D1

α,1 −D2
α,1).

Furthermore the truncation error Rk+1
U (x) satisfy

|Rk+1
U (x)| ≤

c

α
exp(

2α

1− α
) max
t∈(0,T ]

|∂2
t U(x, t)|δt2, − 1 ≤ k ≤ N − 1, ∀x ∈ Ω.

Replacing Uk+1(x) by the approximate solution uk+1(x), we can obtain the following semi-discrete problem for (4) and (59)-
(60), which is given by:
Scheme N-II: Given u0 = h(x) and find uk+1 (k = 0, 1, 2, · · · , N − 1), such that

S1,α,δtu
k+1(x)− c̄−1

α,δtγ∂
2
x u

k+1(x) = P II,αt uk(x) +

{
Q(u0) + F 1(x), k = 0,

2Q(uk)−Q(uk−1) + F k+1(x), k ≥ 1,
(62)

uk+1|x∈∂Ω = 0,−1 ≤ k ≤ N − 1, (63)

Now, we will give the representation of numerical solution to semi-discrete problem (62)-(63) in the space XM .
S-A(N-II): Find the spectral approximation uk+1

M ∈ XM (k = 0, 1, 2, · · · , N − 1), such that for all vM ∈ XM :

S1,α,δt〈uk+1
M , vM〉M + c̄−1

α,δtγaω〈u
k+1
M , vM〉

= 〈P II,αt ukM , vM〉M +

{
〈Q(u0

M), vM〉M + 〈IcMF
1, vM〉M , k = 0,

〈2Q(ukM)−Q(uk−1
M ), vM〉M + 〈IcMF

k+1, vM〉M , k ≥ 1.
(64)

Similar to Theorem 6, we have the following theorem:

Theorem 10 Let uk+1
M ∈ XM , k = 0, 1, · · · , N − 1 be the solution of scheme (64). Then the scheme (64) is unconditionally

stable in the sense that for all δt > 0.

4. Illustrative Test Problems and Discussion

We have studied some numerical examples to test the performance of the proposed methods. We illustrate the accuracy and
stability of the proposed methods by performing S-A(L-I), S-A(L-II), S-A(N-I) and S-A(N-II) for different values of M and N.
1. (Error measurement criterion) As the exact solution is known, the maximum absolute error eM,N∞ and the root mean square
error eM,Nrms are measured with the following formulas:

eM,N∞ = max
0≤i≤M

|UN(zi )− uNM(zi )|,

and

eM,Nrms =

√√√√ 1

M + 1

M∑
i=0

|UN(zi )− uNM(zi )|2,

As the exact solution is unknown, the maximum absolute error EM,N∞ and the root mean square error EM,Nrms are measured with
the following formulas:

EM,N∞ = max
0≤i≤M

|uNM(zi )− u2N
M (zi )|,

and

EM,Nrms =

√√√√ 1

M + 1

M∑
i=0

|uN/2
M (zi )− uNM(zi )|2,

2. (Convergence ratio) As the exact solution is known, the convergence ratio is given by

Ratio1 = log2

[
e
M,N/2
∞

eM,N∞

]
.

As the exact solution is unknown, the convergence ratio is given by

Ratio2 = log2

[
E
M,N/2
∞

EM,N∞

]
.
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α N 40 80 160 320

0.2 eM,N∞ 2.8854e-3 1.4547e-3 7.3821e-4 3.7989e-4

eM,Nrms 1.2761e-3 6.3907e-4 3.2019e-4 1.6101e-4

Ratio1 - 0.9880 0.9786 0.9584

0.5 eM,N∞ 3.0444e-3 1.5119e-3 7.5821e-4 3.8662e-4

eM,Nrms 1.3485e-3 6.6533e-4 3.2951e-4 1.6422e-4

Ratio1 - 1.0098 0.9957 0.9717

0.9 eM,N∞ 4.5480e-3 2.2382e-3 1.1056e-3 5.5148e-4

eM,Nrms 2.0218e-3 9.9060e-4 4.8502e-4 2.3790e-4

Ratio1 - 1.0229 1.0175 1.0034

Table 1. S-A(L-I): The maximum absolute error eM,N∞ and the root mean

square error eM,Nrms for different values of α with M = 13 (Example 1-Case I).

