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ABSTRACT. In this paper, we study the following quasilinear

Choquard equations of the form
—Au+V(@)u = A(lul**)u]** u = (j2] ™ * G(u)g(u), z € RY,
where 1 > o > %, V € C(RY,R), g € C(RN, R). Distinguished from two

situations lim V(z) = +ooor lim V(z) < 400, we research the existence

of nontrivial solutions and a sequence of high energy solutions.

1991 Mathematics Subject Classifications: 35J20, 35770, 35P05, 35P30,34B15,

58E05, 4THO4.
Key Words: quasilinear Choquard equation; dual approach; high energy solution.

1. Introduction and Preliminaries

Consider the following quasilinear Choquard equations of the form

—Au+V(x)u — A(]u\m)\ul%‘_% = (x| * G(u))g(u), = € RN, (1.1)
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where 1 > a > £, V € C(RV,R), g € C(RVY, R).
As a =1 and p = 0, the equation (1.1) degenerate into the form
—Au+V(z)u — A([ul>)u = g(u), = € RY. (1.2)

Solutions of the equation (1.2) are standing waves the following quasilinear Schrédinger

equation of the form
i + O = V(@) + kAP ([P0 + g(¢) =0, =€ RY. (1.3)

The quasilinear Schrodinger equations (1.3) are derived as models of several physical phe-
nomena, such as see [9, 12, 13, 20, 23]. It begins with [22] for the studies on Mathematics.
In the resent years, greater important attention has been paid to the equation (1.2), for
example, see [5, 6, 7, 11, 14, 15, 16, 19, 24, 26]. Especially, in [14], the ground state solutions

for the following problems
—Au+ V(z)u — A(u**)|ul?**2u = AufPtu, 2 € RN

was studied via the Lagrange multiplier method; in [3], the uniqueness of the ground state

solutions for the following the problems
—Au A+ du— A(u*)u?* %y = [uPtu, 2 € RY
was studied via a dual approach.
As a = %, the equation (1.1) degenerate into the form
—Au+V(z)u= (|z| ™+« Gu))g(u), z € RV, (1.4)

(1.4) first appeared in [21], it was used to describe the quantum mechanics of a polaron.
Next, Choquard used (1.4) to describe an electron trapped in its own hole (see [10]). In [17],
(1.4) was used as a model of self-gravitating matter. Recently, greater important attention

has been paid to the equation (1.4), for example, see [1, 2, 4, 18, 27, 30, 31].

In [29], the author had studied the existence of positive solutions, negative solutions

and sequence of high energy solutions for the equation (1.1) with % <a<l1l p=0and



lim V(z) = 4+o0. In the present paper, we study the equation (1.1) with % < a <1,

|z|—o00

0 < ;1 < 2 < N. Distinguished from two situations lim V(z) = 4occor lim V(x) < 400,

we research the existence of nontrivial solutions and a sequence of high energy solutions.

In order to reduce the statements for main results, we list the assumptions as follows:

(V) Ve CRN,R),0<Vy:= inf V(z)and Vo := lim V(x) < +oo.
z€RN |z|—00

(91) 9 € C(R,R), tg(t) > 0 for all £ # 0, and there exist C1 > 0,20(2— &) < q1 < g2 <

20[(2]]\\,[__2“) such that

lg(®)] < CL(lH® = + [t =)

for all t € R.

(92)
tg(t) —4aG(t) > 0, Vt € R,

where G(t) = fgg(s)ds.

Set
HYRN) = {u e L*(RY) : Vu € L2 (RM)}

with the inner product
(u,v) g1 = / (Vu - Vv +w)dz
RN
and the norm
Jull o = [ (Vul? + a2
RN
When Vo = 400, set
E={ue H'RY): / [[Vul? + V(z)u?)dz < 400}
RN
with the inner product

(u,v)g = /RN [Vu - Vv + V(x)uv|dx

and the norm

lulle = (u,u)p.



When V,, < 400, set E = H'(RY). Then E is a Hilbert space. By the continuity of the
embedding
E < L*(RM),s € [2,2%],

there exist constants as > 0, 2 < s < 2%, such that

ulls < asllulle, Vue E,

where we denote by || - ||s the norm of L¥(RY). Moreover, by Lemma 3.4 in [33] we know

that as Vo = 400, the embedding E < L*(R") is compact for each 2 < s < 2*.

