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1. Introduction

Fractional calculus (FC) is a generalization for standard calculus since it deals with frac-

tional orders that exceed integer numbers, whether real or even complex. During the last four

decades the theory of fractional calculus achieves great importance due to it applicability in

many fields such as Control theory, Electrical networks, Artificial neural network, Physics,

Mechanics, Electromagnetic theory and probability, Electrochemistry, Engineering, etc, see

[10, 11, 16, 18, 21, 24, 26, 27, 28, 37] and references therein.

The fractional differential equations (FDEs) emerge in physics, biology, engineering, finance

and economics. Recently, many mathematicians have studied FDEs using several definitions of a

fractional derivative such as Riemann-Liouville (RL), Caputo, Hilfer, Hadamard, Katugampola,

generalized Caputo, generalized Hilfer, we refer here to some of these famous operators in [6,

12, 14, 15, 17, 31].

On the other hand, there has been much more contemplation paid in developing the theory of

existence and uniqueness of positive solutions for nonlinear FDEs, through standard fixed point

techniques, for details see [4, 5, 8, 9, 19, 20, 25, 35, 36].
1
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For instance, in [4] Abdo et.al., obtained the existence of positive solutions for the fractional

BVP of the form {
CDυ

0+ς(t) = P(t, ς(t)), t ∈ [0, 1]

ς(0) = λ
∫ 1

0 ς(s)ds+ d,

where 0 < υ < 1, CDυ
0+ is the Caputo operator, λ ≥ 0, d ∈ R+, and P : [0, 1] × [0,+∞) →

[0,+∞) is continuous function.

On the advanced development of the generalized fractional calculus, some authors who are in-

terested in this topic have presented many generalizations of fractional derivatives like ϑ-Caputo

fractional derivative introduced by Almeida [6] and ϑ- Hilfer fractional derivative introduced by

Sousa and Oliveira [31].

For recent papers about study the existence and uniqueness of solutions of FDEs involving

ϑ-fractional derivative, has been few investigated, see but not limited to [1, 2, 3, 7, 13, 33, 23,

32, 34]. For example, Vivek et.al., in [34] studied the existence, uniqueness and stability results

for the generalized fractional BVP of the form{
CDυ,ϑ

0+
ς(t) = P(t, ς(t)), t ∈ [0, T ]

aς(0) + bς(T ) = w,

where 0 < υ < 1, a, b, w ∈ R with a + b 6= 0, CDυ
0+ is the ϑ-Caputo operator, and P :

[0, T ]× R→ R is continuous function.

Motivated by [4, 22, 33, 34], we investigate the existence and uniqueness of positive solution for

nonlinear generalized fractional BVPs of the form{
Dυ,ϑ

0+ ς(t) + P(t, ς(t)) = 0, 0 < t < 1,

ς(0) = ς(1) = 0,
(1.1)

where 1 < υ ≤ 2, Dυ,ϑ
0+ is the generalized RL fractional derivative of order υ, P : [0, 1]×R+ → R+,

and ϑ : [0, 1]→ R+ is a strictly increasing function such that ϑ ∈ C2[0, 1] with ϑ′(t) 6= 0, for all

t ∈ [0, 1].

Essentially, the researchers absorbed IVPs corresponding to mentioned fractional derivatives.

But as far as we know that investigation of BVPs corresponding to FDEs is very scarcely

considered by the use of upper and lower solutions method. Recently, Seemab et al., in [33],

used the Leggett-Williams fixed point theorem to obtain the existence and multiplicity results

of positive solutions for the problem (1.1).

Our aim is to study further results on the existence and uniqueness of positive solutions to the

problem (1.1) involving ϑ-RL fractional derivative. Moreover, the results obtained are the first

contribution through building the upper (lower) control functions of the nonlinear term that no

need any monotone conditions except for the condition of continuity.

The remainder of the work is structured as follows: In section 2 we will fleetingly render

some basic definitions and the axiom results that are used in the analysis. Section 3 deals with

developing the Green function corresponding to the proposed problem and demonstrating some

of its generalized properties related to ϑ, and through this, the problem (1.1) is converted into

an equivalent fractional integral equation. Moreover, we obtain further results on the existence

and uniqueness of positive solution by using the method of upper and lower solution, and some
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fixed point techniques. Some examples are offered in section 4. The conclusion is granted in the

last section.

2. Preliminary results

Let C[0, 1] be the Banach space endowed with the norm ‖ς‖ = sup{|ς(t)| ; t ∈ [0, 1]} for

ς ∈ C[0, 1], and define the cone

K = {ς ∈ C[0, 1] : ς(t) ≥ 0, t ∈ [0, 1]}.

The positive solution that we taking account in this work is such that ς(t) ≥ 0, 0 ≤ t ≤ 1,

ς ∈ C[0, 1].

Definition 2.1. [18] Let υ > 0, ρ : [a, b] → R be an integrable function and ϑ : [a, b] → R an

increasing function with ϑ′(t) 6= 0, for all t ∈ [a, b]. The ϑ- RL fractional integral of ρ of order

υ is given by

Iυ,ϑa+ ρ(t) =
1

Γ(υ)

∫ t

a
ϑ′(s)(ϑ(t)− ϑ(s))υ−1ρ(s)ds.