Example 1 In this example, we deal with the following time-fractional mobile/immobile transport equation:

λ1
∂V(x, t)

∂t
+ λ2

C
0 ∂

α
t V(x, t) = γ1∂

2
xV(x, t)− γ2∂xV(x, t) + g(x, t), (65)

where (x, t) ∈ (−1, 1)× (0, 1].
We introduce the following transformation:

V(x, t) = ef0(x)U(x, t), f0(x) =
γ2x

2γ1
, (66)

Using the transformation (66), the equation (65) becomes

λ1
∂U(x, t)

∂t
+ λ2

C
0 ∂

α
t U(x, t) = γ1∂

2
xU(x, t)− κγU(x, t) + f (x, t), (67)

where κγ = 1
4

γ2
1
γ1

and f (x, t) = g(x, t)e−f0(x).

Case I: We consider (65) with the following terms
Parameters : λ1 = 1, λ2 = 1, γ1 = 1, γ2 = 1,

F orce term : f (x, t) = (3t2 + 4t3π2) sin(2πx) + 2t3π cos(2πx) +
6t3−α sin(2πx)

Γ(4−α)
,

Initial condition : V(x, 0) = 0,

Dir ichlet boundary conditions : V(−1, t) = V(1, t) = 0.

Then the exact solution V is given by V(x, t) = t3 sin(2πx).

Using the transformation V(x, t) = e
x
2 U(x, t), we have κγ = 1

4
, f (x, t) = e−

x
2 g(x, t).

In Table 1, we present the maximum absolute error eM,N∞ , the root mean square error eM,Nrms and the convergence ratio in the

computed solutions of S-A(L-I) for Example 1-Case I with α = 0.2, 0.5, 0.9. From the obtained data in Table 1, we can observe

that the convergence ratios in temporal direction are close to theoretical convergence order ( TCO) i.e. TCO = 1 as we expected

from Corollary 1. To check the spatial accuracy, we present the maximum absolute error eM,N∞ and the root mean square error

eM,Nrms for α = 0.2, 0.9 with respect to the polynomial degree M for N = 160 in Figures ?? (a1-a2).

Case II: As another example, we consider (65) with the following terms
Parameters : λ1 = 1, λ2 = 1, γ1 = 1, γ2 = 1,

Source term : f (x, t) = 6t2(x2 − 1)− 2t3 + 2t3x,

Initial condition : V(x, 0) = 0,

Dir ichlet boundary conditions : V(−1, t) = V(1, t) = 0.

The exact solution V is unknown.

Using the transformation V(x, t) = e
x
2 U(x, t), we have κγ = 1

4
, f (x, t) = e−

x
2 g(x, t).

Experimental Results of S-A(L-I): Table 2 presents the experimental results of S-A(L-I) in temporal direction based on

Chebyshev polynomials for Example 1-Case II with α = 0.1, 0.3. From the obtained results given in Table 2, we observe that,

the numerical results agree precisely with the theoretical rate of convergence of Corollary 1. Also, the detailed observation of

changes of log10[eM,N∞ ] and log10[eM,Nrms ] against N for α = 0.6, 0.9 are plotted in Figures ?? (a3-a4).
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(a1) α = 0.2 (a2) α = 0.9

Figure 1. S-A(L-I): The changes of eM,N∞ and eM,Nrms against M for α = 0.2, 0.9 with N = 160 (Example 1-Case I).