We observe that formally equation (1.1) is the Euler-Lagrange equation associated of

the natural energy functional J : E— R given by

1 1 1 N 1 B
J(u) = 2/RNvu|2d:c+2/m 1/(se)u2dgc+B /RNW(UF )|2daz—2/RN(|x| PG (u))G (u)d.

Clearly, & [on [V([u?®)[2dz = a [ [u>?*~Y|Vu|?dz. Hence
J(u) = 1/ Vu|2d:c+1/ V(x)qux—i—a/ ]u\2(2a_1)\Vu|2d:c—1/ (|z]#+G(u))G(u)dx.
2 RN 2 RN RN 2 RN

According to [3], we can define f by

1
VI 20 (B

f(t) on te0,+00)

and
f(=t)=—f(t) on te€ (—,0].

After the change of variables, we obtain the following functional

I0) = J(@) = 5 [ VePdotg [ V@Pwde =5 [ (GG 0)dr,

which is well defined in E under the assumptions (V') and (g1). Moreover, a critical point

v of the functional I corresponds to a weak solutions of the following equation

1

A = s el G ) = V@) ) in BY - (15)

and u = f(v) is a weak solution (1.1).

The following lemma appeared in [29].



Lemma 2.1 The function f(t) enjoys the following properties:
(f1) f is uniquely defined C*° function and invertible.

(f2) 0< f(t)<1, VteR.

(f3) [f(®)] <[t], vt € R.

(f1) lim & =1.

t—0 ¢

() tim 0 s S0y
t——+o00 t t——o0 t

(fo) L <atf'(t) <af(t), Vt>0; af(t)<atf(t) <P vi<o.

(fr) f*(t) < V2alt], VteR.

(fs) The function f?(t)is strictly convex.

(fo) There exists a positive constant § > 0 such that

olel, [ <1,

@) = )
O)t|za, |t| > 1.

(f10) There exist positive constants C7 and Cy such that

|t] < Chlf(t)] + Cal f(£)[**, Yt € R.

(fu) P71 OF ()] < 4=, VEER.
(fi2) f(t)is odd, f2(t) is even.

(f13) For each £ > 0, there exists a positive constant C(&) such that

fPe(et) < CEf* ().

(fia) The function f(t)f'(t)t~! is strictly decreasing for ¢ > 0.

(fi5) The function fP(t)f’(t)t~! is strictly increasing for p > 4o — 1 and ¢ > 0.



By the Hardy-Littlewood-Sobolev inequality ( For example, see Proposition 1.1 in [4] )

and Lemma 2.1 we can prove the following Lemma 2.2.

Lemma 2.2 If assumptions (V') and (g1) hold, then the functionals I is well defined on
E,and I € C*(E,R).

Through out the paper, C and C; are used in various places to denote positive constants.

3. Main results

Theorem 3.1 Assume the conditions (V') and (g1)-(g2) hold. Then the equation (1.1)
has a nontrivial solution. Furthermore, if g is odd, then the equation (1.1) has a sequence

of solutions {uy,} C E such that ||u,||z — oo and J(u,) — +oc.

Proof. First, we prove that I satisfies the Cerami condition. Let {v,} C E be any
Cerami sequence of I, i.e. {I(v,)} is bounded and (1 + ||v,||g)I’(v,) — 0 in E*. Set
A2 = [on[[Voa? + V() f?(vn)]dz. By Lemma 2.1 (fi1) and (g2), there exists a constant
C > 0 such that

C 2 o) - gttt T
1 a—1
> 4/]1@ |V |2dz + A RNV(x)f2(vn)dx
# [ (ol 5 G g £ (o)) = 56U )
> 1a2
= 14n

This shows that the sequence {A,} is bounded. Moreover, from Step 2 of proof of Theorem
3.1 in [29] we know that there exists a constant C' > 0 such that A2 > C||v,||%, and hence

the sequence {v,} is bounded in E. Note that, for each t € R, by Lemma 2.1 (f11) one has

d

2(1 - «)
— >
dt 0

SO O] = (FOF + FOF'0) > 20~ I OF = {5 oy 2 0

Hence, as the proof of Lemma 3.11 in [8], we may prove that there is a constant C' > 0 such



that

. IV (vn = v)[Pdz + o V(@)[f (va) ' (vn) = F(0) f'(0)](vn = v)dz > Cllvn —v]F. (3.1)

Moreover, by (g1) and Lemma 2.1 (f7), (f11), we have
(S O] < Callt]3+t 4571, Ve, (3:2)

and

IG(f(t))] < Ca(lt]2 +|t]2), VEeR. (3.3)

Set s = QJ%JX#. Then s € (1,%) and G(f(w)), g(f(w))f (w)w € L*(RN) for all w € E.