Definition 2.2. [18] Let n−1 < υ < n, and ρ, ϑ ∈ Cn[a, b] such that ϑ is an increasing function

with ϑ′(t) 6= 0, for all t ∈ [a, b]. Then the ϑ-RL fractional derivative of ρ of order υ is given by

Dυ,ϑ
a+ ρ(t) = Dn,ϑIn−υ,ϑa+ ρ(t),

where Dn,ϑ =
[

1
ϑ′(t)

d
dt

]n
and n = [υ] + 1.

Lemma 2.1. [18] Let r ∈ R with r > n. The ϑ-fractional integral and derivative of the function

ρ(t) = (ϑ(t)− ϑ(a))r−1 are

Iυ,ϑa+ ρ(t) =
Γ(r)

Γ(r + υ)
(ϑ(t)− ϑ(a))υ+r−1,

and

Dυ,ϑ
a+ ρ(t) =

Γ(r)

Γ(r − υ)
(ϑ(t)− ϑ(a))r−υ−1.

Lemma 2.2. [18] Let υ, r > 0 and ρ : [a, b] → R. Then we have Dυ,ϑ
a+ I

υ,ϑ
a+ ρ(t) = ρ(t) and

Iυ,ϑa+ I
r,ϑ
a+ρ(t) = Iυ+r,ϑ

a+ ρ(t).

Lemma 2.3. Let υ > 0. If we suppose ς ∈ C(0, 1) ∩ L(0, 1), then the FDE Dυ,ϑ
a+ ς(t) = 0 has a

unique solution

ς(t) = c1[ϑ(t)− ϑ(a)]υ−1 + c2[ϑ(t)− ϑ(a)]υ−2 + ...+ cn[ϑ(t)− ϑ(a)]υ−n,

Moreover, if ς,Dυ,ϑ
a+ ς ∈ C(0, 1) ∩ L(0, 1),then

Iυ,ϑa+ D
υ,ϑ
a+ ς(t) = ς(t) + c1[ϑ(t)− ϑ(a)]υ−1 + c2[ϑ(t)− ϑ(a)]υ−2 + ...+ cn[ϑ(t)− ϑ(a)]υ−n,

for some ci ∈ R, i = 1, 2, ..., n.

Definition 2.3. A function ς ∈ C[0, 1] ∩ L[0, 1] be a solution of (1.1) if ς satisfies Dυ,ϑ
0+
ς(t) +

P(t, ς(t)) = 0, t ∈ (0, 1) with ς(0) = 0 and ς(1) = 0.
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Definition 2.4. A function ς ∈ C[0, 1] is a positive solution of ( 1.1) if ς(t) ≥ 0 for all t ∈ [0, 1]

and ς satisfies (1.1).

Theorem 2.1. [37] (Banach). Let X be a Banach space with a contraction mapping T : X → X.

Then, T has a unique fixed-point x in X.

Theorem 2.2. [37] (Schauder). Let X be a Banach space and let S a closed, convex, bounded

subset of X. If T : S −→ S is a continuous map such that the set {Ts : s ∈ S} is relatively

compact in X. Then T has at least one fixed point.

3. Main results

This section is dedicated to demonstrating developed Green function corresponding to problem

(1.1) and proving the existence and uniqueness of positive solutions to a problem (1.1).

Lemma 3.1. Let 1 < υ ≤ 2 and φ : [0, 1]→ R+ is a continuous. Then

Dυ,ϑ
0+ ς(t) + φ(t) = 0, 0 < t < 1,

ς(0) = ς(1) = 0,
(3.1)

has a unique solution ς ∈ C[0, 1] given by

ς(t) =

∫ 1

0
ϑ′(s)G(t, s)φ(s)ds. (3.2)

where

G(t, s) =


Zυϑ(t,0)Zυϑ(1,s)−Zυϑ(1,0)Zυϑ(t,s)

Zυϑ(1,0)Γ(υ) , 0 ≤ s ≤ t ≤ 1,
Zυϑ(t,0)Zυϑ(1,s)

Zυϑ(1,0)Γ(υ) , 0 ≤ t ≤ s ≤ 1.
(3.3)

Here G(t, s) means the Green function of fractional BVP (3.1) and the given notation is adopted

for easiness

Zυϑ(t, s) = [ϑ(t)− ϑ(s)]υ−1.

Proof. By applying Lemma 2.3 on first equation of (3.1), we obtain

ς(t) = − 1

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1φ(s)ds

+c1[ϑ(t)− ϑ(0)]υ−1 + c2[ϑ(t)− ϑ(0)]υ−2, for some c1, c2 ∈ R. (3.4)

From the second equation of (3.1), we get c2 = 0 and

c1 =
[ϑ(1)− ϑ(0)]1−υ

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1φ(s)ds.

Substitute the values of c1 and c2 in (3.4), we get

ς(t) = − 1

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1φ(s)ds

+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1φ(s)ds.

