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ABSTRACT. In this paper, we study the following quasilinear

Choquard equations of the form

−∆u+ V (x)u−∆(|u|2α)|u|2α−2u = (|x|−µ ∗G(u))g(u), x ∈ RN ,

where 1 ≥ α > 1
2 , V ∈ C(RN ,R), g ∈ C(RN , R). Distinguished from two

situations lim
|x|→∞

V (x) = +∞ or lim
|x|→∞

V (x) < +∞, we research the existence

of nontrivial solutions and a sequence of high energy solutions.

1991 Mathematics Subject Classifications: 35J20, 35J70, 35P05, 35P30,34B15,

58E05, 47H04.
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1. Introduction and Preliminaries

Consider the following quasilinear Choquard equations of the form

−∆u+ V (x)u−∆(|u|2α)|u|2α−2u = (|x|−µ ∗G(u))g(u), x ∈ RN , (1.1)
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where 1 ≥ α > 1
2 , V ∈ C(RN ,R), g ∈ C(RN , R).

As α = 1 and µ = 0, the equation (1.1) degenerate into the form

−∆u+ V (x)u−∆(|u|2)u = g(u), x ∈ RN . (1.2)

Solutions of the equation (1.2) are standing waves the following quasilinear Schrödinger

equation of the form

iψt +△ψ − V (x)ψ + k△(h(|ψ|2))h′(|ψ|2)ψ + g(ψ) = 0, x ∈ RN . (1.3)

The quasilinear Schrödinger equations (1.3) are derived as models of several physical phe-

nomena, such as see [9, 12, 13, 20, 23]. It begins with [22] for the studies on Mathematics.

In the resent years, greater important attention has been paid to the equation (1.2), for

example, see [5, 6, 7, 11, 14, 15, 16, 19, 24, 26]. Especially, in [14], the ground state solutions

for the following problems

−∆u+ V (x)u−∆(|u|2α)|u|2α−2u = λ|u|p−1u, x ∈ RN

was studied via the Lagrange multiplier method; in [3], the uniqueness of the ground state

solutions for the following the problems

−∆u+ λu− κ∆(|u|2α)|u|2α−2u = |u|p−1u, x ∈ RN

was studied via a dual approach.

As α = 1
2 , the equation (1.1) degenerate into the form

−∆u+ V (x)u = (|x|−µ ∗G(u))g(u), x ∈ RN . (1.4)

(1.4) first appeared in [21], it was used to describe the quantum mechanics of a polaron.

Next, Choquard used (1.4) to describe an electron trapped in its own hole (see [10]). In [17],

(1.4) was used as a model of self-gravitating matter. Recently, greater important attention

has been paid to the equation (1.4), for example, see [1, 2, 4, 18, 27, 30, 31].

In [29], the author had studied the existence of positive solutions, negative solutions

and sequence of high energy solutions for the equation (1.1) with 1
2 < α ≤ 1, µ = 0 and
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lim
|x|→∞

V (x) = +∞. In the present paper, we study the equation (1.1) with 1
2 < α ≤ 1,

0 < µ < 2 < N . Distinguished from two situations lim
|x|→∞

V (x) = +∞ or lim
|x|→∞

V (x) < +∞,

we research the existence of nontrivial solutions and a sequence of high energy solutions.

In order to reduce the statements for main results, we list the assumptions as follows:

(V) V ∈ C(RN ,R), 0 < V0 := inf
x∈RN

V (x) and V∞ := lim
|x|→∞

V (x) ≤ +∞.

(g1) g ∈ C(R,R), tg(t) > 0 for all t ̸= 0, and there exist C1 > 0, 2α(2− µ
N ) ≤ q1 ≤ q2 <

2α(2N−µ
N−2 ) such that

|g(t)| ≤ C1(|t|q1−1 + |t|q2−1)

for all t ∈ R.

(g2)

tg(t)− 4αG(t) ≥ 0, ∀t ∈ R,

where G(t) =
∫ t
0 g(s)ds.