Notice that

2§ES%<2*-
2 2c

(19)  For the case V., = 400, then by the compactness of embedding E «— L*(RV)(2 <
5 < 2*), up to a subsequence, one has v, — v in E, v, — v in L*(R"Y) for all 2 < s < 2*

and v, (z) = v(x) a.e. on RY. By the Hardy-Littlewood-Sobolev inequality we know that

I/RN[(ISU\_“*G(f(vn)))g(f(vn))f’(vn)— (7"« G(f(0)))g(f () f'(0)](vn — v)da]

<CUGf @a)lls - lg(f wa)) f (vn)(vn = V)]s + 1GF @D - lg(f (@) (v) (v = v)]ls]
<Clllg(f (Wn))f' (vn)(vn = v)lls + llg(f () ' (0) (vn = 0)[Is]

<Clv = vll s + o = vll2) 0, (34

(2°) For the case V., < 400, then by the boundedness of {v,,} in E, up to a subsequence,
we can assume that v, — v in E, v, — vin Lj (RY) for each s € [1,2*) and v, (z) — v(z)

a.e. € RY. By (3.2) and (3.4) we know that

I/RN[(IOSI_“ * G(f (vn)))g(f (on)) ' (0n) = (|27 G(f (0)))g(f (V) £ (0)](vn = v)d]
<Clllg(f (wn)) ' (n) (v = v)lls + llg(f ) () (vn = v)]ls] (3.5)

and for any € > 0 there exist 0 < dy < pg such that

N—

o
N+

24+N—p
N—-2

lg(f ) (B)] < e(Jt] ) + Xiso,00) ([EDIg(F()f' ()], YVt ER,



where x; is the characteristic function on [dg, po|. Hence

d0,p0]

lg(f (wn))f' (vn) (vn = )3

s(24+N—p)

s(N—p)
<Ce / (oal ™5 1 o] 57 ) 0 — o] da (3.6)
RN

+C [ o lesDla(F @) (00) o = vl*da

and

s(N—p) s(24+N—p)
CS/ ([oa] "7 4 Joa] = 52 v — vf°da
RN

. (3.7)
N ENE
<Celllvnlly™ " llvn = I3 + [lon = v[I3, lvnll,. ] <Ce.
For any r > 0 and n € N, set B, := {z € RV : |z| < r}, B¢ := RN\ B, and
A= {z € R 6y < Jun(@)] < po}.
Then
¢ [ oo lo( @) @) o, = ol da
—C [ lg( ) (0o~ opde
" (3.8)
ZC[/ l9(f () ' (vn)[*lvn —vlsder/ l9(f (vn)) ' (vn) "o — v|*da]
ApNBy ApNBE
<C 9(f (0n)) ' (vn)]*|vn — v|*dz + C| A N By,
AnNBy
where |A,, N BE| denotes the Lebesgue measure of A, N BE. Similar to (3.4), we have
C [l @)l — vl*de = 0,(0). 39)
ApnNBy
Now, we prove
lim |A,N B¢ = 0. (3.10)

r—+00

Indeed, if this is not true, then there exist § > 0 and r; T +o0o such that
|An N By | >0, VkeN

Obviously,
\AnﬂBﬁk] < |Ap| :=Pn < 400, VEkeN.



On the other hand, set Q := By, \ By We have ©; N Q; = () whenever i # j, and

Thk+1"

o0
B, =J%, VkeN

i=k
Hence
o0
§<|AnNBL|=> AN, VEEN,
i=k
and hence
o0

B> |An N B = Ay N Q| = +oc.
=1

This is a contradiction. Therefore, (3.10) holds. Now, we prove

lim |A, N B =0 uniformly in n € N.

r—+00

In fact, for any € > 0 there exists a rg > 1 such that

/ lv|?dz < ¢ whenever T > rg.
B

c
r

ZESE

o
Take t1 = ro,t; T +oo be such that D; := B{\Bf,, , By, = U D; and
j=1

/D \v[de<%, VjeN

J
By Faou Lemma, we get
€
n—o0 j
Hence, as r > rg, one has

62 limsup | A, N BE| <82 limsup |4, N By,

n—oo n—oo

glimsup/ v, |2 d
n—oo JA,NBg,

Together with (3.10), we know that (3.11) holds.