Hence

ς(t) = − 1

Γ(υ)

∫ t

0
ϑ′(s)Zυϑ(t, s)φ(s)ds
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+
Zυϑ(t, 0)

Zυϑ(1, 0)

1

Γ(υ)

∫ 1

0
ϑ′(s)Zυϑ(1, s)φ(s)ds

= −
∫ t

0
ϑ′(s)

Zυϑ(t, s)

Γ(υ)
φ(s)ds

+
Zυϑ(t, 0)

Zυϑ(1, 0)

∫ t

0
ϑ′(s)

Zυϑ(1, s)

Γ(υ)
φ(s)ds

+
Zυϑ(t, 0)

Zυϑ(1, 0)

1

Γ(υ)

∫ 1

t
ϑ′(s)Zυϑ(1, s)φ(s)ds

=

∫ t

0
ϑ′(s)

Zυϑ(t, 0)Zυϑ(1, s)−Zυϑ(1, 0)Zυϑ(t, s)

Zυϑ(1, 0)Γ(υ)
φ(s)ds

+

∫ 1

t
ϑ′(s)

Zυϑ(t, 0)Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)
φ(s)ds

=

∫ 1

0
ϑ′(s)G(t, s)φ(s)ds.

�

Lemma 3.2. For all υ ∈ (1, 2]. The Green function given by (3.3) satisfies the following prop-

erties:

(i): G(t, s) is continuous on [0, 1]× [0, 1].

(ii): G(t, s) > 0, 0 < t, s < 1.

(iv): For s ∈ (0, 1)

Γ(υ) max
t∈[0,1]

G(t, s) ≤
Zυϑ(1, s)

Zυϑ(1, 0)
. (3.5)

Proof. Let us assume

G1(t, s) =
Zυϑ(t, 0)Zυϑ(1, s)−Zυϑ(1, 0)Zυϑ(t, s)

Zυϑ(1, 0)Γ(υ)

=
[ϑ(t)− ϑ(0)]υ−1[ϑ(1)− ϑ(s)]υ−1

[ϑ(1)− ϑ(0)]υ−1Γ(υ)
− [ϑ(t)− ϑ(s)]υ−1

Γ(υ)
, 0 ≤ s ≤ t ≤ 1,

and

G2(t, s) =
Zυϑ(t, 0)Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)

=
[ϑ(t)− ϑ(0)]υ−1[ϑ(1)− ϑ(s)]υ−1

[ϑ(1)− ϑ(0)]υ−1Γ(υ)
, 0 ≤ t ≤ s ≤ 1.

Since ϑ ∈ C2[0, 1], one can check easily that G1(t, s) and G2(t, s) are continuous on [0, 1]× [0, 1].

Thus (i) holds. Now, we show that (ii) is satisfied.

Case (1) For 0 ≤ t ≤ s ≤ 1:

Since ϑ is a strictly increasing function, we have

ϑ(1) > ϑ(s)⇒ ϑ(1)− ϑ(s) > 0 whenever s < 1,

ϑ(t) > ϑ(0)⇒ ϑ(t)− ϑ(0) > 0 whenever 0 < t.

which implies G2(t, s) > 0.
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Case (2) For 0 ≤ s ≤ t ≤ 1:

We consider ϑ(1) − ϑ(t) > 0 whenever t < 1. Multiplying both sides by ϑ(s) − ϑ(0) > 0, it

follows that

[ϑ(1)− ϑ(t)] [ϑ(s)− ϑ(0)] > 0,

which leads

ϑ(1)ϑ(s) + ϑ(0)ϑ(t) > ϑ(0)ϑ(1) + ϑ(t)ϑ(s).

i.e.

−ϑ(0)ϑ(1)− ϑ(t)ϑ(s) > −ϑ(1)ϑ(s)− ϑ(0)ϑ(t).

Adding to ϑ(1)ϑ(t) + ϑ(0)ϑ(s) both sides,we get

[ϑ(t)− ϑ(0)] [ϑ(1)− ϑ(s)] > [ϑ(t)− ϑ(s)] [ϑ(1)− ϑ(0)] ,

For 1 < υ ≤ 2,we have

[ϑ(t)− ϑ(0)]υ−1 [ϑ(1)− ϑ(s)]υ−1 > [ϑ(t)− ϑ(s)]υ−1 [ϑ(1)− ϑ(0)]υ−1 ,

Dividing by [ϑ(t)− ϑ(0)]υ−1 , we obtain

[ϑ(t)− ϑ(0)]υ−1

[ϑ(1)− ϑ(0)]υ−1 [ϑ(1)− ϑ(s)]υ−1 > [ϑ(t)− ϑ(s)]υ−1 .

This shows that
Zυϑ(t, 0)

Zυϑ(1, 0)
Zυϑ(1, s) > Zυϑ(t, s)

Hence, we conclude that G1(t, s) > 0.

Finally, we prove that (iii) holds. For this, we have

Case (i) For 0 ≤ s ≤ t ≤ 1:

Since ϑ is a strictly increasing function, we have

ϑ(t) > ϑ(s)⇒ ϑ(t)− ϑ(s) > 0 whenever s < t,

ϑ(t) > ϑ(0)⇒ ϑ(t)− ϑ(0) > 0 whenever 0 < t.

Hence

G(t, s) =
Zυϑ(t, 0)Zυϑ(1, s)−Zυϑ(1, 0)Zυϑ(t, s)

Zυϑ(1, 0)Γ(υ)

=
[ϑ(t)− ϑ(0)]υ−1

[ϑ(1)− ϑ(0)]υ−1

[ϑ(1)− ϑ(s)]υ−1

Γ(υ)
− [ϑ(t)− ϑ(s)]υ−1

Γ(υ)

≤ [ϑ(1)− ϑ(s)]υ−1

[ϑ(1)− ϑ(0)]υ−1Γ(υ)
=

Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)
.