Set

H1(RN ) = {u ∈ L2(RN ) : ∇u ∈ L2(RN )}

with the inner product

⟨u, v⟩H1 =

∫
RN

(∇u · ∇v + uv)dx

and the norm

∥u∥
H1 = [

∫
RN

(|∇u|2 + u2)dx]1/2.

When V∞ = +∞, set

E = {u ∈ H1(RN ) :

∫
RN

[|∇u|2 + V (x)u2]dx < +∞}

with the inner product

⟨u, v⟩E =

∫
RN

[∇u · ∇v + V (x)uv]dx

and the norm

∥u∥E = ⟨u, u⟩1/2E .
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When V∞ < +∞, set E = H1(RN ). Then E is a Hilbert space. By the continuity of the

embedding

E ↪→ Ls(RN ), s ∈ [2, 2∗],

there exist constants as > 0, 2 ≤ s ≤ 2∗, such that

∥u∥s ≤ as∥u∥E , ∀u ∈ E,

where we denote by ∥ · ∥s the norm of Ls(RN ). Moreover, by Lemma 3.4 in [33] we know

that as V∞ = +∞, the embedding E ↪→ Ls(RN ) is compact for each 2 ≤ s < 2∗.

We observe that formally equation (1.1) is the Euler-Lagrange equation associated of

the natural energy functional J : E→ R given by

J(u) =
1

2

∫
RN

|∇u|2dx+1

2

∫
RN

V (x)u2dx+
1

4α

∫
RN

|∇(|u|2α)|2dx−1

2

∫
RN

(|x|−µ∗G(u))G(u)dx.

Clearly, 1
4α

∫
RN |∇(|u|2α)|2dx = α

∫
RN |u|2(2α−1)|∇u|2dx. Hence

J(u) =
1

2

∫
RN

|∇u|2dx+1

2

∫
RN

V (x)u2dx+α

∫
RN

|u|2(2α−1)|∇u|2dx−1

2

∫
RN

(|x|−µ∗G(u))G(u)dx.

According to [3], we can define f by

f ′(t) =
1√

1 + 2α|f(t)|2(2α−1)
on t ∈ [0,+∞)

and

f(−t) = −f(t) on t ∈ (−∞, 0].

After the change of variables, we obtain the following functional

I(v) := J(f(v)) =
1

2

∫
RN

|∇v|2dx+ 1

2

∫
RN

V (x)f2(v)dx− 1

2

∫
RN

(|x|−µ ∗G(f(v)))G(f(v))dx,

which is well defined in E under the assumptions (V ) and (g1). Moreover, a critical point

v of the functional I corresponds to a weak solutions of the following equation

−∆v =
1√

1 + 2α|f(v)|2(2α−1)
[(|x|−µ ∗G(f(v)))g(f(v))− V (x)f(v)] in RN (1.5)

and u = f(v) is a weak solution (1.1).

The following lemma appeared in [29].
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Lemma 2.1 The function f(t) enjoys the following properties:

(f1) f is uniquely defined C∞ function and invertible.

(f2) 0 < f ′(t) ≤ 1, ∀t ∈ R.

(f3) |f(t)| ≤ |t|, ∀t ∈ R.

(f4) lim
t→0

f(t)

t
= 1.

(f5) lim
t→+∞

f2α(t)

t
=

√
2α, lim

t→−∞

f2α(t)

t
= −

√
2α.

(f6)
f(t)
2 ≤ αtf ′(t) ≤ αf(t), ∀t ≥ 0; αf(t) ≤ αtf ′(t) ≤ f(t)

2 , ∀t ≤ 0.

(f7) f2α(t) ≤
√
2α|t|, ∀t ∈ R.

(f8) The function f2(t)is strictly convex.

(f9) There exists a positive constant θ > 0 such that

|f(t)| ≥

 θ|t|, |t| ≤ 1,

θ|t|
1
2α , |t| ≥ 1.

(f10) There exist positive constants C1 and C2 such that

|t| ≤ C1|f(t)|+ C2|f(t)|2α, ∀t ∈ R.