limsup/ v, |2da §/ lvf’de < —, VjeN.
AnOD; D; 2

(3.11)



For any ¢ > 0, by (3.11) there exists a large r > 0 such that |A, N BE| < e. Using
(3.6) — (3.9) we know

lg(f (wn)).f (vn)(vn — )1 = on(1). (3.12)
Similarly, we have

lg(f(@)).f'(v)(vn = v)s- (3.13)

Consequently, from (3.5) we get

/RN[(!&“\_“ * G(f (vn))g(f (0n)) f (vn) = (|27 = G(£ (0)))g(f (V) f'(0)](vn = v)dz = 0n(1).

Summing up (1°) and (2%), together with (3.1) we obtain
on(1) =(I'(vs) = I'(v), vy — v)
= [ V= Pdat [ V@@ ) - F0)f @)~ )iz
RN RN
- /RN[(\%'!_” * G(f(vn)g(f(on) f (vn) — (Jz] 7 % G(f(0))g(f () f'(v)](vy — v)da
>C||v, — UHQE + on(1).
Hence v,, — v in E. This shows that I satisfies the Cerami condition.

Next, we prove that I has a mountain pass geometry. Indeed, set A(v) := [ [pn ( (|Vv|? +
V(z) f2(v))da:]§. As paragraph 1 of proof of Lemma 3.3 in [8] we can prove that there exist
C, p1 > 0 such that

A%(v) > C||v||%, whenever |v|g < p1. (3.14)

Similar to (3.4) we know that
5 a a
\/ (I G(f(0)G(f(v))dz| < CIG(f ) < Cllvllg +lvlg)
Consequently, for small 0 < p < min{1, p;}, we have
9 a L2 2 a a2
I(v) = Clllvllz = vl g = lvllg ] = C(p” = po —pa) =6 >0 whenever |[v]|g = p.

Take an e € E with [el|p = 1. Set B(e) := 1 [on(|2|7# x G(f(€)))G(f(e))dz and B(t) :=
B(te) for t > 0. Then, by (g2) and Lemma 2.1 (fg), one has

g't) _ 4
2T Vit>0. (3.15)

10




For s > 1, integrating (3.15) over [1, s] we obtain B(se) > s*B(e). Hence

L4

Tse) < 55 = 55" [ (ol 5 GUE)G( )z = —ox (3.16)

as s — +oo. Consequently, there is a sop > max{1, p} such that I(vg) := I(spe) < 0. This

shows that I has a mountain pass geometry.

Moreover, for any finite-dimensional subspace E C F, we assert that there exists a
constant R > p such that I < 0 on E\Bg. Otherwise, there is a sequence {v,} C E such
that s, := ||v,||p — o0 and I(v,) > 0. Set e, := —22—. By (3.16), one has

lvnlle

L4

0 Tlo) = T(suea) < 55t = 55b [ (1l 5 G )G )i

and hence

im [ ([z]7"« G(f(en)))G(f (en))dx = 0.

n—oo RN

By the Fatou Lemma we know that

/RN(Ix!‘ﬂ * G(f(e)G(f(e))dz = 0.

Hence e(z) = 0 a.e. = € RY. By the equivalency of all norms in E, there is a constant
C5 > 0 such that

v]|2 > Collv]|%, ¥ veE.

Hence

~ 2 : 2
0= nlgrolo lenllz > nlgrolo bllen = C2,
a contradiction. This shows that there exists a constant R > 0 such that I < 0 on E\Bg.

Since E «— L?(RV) and L?(R¥) is a separable Hilbert space, F has a countable orthog-
onal basis {e;}. Set Ej, := span{eq,...,e;} and Zj, := Eki7 then F = E, @ Z;. Hence

I‘SpﬂZk > 6> 0.

Notice that the Deformation Theorem still hold under the Cerami condition (see [32]).

Hence Theorem 2.2 and Theorem 9.12 in [25] hold under the Cerami condition. Therefore,

11



Theorem 3.1 follows from Theorem 2.2 and Theorem 9.12 in [25]. This completes the proof.
O

Remark 3.2 From the proof of Theorem 3.1 we know that when V,, = +o00, the limit

of 1 can relax as 2a(2 — &) < q1.