Case (ii) For 0 ≤ t ≤ s ≤ 1:

Since ϑ is a strictly increasing function, we have ϑ(t)− ϑ(0) > 0 whenever 0 < t. Thus

G(t, s) =
Zυϑ(t, 0)Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)

=
[ϑ(t)− ϑ(0)]υ−1

[ϑ(1)− ϑ(0)]υ−1

[ϑ(1)− ϑ(s)]υ−1

Γ(υ)



ON GENERALIZED CAPUTO FRACTIONAL OPERATOR 7

≤ [ϑ(1)− ϑ(s)]υ−1

[ϑ(1)− ϑ(0)]υ−1Γ(υ)
=

Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)
.

Therefore, we conclude that

max
t∈[0,1]

G(t, s) ≤
Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)
, for all s ∈ (0, 1).

�

Definition 3.1. Let a, b ∈ R+(b > a). For any ς ∈ [a, b], we say that P(t, ·) is the upper-control

function if P(t, ς) = sup
a≤η≤ς

P(t, η), and is the lower-control function if P(t, ς) = inf
ς≤η≤b

P(t, η),

Certainly, P(t, ς) and P(t, ς) are nondecreasing on ς and

P(t, ς) ≤ P(t, ς) ≤ P(t, ς).

Definition 3.2. Let ς(t), ς(t) ∈ K and a ≤ ς(t) ≤ ς(t) ≤ b satisfy

−Dυ;ϑ
0+ ς(t) ≥ P(t, ς(t)), or ς(t) ≥

∫ 1

0
ϑ′(s)G(t, s)P(s, ς(s))ds, 0 ≤ t ≤ 1,

and

−Dυ;ϑ
0+ ς(t) ≤ P(t, ς(t)), or ς(t) ≤

∫ 1

0
ϑ′(s)G(t, s)P(s, ς(s))ds, 0 ≤ t ≤ 1,

Then, ς(t) and ς(t) are upper and lower solutions, respectively of problem (1.1).

Theorem 3.1. Suppose P : [0, 1] × R+ → R+ is continuous. Then there exists at least one

positive solution ς(t) of (1.1). Moreover,

ς(t) ≤ ς(t) ≤ ς(t), t ∈ [0, 1].

where ς(t), ς(t) are upper and lower solutions of (1.1).

Proof. Define Q : K → K by

(Qς) (t) =

∫ 1

0
ϑ′(s)G(t, s)P(s, ς(s))ds. (3.6)

Lemma 3.1 shows that fixed points of Q are solutions of (1.1). Since P(s, ς) and G(t, s) are

nonnegative and continuous, Q : K → K is continuous. Define the ball

Br = {ς ∈ K : ‖ς‖ ≤ r} ⊂ K,

and set L := max
(t,ς)∈[0,1]×[0,r]

|P(t, ς)|+ 1. Then for any ς ∈ Br we get

|(Qς) (t)| ≤
∫ 1

0
ϑ′(s)G(t, s) |P(s, ς(s))| ds

≤
∫ 1

0
ϑ′(s) max

t∈[0,1]
G(t, s) |P(s, ς(s))| ds

≤ L

Zυϑ(1, 0)

1

Γ(υ)

∫ 1

0
ϑ′(s)Zυϑ(1, s)ds

=
L

[ϑ(1)− ϑ(0)]υ−1

1

Γ(υ)

∫ 1

0
ϑ′(s)[ϑ(1)− ϑ(s)]υ−1ds
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≤ L
[ϑ(1)− ϑ(0)]

Γ(υ + 1)
.

This show that (QBr) is uniformly bounded.

Now, we prove that Q is equicontinuous. Let ς ∈ Br. Then for t1, t2 ∈ [0, 1] with t1 < t2, we

have

|(Qς)(t2)− (Qς)(t1)| ≤
∫ 1

0
ϑ′(s) |G(t2, s)−G(t1, s)| |P(s, ς(s))| ds. (3.7)

Consider ∆ := |G(t2, s)−G(t1, s)| . Thus

∆ =

∣∣∣∣Zυϑ(t2, 0)Zυϑ(1, s)−Zυϑ(1, 0)Zυϑ(t2, s)

Zυϑ(1, 0)Γ(υ)
+
Zυϑ(t2, 0)Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)

−
Zυϑ(t1, 0)Zυϑ(1, s)−Zυϑ(1, 0)Zυϑ(t1, s)

Zυϑ(1, 0)Γ(υ)
−
Zυϑ(t1, 0)Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)

∣∣∣∣
=

∣∣∣∣ 2Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)
[Zυϑ(t2, 0)−Zυϑ(t1, 0)] +

1

Γ(υ)
[Zυϑ(t1, s)−Zυϑ(t2, s)]

∣∣∣∣
≤

∣∣∣∣ 2Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)

[
[ϑ(t2)− ϑ(0)]υ−1 − [ϑ(t1)− ϑ(0)]υ−1

]∣∣∣∣
+

1

Γ(υ)

∣∣[ϑ(t1)− ϑ(s)]υ−1 − [ϑ(t2)− ϑ(s)]υ−1
∣∣ .