α = 0.1 α = 0.3

N EM,N∞ EM,Nrms Ratio2 EM,N∞ EM,Nrms Ratio2

20 2.3309e-2 1.9121e-2 - 3.3069e-2 1.8981e-2 -

40 1.6993e-2 9.7546e-3 0.9710 1.6605e-2 9.5308e-3 1.0416

80 8.5781e-3 4.9442e-3 0.9862 8.2903e-3 4.7584e-3 0.9544

160 4.3083e-3 2.4731e-3 0.9935 4.1324e-3 2.3719e-3 1.0044

Table 2. S-A(L-I): The maximum absolute error EM,N∞ and the root mean

square error EM,Nrms for different values of α with M = 15 (Example 1-Case II).

(a3) α = 0.6 (a4) α = 0.9

Figure 2. S-A(L-I): The changes of log10(eM,N∞ ) and log10(eM,Nrms ) against N for different values of α with M = 15 (Example 1-Case II).

Example 2 Consider (2) on (−1, 1)× (0, 1] with the following terms

Parameters : λ1 = 1, λ2 = 1, γ = 1,

Nonl inear term : Q(U) = −U3,

Source term : f (x, t) = (e−x (3t2 sin(πx)− t3 sin(πx) + 2t3 cos(πx)π + t3 sin(πx)π2

+t9e−2x sin(πx)− t9e−2x sin(πx) cos2(πx)) +
6t−α+3 sin(πx)

Γ(4−α)
),

Initial condition : U(x, 0) = 0,

Dir ichlet boundary conditions : U(−1, t) = U(1, t) = 0.

The exact solution of Example 2 is given by U(x, t) = t3e−x sin(πx).

Experimental Results of S-A(N-I): Table 3 presents the experimental results of S-A(N-I) in temporal direction based on

Chebyshev polynomials for Example 2 with α = 0.2, 0.4, 0.7.

Example 3 Consider (3) on (−1, 1)× (0, 1] with the following terms
Parameters : λ1 = 1, λ2 = 1, γ1 = 1, γ2 = 1,

Source term : f (x, t) = 3et sin(2πx)− e
αt
−1+α sin(2πx) + 4et sin(2πx)π2,

Initial condition : U(x, 0) = sin(2πx),

Dir ichlet boundary conditions : U(−1, t) = U(1, t) = 0.
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α N 80 160 320

0.2 eM,N∞ 5.8856e-3 2.5207e-3 1.1484e-3

eM,Nrms 2.7491e-3 1.1990e-3 5.5324e-4

Ratio1 - 1.2234 1.1342

0.4 eM,N∞ 5.9068e-3 2.5320e-3 1.1531e-3

eM,Nrms 2.7565e-3 1.2032e-3 5.5480e-3

Ratio1 - 1.2221 1.1348

0.7 eM,N∞ 6.4313e-3 2.7753e-3 1.2613e-3

eM,Nrms 3.0081e-3 1.3200e-3 6.0670e-4

Ratio1 - 1.2125 1.1377

Table 3. S-A(N-I): The maximum absolute error eM,N∞ and the root mean

square error eM,Nrms for different values of α with M = 16 (Example 2).

α = 0.2 α = 0.4

N eM,N∞ eM,Nrms Ratio1 eM,N∞ eM,Nrms Ratio1

10 3.3029e-3 2.0883e-3 - 4.7579e-3 3.0082e-3 -

20 1.6915e-3 1.0694e-3 0.9654 2.5442e-3 1.6086e-3 0.9031

40 8.5607e-4 5.4126e-4 0.9825 1.3160e-3 8.3204e-4 0.9511

80 4.3066e-4 2.7229e-4 0.9912 6.6929e-4 4.2317e-4 0.9755

160 2.1598e-4 1.3656e-4 0.9956 3.375e-4 2.1340e-4 0.9877

320 1.0816e-4 6.8385e-5 0.9977 1.6947e-4 1.0715e-4 0.9939

α = 0.7 α = 0.8

N eM,N∞ eM,Nrms Ratio1 eM,N∞ eM,Nrms Ratio1

10 2.5040e-2 1.5831e-2 - 6.2126e-2 3.9280e-2 -

20 1.5109e-2 9.5528e-3 0.7288 4.0299e-2 2.5479e-2 0.6244

40 8.2872e-3 5.2396e-3 0.8664 2.2915e-2 1.4488e-2 0.8144

80 4.3385e-3 2.7431e-3 0.9337 1.2213e-2 7.7215e-3 0.9079

160 2.2195e-3 1.4033e-3 0.9670 6.3035e-3 3.9855e-3 0.9542

320 1.1225e-3 7.0973e-3 0.9835 3.2021e-3 2.0246e-3 0.9771

Table 4. S-A(L-II): The maximum absolute error eM,N∞ and the root mean

square error eM,Nrms for different values of α with M = 17 (Example 3).