(f11) |f2α−1(t)f ′(t)| < 1√
2α
, ∀t ∈ R.

(f12) f(t) is odd, f2(t) is even.

(f13) For each ξ > 0, there exists a positive constant C(ξ) such that

f2α(ξt) ≤ C(ξ)f2α(t).

(f14) The function f(t)f ′(t)t−1 is strictly decreasing for t > 0.

(f15) The function fp(t)f ′(t)t−1 is strictly increasing for p ≥ 4α− 1 and t > 0.

5



By the Hardy-Littlewood-Sobolev inequality ( For example, see Proposition 1.1 in [4] )

and Lemma 2.1 we can prove the following Lemma 2.2.

Lemma 2.2 If assumptions (V ) and (g1) hold, then the functionals I is well defined on

E, and I ∈ C1(E,R).

Through out the paper, C and Ci are used in various places to denote positive constants.

3. Main results

Theorem 3.1 Assume the conditions (V ) and (g1)-(g2) hold. Then the equation (1.1)

has a nontrivial solution. Furthermore, if g is odd, then the equation (1.1) has a sequence

of solutions {un} ⊂ E such that ∥un∥E → ∞ and J(un) → +∞.

Proof. First, we prove that I satisfies the Cerami condition. Let {vn} ⊂ E be any

Cerami sequence of I, i.e. {I(vn)} is bounded and (1 + ∥vn∥E)I ′(vn) → 0 in E∗. Set

A2
n :=

∫
RN [|∇vn|2 + V (x)f2(vn)]dx. By Lemma 2.1 (f11) and (g2), there exists a constant

C > 0 such that

C ≥ I(vn)−
1

8α
⟨I ′(vn),

f(vn)

f ′(vn)
⟩

≥ 1

4

∫
RN

|∇vn|2dx+
4α− 1

8α

∫
RN

V (x)f2(vn)dx

+

∫
RN

(|x|−µ ∗G(f(vn)))[
1

8α
f(vn)g(f(vn))−

1

2
G(f(vn))]dx

≥ 1

4
A2

n.

This shows that the sequence {An} is bounded. Moreover, from Step 2 of proof of Theorem

3.1 in [29] we know that there exists a constant C > 0 such that A2
n ≥ C∥vn∥2E , and hence

the sequence {vn} is bounded in E. Note that, for each t ∈ R, by Lemma 2.1 (f11) one has

d

dt
[f(t)f ′(t)] = (f ′(t))2 + f(t)f ′′(t) > 2(1− α)|f ′(t)|2 = 2(1− α)

1 + 2α|f(t)|2(2α−1)
≥ 0.

Hence, as the proof of Lemma 3.11 in [8], we may prove that there is a constant C > 0 such
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that∫
RN

|∇(vn − v)|2dx+

∫
RN

V (x)[f(vn)f
′(vn)− f(v)f ′(v)](vn − v)dx ≥ C∥vn − v∥2E . (3.1)

Moreover, by (g1) and Lemma 2.1 (f7), (f11), we have

|g(f(t))f ′(t)| ≤ C2(|t|
q1
2α

−1 + |t|
q2
2α

−1), ∀ t ∈ R, (3.2)

and

|G(f(t))| ≤ C2(|t|
q1
2α + |t|

q2
2α ), ∀ t ∈ R. (3.3)

Set s = 2N
2N−µ . Then s ∈ (1, Nµ ) and G(f(w)), g(f(w))f ′(w)w ∈ Ls(RN ) for all w ∈ E.

Notice that

2 ≤ sq1
2α

≤ sq2
2α

< 2∗.