By applying the mean value theorem, then for a, b ∈ (t1, t2)

∆ ≤
2Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)
|t2 − t1| θ′1(a) +

1

Γ(υ)
|t2 − t1| θ′2(b)

= |t2 − t1|
[

2Zυϑ(1, s)

Zυϑ(1, 0)Γ(υ)
θ′1(a) +

1

Γ(υ)
θ′2(b)

]
,

The estimation of (3.7) becomes

|(Qς)(t2)− (Qς)(t1)| ≤ |t2 − t1|
[

2θ′1(a)

Zυϑ(1, 0)

L

Γ(υ)

∫ 1

0
ϑ′(s)[ϑ(1)− ϑ(s)]υ−1ds

+
θ′2(b)L

Γ(υ)

∫ 1

0
ϑ′(s)ds

]
= |t2 − t1|

[
2θ′1(a)

Γ(υ + 1)
[ϑ(1)− ϑ(0)] +

θ′2(b)

Γ(υ)
[ϑ(1)− ϑ(0)]

]
L

= |t2 − t1|
[

2θ′1(a)

Γ(υ + 1)
+
θ′2(b)

Γ(υ)

]
[ϑ(1)− ϑ(0)]L.

As t2 − t1 → 0, |(Qς)(t2)− (Qς)(t1)| → 0, which means that (QBr) is equicontinuous. So by

Arzela-Ascoli theorem, we conclude that Q is completely continuous.

To apply Theorem 2.2, we need only to prove Q : Λ→ Λ, where

Λ = {w(t) : w(t) ∈ K, ς(t) ≤ w(t) ≤ ς(t), t ∈ [0, 1]},

and ‖w‖ = max {|w(t)| ≤ b; t ∈ [0, 1]}. Certainly, Λ is a bounded, closed and convex subset of

C[0, 1]. For any w(t) ∈ Λ, then ς(t) ≤ w(t) ≤ ς(t), it follows from the Definitions 3.1, 3.2 that

(Qw) (t) =

∫ 1

0
ϑ′(s)G(t, s)P(s, w(s))ds ≤

∫ 1

0
ϑ′(s)G(t, s)P(s, w(s))ds
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≤
∫ 1

0
ϑ′(s)G(t, s)P(s, ς(s))ds

≤ ς(t),

and

Qw(t) =

∫ 1

0
ϑ′(s)G(t, s)P(s, w(s))ds ≥

∫ 1

0
ϑ′(s)G(t, s)P(s, w(s))ds

≥
∫ 1

0
ϑ′(s)G(t, s)P(s, ς(s))ds

≥ ς(t).

Thus Qw(t) ∈ Λ, due to ς(t) ≤ Qw(t) ≤ ς(t), t ∈ [0, 1]. Hence Q : Λ → Λ. According to

Theorem 2.2, Q has at least one fixed point ς(t) ∈ Λ for t ∈ [0, 1]. Therefore, the problem (1.1)

has at least one positive solution ς(t) ∈ C[0, 1] and ς(t) ≤ ς(t) ≤ ς(t), t ∈ [0, 1]. �

Corollary 3.1. Let P : [0, 1]× R+ → R+ is continuous, and there exist two constants L1(≥ 0)

and L2(≥ 0) such that

L1 ≤ P(t, κ) ≤ L2, (t, κ) ∈ [0, 1]× R+. (3.8)

Then the problem (1.1) has at least one positive solution ς(t) ∈ C[0, 1]. Moreover, for each

t ∈ (0, 1),

ς(t) ≥ L1

((
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)−1

− 1

)
(ϑ(t)− ϑ(0))υ

Γ(υ + 1)
. (3.9)

and.

ς(t) ≤ L2

((
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)−1

− 1

)
(ϑ(t)− ϑ(0))υ

Γ(υ + 1)
. (3.10)

Proof. Thanks to Definition 3.1 and (3.8), we have

L1 ≤ P(t, κ) ≤ P(t, κ) ≤ L2, (t, κ) ∈ [0, 1]× R+. (3.11)

Consider the following FDE

−Dυ;ϑ
0+ ς(t) = L2, 0 < t < 1,

ς(0) = ς(1) = 0,
(3.12)

Certainly, (3.12) has a positive solution

ς(t) = − L2

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1ds

+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 L2

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1ds

= −L2(ϑ(t)− ϑ(0))υ

Γ(υ + 1)
+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 L2(ϑ(1)− ϑ(0))υ

Γ(υ + 1)

=

((
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)−1

− 1

)
L2 (ϑ(t)− ϑ(0))υ

Γ(υ + 1)
. (3.13)
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Taking into account (3.11), we can find that

ς(t) ≥ − 1

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1P(s, ς(s))ds

+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1P(s, ς(s))ds.