Theorem 3.3 Assume the conditions (V) with Vo < 400 and (g,) hold. If V €
CHRN,R) with - VV(z) € L®°(RY) and V(rz) is non-increasing in » € R. Then the
equation (1.1) has a nontrivial solution. Especially, if V' = 1, then the equation (1.1) has a

ground state solution.

Proof. Set

P(v) ;:¥ /RN |Vo|2dx + g /RN V(x)f2(v)dx + % /RN (z-VV(2))f*(v)dz

2N —p TH v v))dx
-5 s GU)GU )

Define a mapping ® : R x £ — E by

O(r,v)(z) :=v(e"x), V(r,v)e RxE— E.

Then

[(®(r,v)) :e(N;)T /R VoPdr + e;v /]R V(D))

SN
- [l GG )

Set

[:={5¢eC(0,1,R x E): 5(0) = (0,0), Io®(5(1)) < 0}.
Then

D= {80714 €T} = fy € C(0, 11, B) :1(0) = 0, I(;(1)) < 0}

and

inf sup Io®(F(t)) = inf sup I(v(t)) :=c.
yeT te[0,1] 7€l te(0,1]

From the proof of Theorem 3.1 we know that for small p > 0, we have

I(v) > § > 0 whenever ||v| g = p.

12



Moreover, for any v € E\{0} and ¢ > 0, set vs(z) = v(7). Then

(N-2 2N—p

N
I(v) = 5 /]RN \Vo|2dx + Z/RN V(tz) f*(v)dx —

/RN(lx\# * G(f(v)G(f(v))dx
N2 .

N
<t [vekae s e [P = S [ e G @)

— —00

as t — 400. Hence, I has a mountain pass geometry, and hence ¢ > 0. Using Theorem 2.9
in [28], for M =[0,1], My ={0,1}, X =R x E and ¢ = I o ®, we know that there exists a

sequence {(rp,vn)} C R x E such that
li_)m I(®(rp,vn)) = ¢ and (I o ®) (rp,v,) — 0.
Notice that

(I o®) (rp,vn), (r,v)) = I'(®(rp,vp)), ®(rn,v)) + rP(®(rn,v,)), V (r,v) ER X E.

‘We have
I'(®(rp,vn)) = 0, P(®(rp,v,)) — 0.

Set wy, := ®(ry, vy,). Then

c+on(1) =I(wy,) — P(wy)

2N — i
(N=2)rp N+2— Nrn N —
_€ ) I 2 € ) H oo\ £2
= 5N g /RN|V’Un| dx + 5 2N—,U/]RNV(€ x) f*(vy)dz
e(N+2)7"n

_— € - e x)) 2 (v, )da.
g @ V) P

For any x € RY | set h(r) := V(rx). Then 0 > h/(r) = x - VV (rz) for all » € R. Hence

e 0u(1) = I(wn) = g P(un)
TN et G N e P
—m /RN |an]2dx + 2(;\;\[__“/” /]RN V(:U)fz(wn)dx
> s A2 > Cllua

This shows {w,} C E is bounded.

13



Next, we prove that there exist oo > 0, o > 0 and {z,,} C RY such that

n—oo

liminf/ [w,|? > do. (3.17)
BGo(xn)

Indeed, if the conclusion is not true, then by Lemma 1.21 in [28] we know that
w, — 0 in L*RY), Vsec[22%.
Similar to the case (1Y) of Theorem 3.1 we can prove

lim [ [(ja] ™ * G(f (w))g(F (wa)) f (wn)de = 0.

n—oo JpN
Hence
— (I (w J(wy)
on(1) ={1" (1), )

2(2a—1)
- /RN“ a1 iﬂi%‘ e Venlda + /R V@) ) + on(1)

ZCHwnH% + o, (1),

and hence |wy,||g — 0. Consequently, 0 < ¢ = lim I(w,) = 0, a contradiction. Therefore,

n—oo
(3.17) holds.

By the boundedness of {wy,} and (3.17) we know that, up to a subsequence, there exists
a vg € E\{0} such that w, — v in E, w, — vy in Lt (RY) for each ¢t € [1,2*) and
wp(x) — vo(x) a.e. x € RY. Form the proof of the case (2°) of Theorem 3.1 we know
wy, — vo in E. Consequently, I(vg) = ¢, I'(vg) = 0 and P(vp) = 0. This shows that v is a

nontrivial solution of (1.5). Consequently, ug := f(vo) is a nontrivial solution of (1.1).