The exact solution of Example 3 is given by U(x, t) = et sin(2πx).

Experimental Results of S-A(L-II): Table 4 presents the experimental results of S-A(L-II) in temporal direction based on

Chebyshev polynomials for Example 3 with α = 0.2, 0.4, 0.7, 0.8. From the obtained results given in Table 4, we observe that,

the numerical results agree precisely with the theoretical rate of convergence. More detailed observation of changes of log10[eM,N∞ ]

and log10[eM,Nrms ] against N for α = 0.1, 0.15, 0.6, 0.81 are plotted in Figures ?? (c1-c4). To check the spatial accuracy, we present

the maximum absolute error eM,N∞ and the root mean square error eM,Nrms for α = 0.1, 0.15, 0.6, 0.81 with respect to the polynomial

degree M for N = 160 in Figures ?? (c5-c8).

Example 4 Consider (3) on (−1, 1)× (0, 1] with the following terms


Parameters : λ1 = 1, λ2 = 1, γ = 1,

Nonl inear term : Q(U) = − sin(U),

Source term : f (x, t) = 2et sin(πx)− e
αt

−1+alpha sin(πx) + et sin(πx)π2 + sin(et sin(πx)),

Initial condition : U(x, 0) = sin(πx),

Dir ichlet boundary conditions : U(−1, t) = U(1, t) = 0.

The exact solution of Example 4 is given by U(x, t) = et sin(πx).

Experimental Results of S-A(N-II): Table 5 presents the experimental results of S-A(N-II) in temporal direction based on

Chebyshev polynomials for Example 4 with α = 0.1, 0.15, 0.6.
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(c1) α = 0.1 (c2) α = 0.15

(c3) α = 0.6 (c4) α = 0.81

Figure 3. S-A(L-II): The changes of log10(eM,N∞ ) and log10(eM,Nrms ) against N for different values of α with M = 17 (Example 3).

(c5) α = 0.1 (c6) α = 0.15

(c7) α = 0.6 (c8) α = 0.81

Figure 4. S-A(L-II): The changes of eM,N∞ and eM,Nrms against M for α = 0.1, 0.15, 0.6, 0.81 with N = 320 (Example 3).
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α N 80 160 320

0.1 eM,N∞ 1.4117e-3 7.2585e-3 3.6786e-3

eM,Nrms 8.6583e-3 4.4498e-3 2.2547e-4

Ratio1 - 0.9597 0.9805

0.15 eM,N∞ 1.4445e-3 7.4247e-4 3.7635e-4

eM,Nrms 8.8597e-4 4.5517e-4 2.3067e-4

Ratio1 - 0.9602 0.9803

0.6 eM,N∞ 6.8372e-3 3.4971e-3 1.7683e-3

eM,Nrms 4.1907e-3 2.1433e-3 1.0837e-3

Ratio1 - 0.9672 0.9838

Table 5. S-A(N-II): The maximum absolute error eM,N∞ and the root mean

square error eM,Nrms for different values of α with M = 16 (Example 4).

5. Conclusion

In this paper, a spectral method is developed to solve FM/IT model with C-FD and C-F-FD. Furthermore, the unconditional

stability and convergence of the numerical method are discussed, which provides the theoretical basis of the proposed method.

The proposed method is computationally capable due to its simple implementation but with reasonable accuracy. It can be easily

viewed from obtained numerical solutions and error norms that this is an excellent method to achieve a numerical solution of

the time-fractional Mobile/Immobile transport model.
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