Consequently, ς is the upper solution of (1.1). Also, we consider the following FDE

−Dυ;ϑ
0+ ς(t) = L1, 0 < t < 1,

ς(0) = ς(1) = 0.
(3.14)

Certainly, (3.14) has a positive solution

ς(t) = − L1

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1ds

+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 L1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1ds

= −L1(ϑ(t)− ϑ(0))υ

Γ(υ + 1)
+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 L1(ϑ(1)− ϑ(0))υ

Γ(υ + 1)

=

((
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)−1

− 1

)
L1 (ϑ(t)− ϑ(0))υ

Γ(υ + 1)

Taking into account (3.11), we have

ς(t) ≤ − 1

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1P(s, ς(s))ds

+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1P(s, ς(s))ds. (3.15)

Therefore, ς is the lower solution of (1.1). So, Theorem 3.1 yields that (1.1) has at least one

positive solution ς(t) ∈ C[0, 1] which satisfies the inequality (3.9) and (3.10). �

Theorem 3.2. Let a is a positive constant. Assume that P(t, ς) : [0, 1] × R+ → [a,+∞) is

continuous. If

a < lim
ς→+∞

max
0≤t≤1

P(t, ς)

ς
< +∞, (3.16)

then the problem (1.1) has at least one positive solution ς(t) ∈ C[0, σ] where 0 < σ < 1.

Proof. According to assumption (3.16), there there exist AP > 0 and BP > 0 such that for any

ς(t) ∈ X, we have

P(t, ς(t)) ≤ APς(t) +BP.

Definition 3.1 gives

P(t, ς(t)) ≤ APς(t) +BP. (3.17)

On the other hand, we consider the following FDE

−Dυ;ϑ
0+
ς(t) = APς(t) +BP, 1 < υ ≤ 2, 0 < t < 1. (3.18)
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According to Lemma 3.1, the equation (3.18) has the following equivalent solution

ς(t) = − 1

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1 [APς(s) +BP] ds

+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1 [APς(s) +BP] ds.

Let Φ∗ : K −→ K an operator defined by

Φ∗ς(t) = − 1

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1 [APς(s) +BP] ds

+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1 [APς(s) +BP] ds.

Now, we show that Φ∗ : K −→ K is compact.

Let {ςn} be a secuence in E such ςn → ς as n→∞. For t ∈ [0, σ], we have

|Φ∗ςn(t)− Φ∗ς(t)|

≤ 1

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1AP |ςn(s)− ς(s)| ds

+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1AP |ςn(s)− ς(s)| ds

≤ 2 (ϑ(1)− ϑ(0))υ−1

Γ(υ + 1)
AP ‖ςn − ς‖∞ → 0, as n→∞.

Thus, Φ∗ : K −→ K is continuous. Next, let

Sr = {ς ∈ K : ‖ς‖ ≤ λ} ⊂ K.

Then, for any ς ∈ Sr and t ∈ [0, σ], we have

|(Φ∗ς) (t)| ≤ 1

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1 [AP |ς(s)|+BP] ds

+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1 [AP |ς(s)|+BP] ds

≤ (ϑ(σ)− ϑ(0))υ

Γ(υ + 1)
[APλ+BP] +

(
ϑ(σ)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 (ϑ(1)− ϑ(0))υ

Γ(υ + 1)
[APλ+BP]

≤ 2(ϑ(1)− ϑ(0))υ

Γ(υ + 1)
[APλ+BP] := `.

Thus, ‖Φ∗ς‖ ≤ `. Hence, Φ∗(Sr) is uniformly bounded. Finally, we prove that Φ∗(Sr) is equicon-

tinuous. For each t ∈ [0, σ] and using (3.10), we can estimate the operator derivative as∣∣(Φ∗ς)′ (t)∣∣
≤ 1

Γ(υ − 1)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−2 [AP |ς(s)|+BP] ds

+

∣∣∣∣ ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

∣∣∣∣υ−1 1

Γ(υ − 1)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−2 [AP |ς(s)|+BP] ds

+ (υ − 1)
∣∣ϑ′(t)∣∣ ∣∣∣∣ ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

∣∣∣∣υ−2 1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1 [AP |ς(s)|+BP] ds
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≤ 2(ϑ(t)− ϑ(0))υ−1

Γ(υ)
[AP ‖ς‖+BP]

+ (υ − 1)
∣∣ϑ′(t)∣∣ ∣∣∣∣ ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

∣∣∣∣υ−2 (ϑ(1)− ϑ(0))υ

Γ(υ + 1)
[AP ‖ς‖+BP] .

Since ϑ ∈ C1[0, σ], there exists a constant ν such that sup0≤t≤σ |ϑ′(t)| ≤ ν and from fact that∣∣∣∣ ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

∣∣∣∣υ−2

< 1, for all 1 ≤ υ ≤ 2.

Then ∣∣(Φ∗ς)′ (t)∣∣ ≤ 2(ϑ(t)− ϑ(0))υ−1

Γ(υ)
[AP ‖ς‖+BP]

+ (υ − 1) ν
(ϑ(1)− ϑ(0))υ

Γ(υ + 1)
[AP ‖ς‖+BP]

=

(
2(ϑ(t)− ϑ(0))υ−1

Γ(υ)
+ (υ − 1) ν

(ϑ(1)− ϑ(0))υ

Γ(υ + 1)

)
[AP ‖ς‖+BP] .

Hence, for each t1, t2 ∈ [0, σ] with 0 < t1 < t2 < σ and for ς ∈ Sr, we get

|Φ∗ς(t2)− Φ∗ς(t1)|

=

∫ t2

t1

∣∣(Φ∗ς)′ (s)∣∣ ds
≤

(
2(ϑ(σ)− ϑ(0))υ−1

Γ(υ)
+ (υ − 1) ν

(ϑ(1)− ϑ(0))υ

Γ(υ + 1)

)
[APλ+BP] |t2 − t1| .