If V=1, then set M := {v € E\{0} : I'(v) = 0} and ¢* := in/a I(v). Since vy € M,
ve
¢ > ¢*. On the other hand, for any wy € M, one has Pohozaev identity P(wg) = 0. Define
v :[0,+00) = E by
wo(g), t >0,
Y(t)(@) = '
0, t=0.

We claim that v : [0, +00) — E is continuous. Indeed, if ty € (0,+00), 0 < t,, — to, then
el =62 [ Vel [ juofds = o)
RN RN

14



Hence there exists a v € E such that vy(t,) — v in E, y(t,) — v in L} (RY) for each
p € [1,2%), v(tn)(z) = v(z) a.e. z € RY. Notice that for any ¢ € C§°(RY), one has

/ ’y(tn)(w)@(l’)dw—/ t wo(@)p(tn))dz — [ y(to)(x)e(x)de.
RN RN RN

By the density of C§°(RY) in L2(RY) we know that v(t,) — 7(to) in L>(RY). Consequently,
~(to) = v, and hence (t,,) — v(to) in E. This shows that 7 : (0,4+00) — E is continuous.
Moreover, as 0 < t,, — 0, we have ||v(t,)||g — 0, obviously. Therefore, 7 : [0, 400) — E is

continuous.

Notice that as ¢ > 0,

N-2 N
0= [ et [ o
2N—p »
T /Rwﬂx\ * G(f (w0)))G(f (wo))dax
and
_9)N-3 N1
%I(V(t)) :(NZ)LL/RN Vo |2dz + Nt2 /RN 2 (wo)dar
_ 2N —p—1
_@N M;t / (|| ™" G(f (wo)))G(f (wo))da.
RN

Since 0 < pp <2< N,

d N -2 N
GO =02 [ [VuPdo+ 3 [ Plws
RN RN

dt
RN
=P(wo) =0,
d N — N
al(V(t))|t<1 :tQN—u—l[QtNTi /RN |Vwo‘2dx + Ny /RN f2(wo)dx
(2N —p)

SBNn /R (a2l ™% G (w0)))G(f (wo) ]

SEN=E=1P(4) = 0

and
N -2 N
-7 — 2N—p—1 / 2 / 2

_2N-—p /R (a7 G (wo)))G(f (wo))da]

2

<2N=1=1p(y) = 0.

15



Hence I(v(1)) = max I(~(t)). Moreover, obviously, there exists a t* > 0 such that I(y(t*)) <

0. Define 71 : [0,1] — E by 71(t) := v(¢t*). Then v; € I'. Hence

¢ < sup I(7i(t)) = sup I(y(tt")) < I(v(1)) = I(wo),
te[0,1] te[0,1]

and hence ¢ < ¢*. Therefore, ¢ = ¢*. This shows vy is a ground state solution (1.5), and

hence ug = f(vo) is a ground state solution (1.1).

References

1]

C. O. Alves, D. Cassani, C. Tarsi, M. Yang, Existence and concentration of ground state
solutions for a critical nonlocal Schrédinger equation in R2, J. Diff. Equ. 261(2016),
1933-1972.

C. O. Alves, A. B. Nobrega, M. Yang, Multi-bump solutions for Choquard equation
with deepening potential well, Calc. Var. 55:48(2016), 1-28.

S. Adachi, T. Watanabe, Uniqueness of the ground state solutions of quasilinear

Schrodinger equations, Nonlinear Anal. 75(2012), 819-833.

C. O. Alves, M. Yang, Multiplicity and concentration of solutions for quasilinear

Choquard equation, J. Math. Phys. 55(2014), 061502, 1-21.

J. M. Bezerra do O, O. H. Miyagaki, S. H. M. Soares, Soliton solutions for quasilinear
Schrodinger equations: the critical exponential case, Nonlinear Anal., 67(2007), 3357-
3372.

J. M. Bezerra do O, O. H. Miyagaki, S. H. M. Soares, Soliton solutions for quasilinear
Schrodinger equations with critical growth, J. Diff. Equ., 248(2010) 722-744.

M.Colin, L.Jean, Solutions for a quasilinear Schrédinger equation:a dual approach, Non-

linear Anal. 56(2004)213-226.