So, we can deduce that |Φ∗ς(t2)− Φ∗ς(t1)| → 0 as t2 → t1, that is, the family {Φ∗ς : ς ∈ Sr}
is equicontinuous. The Arzela-Ascoli Lemma implies that Φ∗ is compact.

To apply Theorem 2.2, we need to verify that Φ∗Bζ ⊂ Bζ where

Bζ =

{
ς(t) ∈ K,

∥∥∥∥ς − (ϑ(1)− ϑ(0)− 1)(ϑ(t)− ϑ(0))υ

Γ(υ + 1)
BP

∥∥∥∥ ≤ ζ < +∞
}
,

with ζ ≥ Λ1
1−Λ2

and

Λ1 := 2AP
(ϑ(1)− ϑ(0)− 1)(ϑ(1)− ϑ(0))2υ

(Γ(υ + 1))2 BP

and

Λ2 :=
(ϑ(1)− ϑ(0))υ

Γ(υ + 1)
AP <

1

2
. (3.19)

Clearly, Bζ is bounded, convex, and closed subset of C[0, σ]. Then for any ς ∈ Bζ , we have

‖ς‖ ≤ (ϑ(1)− ϑ(0)− 1)(ϑ(t)− ϑ(0))υ

Γ(υ + 1)
BP + ζ

≤ (ϑ(1)− ϑ(0)− 1)(ϑ(σ)− ϑ(0))υ

Γ(υ + 1)
BP + ζ

≤ (ϑ(1)− ϑ(0)− 1)(ϑ(1)− ϑ(0))υ

Γ(υ + 1)
BP + ζ.

Thus ∥∥∥∥Φ∗ς − (ϑ(1)− ϑ(0)− 1)(ϑ(t)− ϑ(0))υ

Γ(υ + 1)
BP

∥∥∥∥
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≤ (ϑ(t)− ϑ(0))υ

Γ(υ + 1)

[
AP

(
(ϑ(1)− ϑ(0)− 1)(ϑ(1)− ϑ(0))υ

Γ(υ + 1)
BP + ζ

)]
+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 (ϑ(1)− ϑ(0))υ

Γ(υ + 1)

[
AP

(
(ϑ(1)− ϑ(0)− 1)(ϑ(1)− ϑ(0))υ

Γ(υ + 1)
BP + ζ

)]
≤

[
2AP

(ϑ(1)− ϑ(0)− 1)(ϑ(1)− ϑ(0))2υ

(Γ(υ + 1))2 BP

]
+

[
2AP

(ϑ(1)− ϑ(0))υ

Γ(υ + 1)

]
ζ

= Λ1 + Λ2ζ ≤ ζ.

Hence, Theorem 2.2 assures Φ∗ has at least one fixed point, and then (3.18) has at least one

positive solution ς∗(t), where 0 < t < σ. Thus,

ς∗(t) = − 1

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1 [APς

∗(s) +BP] ds

+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1 [APς

∗(s) +BP] ds. (3.20)

Combining (3.20) and (3.17) gives

ς∗(t) ≥ − 1

Γ(υ)

∫ t

0
ϑ′(s)(ϑ(t)− ϑ(s))υ−1P(t, ς∗(t))ds

+

(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1 1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1P(t, ς∗(t))ds.

Undoubtedly, ς∗(t) is the upper solution of (1.1), and we have

ς∗(t) =

[(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1

− 1

]
Iυ;ϑ

0+
(a)

=

[(
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)υ−1

− 1

]
a(ϑ(1)− ϑ(0))υ

Γ(υ + 1)
> 0

is the lower solution of (1.1). By Theorem 3.1, the problem (1.1) has at least one positive

solution ς(t) ∈ C[0, σ], where 0 < σ < 1 and ς∗(t) ≤ ς(t) ≤ ς∗(t). �

Corollary 3.2. Suppose P : [0, 1]× R+ → [a,+∞) is continuous, where a > 0. If

a < lim
ς→+∞

P(t, ς) < +∞. (3.21)

then the problem (1.1) has at least one positive solution.

Proof. By hypothesis (3.21), there exist N1,N2 > 0 such that if ς > N2, we have P(t, ς) < N1.

Let

M = max
0≤t≤1
0≤ς≤N2

P(t, ς).

Then

a ≤ P(t, ς) ≤ N1 +M, for 0 < ς < +∞.
According to Corollary 3.1, the problem (1.1) has at least one positive solution ς(t) ∈ C[0, 1].

Moreover, for each t ∈ (0, 1),

ς(t) ≥ a

((
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)−1

− 1

)
(ϑ(t)− ϑ(0))υ

Γ(υ + 1)
.
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and.

ς(t) ≤ (N1 +M)

((
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)−1

− 1

)
(ϑ(t)− ϑ(0))υ

Γ(υ + 1)
.

�

The following result is based on the Theorem 2.1.

Theorem 3.3. Suppose P : [0, 1] × R+ → R+ is continuous and there exists a constant ℘ > 0

such that

|P(t, ς1)−P(t, ς2)| ≤ ℘ |ς1 − ς2| , ∀t ∈ (0, 1), ς1, ς2 ∈ R+

If

Ω :=
℘ [ϑ(1)− ϑ(0)]

Γ(υ + 1)
< 1, (3.22)

then the problem (1.1) has a unique positive solution ς(t) ∈ C[0, 1].

Proof. Theorem 3.1 assures that (1.1) has at least one positive solution in K given by

ς(t) =

∫ 1

0
ϑ′(s)G(t, s)P(s, ς(s))ds. (3.23)

Hence, we need only to show that Q : C[0, 1]→ C[0, 1] defined by

(Qς)(t) =

∫ 1

0
ϑ′(s)G(t, s)P(s, ς(s))ds. (3.24)

is contraction in C[0, 1]. For the end, let ς1, ς2 ∈ C[0, 1]. Then by our assumption and (3.5), we

have

|(Qς1)(t)− (Qς2)(t)| ≤ max
t∈[0,1]

|(Qς1)(t)− (Qς2)(t)|

≤ max
t∈[0,1]

∫ 1

0
ϑ′(s) |G(t, s)| |P(s, ς1(s))−P(s, ς2(s))| ds

≤ ℘

Zυϑ(1, 0)

1

Γ(υ)

∫ 1

0
ϑ′(s)Zυϑ(1, s) |ς1(s)− ς2(s)| ds

≤ ℘

(ϑ(1)− ϑ(0))υ−1

1

Γ(υ)
‖ς1 − ς2‖

1

Γ(υ)

∫ 1

0
ϑ′(s)(ϑ(1)− ϑ(s))υ−1ds

≤ ℘ [ϑ(1)− ϑ(0)]

Γ(υ + 1)
‖ς1 − ς2‖ = Ω ‖ς1 − ς2‖ .

Since Ω < 1, Q is contraction. Hence, Theorem 2.1, concludes the problem (1.1) has a unique

positive solution ς(t) ∈ C[0, 1]. �

4. Examples

This section gives some examples to illuminate obtained results.

Example 4.1. Consider the fractional BVP

−D
5
3
,sin t

0+
ς(t) = 1 + ς(t)

6+sin(ς(t)) , 0 < t < 1,

ς(0) = ς(1) = 0,
(4.1)
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where υ = 5
3 , ϑ(t) = sin t, and P(t, ς) = 1+ ς

6+sin(ς) . It is easy to see that P(t, ς) is nonnegative

and continuous function for all t ∈ [0, 1] and ς ∈ [0,∞). It is clear that

|P(·, ς)−P(·, v)| ≤ 1

7
|ς − v| = ℘ |ς − v| , ∀ς, v ∈ [0,∞).

Moreover, by some computations, we get

Ω :=
℘ [ϑ(1)− ϑ(0)]

Γ(υ + 1)
=

1
7 [sin(1)− sin(0)]

Γ(5
3 + 1)

≈ 0.08 < 1.

All suppositions of Theorem 3.3 hold. So, Theorem 3.3 guarantees that (4.1) has a unique

positive solution ς(t) ∈ C[0, 1].

Observe that P : [0, 1]× R+ → [1,∞) is continuous and

1 < lim
ς→+∞

P(t, ς) < 2.

Thus, since all the suppositions in Corollary 3.2 are fulfilled with a = 1, Corollary 3.2 can be

applied to the problem (4.1).

Example 4.2. To apply Corollary 3.1, we consider P(t, ς) as in Example 4.1. It follows that

1 ≤ P(t, σ) ≤ 8

7
, (t, σ) ∈ [0, 1]× R+.

Hence

1 ≤ P(t, σ) ≤ P(t, σ) ≤ 8

7
.

Here L1 = 1 and L2 = 8
7 . Let the fractional BVP

−Dυ,ϑ
0+
ς(t) = L2, 0 < t < 1,

ς(0) = ς(1) = 0.

which has a positive solution

ς(t) =
8

7

((
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)−1

− 1

)
(ϑ(t)− ϑ(0))υ

Γ(υ + 1)
.

Similarly, the fractional BVP

−Dυ,ϑ
0+
ς(t) = L1, 0 < t < 1,

ς(0) = ς(1) = 0,

has a positive solution

ς(t) =

((
ϑ(t)− ϑ(0)

ϑ(1)− ϑ(0)

)−1

− 1

)
(ϑ(t)− ϑ(0))υ

Γ(υ + 1)
.

In particular, if ϑ(t) = t, then ς(t) = 8
7

tυ

Γ(υ+1)

(
1
t − 1

)
and ς(t) = tυ

Γ(υ+1)

(
1
t − 1

)
.

Thus, the functions ς(t) and ς(t) are upper and lower solution of (4.1), respectively. By

Corollary 3.1, we get that (4.1) has at least one positive solution ς(t) ∈ C[0, 1], which produces

the inequalities (3.9) and (3.10).
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5. Conclusion

The research of generalized FC has become a novel field of investigation. Through some fixed

point theorem, properties of Green functions, and upper and lower control function, a further of

existence results of positive solutions for the generalized problem are obtained. Two examples

are offered to illustrate the fundamental results. The epilogue obtained in this work will be

very advantageous in the applications. Also, we anticipate finding some applications in further

nonlinear problems.
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