X. D. Fang, A. Szulkin, Multiple solutions for a quasilinear Schrédinger equation, J.
Diff. Equ., 254(2013), 2015-2032.

16



[9] S. Kurihura, Large-amplitude quasi-solitons in superfluid films, J. Phys. Soc. Jpn.
50(1981), 3262-3267.

[10] E. H. Lieb, Existence and uniqueness of the minimizing solution of Choquard’s non-

linear equation, Stud. Appl. Math. 57(2)(1976/1977),93-105.

[11] X. Liu, J. Liu, Z. Q. Wang, Quasilinear elliptic equations via perturbation method,
Proc. Amer. Math. Soc., 141(2013), 253-263.

[12] A. G. Litvak, A. M. Sergeev, One dimensional collapse of plasma waves, JETP Lett.,
27(1978), 517-520.

[13] E. W. Laedke, K. H. Spatschek, L. Stenflo, Evolution theorem for a class of perturbed
envelope soliton solutions, J. Math. Phys. 24(1983), 2764-2769.

[14] J. Liu, Z. Q. Wang, Soliton solutions for quasilinear Schrédinger Equations I, Proc.
Amer. Math. Soc. 131(2003) 441-448.

[15] J. Liu, Y. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrodinger equations,
I1, J. Diff. Equ. 187(2003), 473-493.

[16] J. Liu, Y. Wang, Z. Q. Wang, Solutions for quasilinear Schrodinger Equations via the
Nehari Method, Comm. Part. Diff. Equ. 29(2004)879-892.

[17] L. M. Moroz, R. Penrose, P. tod, Spherically-symmetric solutions of the Schrédinger-
Newton equations, Classical Quantum Gravity, 15(9)(1998), 2733-2742.

[18] V. Moroz, J. Van Schaftingen, Ground states of nonlinear Choquard equations: Exis-

tence, qualitative properties and decay asymptotics, J. Funct. Anal., 265(2013), 153-184.

[19] J.M. do O, U. Severo, Solitary waves for a class of quasilinear Schrédinger equations

in dimension two, Calc. Var. 38(2010), 275-315.

[20] A. Nakamura, Damping andmod ification of exciton solitary waves, J. Phys. Soc. Jpn
42(1977), 1824-1835.

[21] S. Pekar, Untersuchung iber die Elektronentheorie der Kristalle, Verlag, Berlin, 1954.

17



[22] M. Poppenberg, On the local well posedness of quasi-linear Schrodinger equations in

arbitrary space dimension, J. Diff. Equ. 172(2001), 83-115.

[23] M. Porkolab, M.V. Goldman, Upper hybrid solitons and oscillating two-stream insta-
bilities, Phys. Fluids, 19(1976), 872-881.

[24] M. Poppenberg, K. Schmitt, Z. Q. Wang, On the existence of soliton solutions to
quasilinear Schréinger equations, Calc. Var. 14(2002), 329-344.

[25] P. H. Rabinowitz, Minimax Methods in Critical Point Theory with Application to
Differential Equations, in:CBMS Regional Conf. Ser. inMath, vol.65, American Mathe-

matical Society, Providence, RI, 1986.

[26] David Ruiz, Gaetano Siciliano, Existence of ground states for a modified nonlinear

Schrodinger equation, Nonlinearity, 23(2010), 1221-1233.

[27] D. Ruiz, J. V. Schaftingen, Odd symmetry of least energy nondal solutions for the
Choquard equation, J. Diff. Equ. 264(2018), 1231-1262.

[28] M. Willem, Minimax theorems, in:Progr. Nonlinear Differential Equations Appl.,vol.
24, Birkhauser Boston, Inc. Boston, MA, 1996.

[29] X. Wu, Multiple solutions for quasilinear Schrodinger equations with a parameter, J.

Diff. Equ. 256(2014), 2619-2632.

[30] W. Zhang, X. Wu, Nodal solutions for a fractional Choquard equation, J. Math. Anal.
Appl. 464(2018), 1167-1183.

[31] W. Zhang, X. Wu, Existence, multiplicity, and concentration of positive solutions for a
quasilinear Choquard equation with critical exponent, J. Math. Phys. 60(2019), 051501,
1-19.

[32] Zhong Chen-Kui, Fan Xian-Ling, Chen Wen-yuan, Introduction of Non-linear Func-
tional Analysis, Lanzhou University Publishing House, (1998).

[33] W. M. Zou, M. Schechter, Critical Point Theory and its Applications, Springer, New
York, (2006).

18