(10) For the case V∞ = +∞, then by the compactness of embedding E ↪→ Ls(RN )(2 ≤

s < 2∗), up to a subsequence, one has vn ⇀ v in E, vn → v in Ls(RN ) for all 2 ≤ s < 2∗

and vn(x) → v(x) a.e. on RN . By the Hardy-Littlewood-Sobolev inequality we know that

|
∫
RN

[(|x|−µ ∗G(f(vn)))g(f(vn))f ′(vn)− (|x|−µ ∗G(f(v)))g(f(v))f ′(v)](vn − v)dx|

≤C[∥G(f(vn))∥s · ∥g(f(vn))f ′(vn)(vn − v)∥s + ∥G(f(v))∥s · ∥g(f(v))f ′(v)(vn − v)∥s]

≤C[∥g(f(vn))f ′(vn)(vn − v)∥s + ∥g(f(v))f ′(v)(vn − v)∥s]

≤C(∥vn − v∥ sq1
2α

+ ∥vn − v∥ sq2
2α

) → 0. (3.4)

(20) For the case V∞ < +∞, then by the boundedness of {vn} in E, up to a subsequence,

we can assume that vn ⇀ v in E, vn → v in Ls
loc(RN ) for each s ∈ [1, 2∗) and vn(x) → v(x)

a.e. x ∈ RN . By (3.2) and (3.4) we know that

|
∫
RN

[(|x|−µ ∗G(f(vn)))g(f(vn))f ′(vn)− (|x|−µ ∗G(f(v)))g(f(v))f ′(v)](vn − v)dx|

≤C[∥g(f(vn))f ′(vn)(vn − v)∥s + ∥g(f(v))f ′(v)(vn − v)∥s] (3.5)

and for any ε > 0 there exist 0 < δ0 < ρ0 such that

|g(f(t))f ′(t)| ≤ ε(|t|
N−µ
N + |t|

2+N−µ
N−2 ) + χ[δ0,ρ0](|t|)|g(f(t))f

′(t)|, ∀ t ∈ R,

7



where χ[δ0,ρ0] is the characteristic function on [δ0, ρ0]. Hence

∥g(f(vn))f ′(vn)(vn − v)∥ss

≤Cε
∫
RN

(|vn|
s(N−µ)

N + |vn|
s(2+N−µ)

N−2 )|vn − v|sdx

+ C

∫
RN

χ[δ0,ρ0](|vn|)|g(f(vn))f
′(vn)|s|vn − v|sdx

(3.6)

and

Cε

∫
RN

(|vn|
s(N−µ)

N + |vn|
s(2+N−µ)

N−2 )|vn − v|sdx

≤Cε[∥vn∥
2(N−µ)
2N−µ

2 ∥vn − v∥s2 + ∥vn − v∥s
2∗
∥vn∥

2∗(2+N−µ)
2N−µ

2∗
] ≤ Cε.

(3.7)

For any r > 0 and n ∈ N, set Br := {x ∈ RN : |x| < r}, Bc
r := RN\Br and

An := {x ∈ RN : δ0 ≤ |vn(x)| ≤ ρ0}.

Then

C

∫
RN

χ[δ0,ρ0](|vn|)|g(f(vn))f
′(vn)|s|vn − v|sdx

=C

∫
An

|g(f(vn))f ′(vn)|s|vn − v|sdx

=C[

∫
An∩Br

|g(f(vn))f ′(vn)|s|vn − v|sdx+

∫
An∩Bc

r

|g(f(vn))f ′(vn)|s|vn − v|sdx]

≤C
∫
An∩Br

|g(f(vn))f ′(vn)|s|vn − v|sdx+ C|An ∩Bc
r|,

(3.8)

where |An ∩Bc
r| denotes the Lebesgue measure of An ∩Bc

r. Similar to (3.4), we have

C

∫
An∩Br

|g(f(vn))f ′(vn)|s|vn − v|sdx = on(1). (3.9)

Now, we prove

lim
r→+∞

|An ∩Bc
r| = 0. (3.10)

Indeed, if this is not true, then there exist δ > 0 and rk ↑ +∞ such that

|An ∩Bc
rk
| ≥ δ, ∀ k ∈ N.

Obviously,

|An ∩Bc
rk
| ≤ |An| := βn < +∞, ∀ k ∈ N.
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On the other hand, set Ωk := Bc
rk
\Bc

rk+1
. We have Ωi ∩ Ωj = ∅ whenever i ̸= j, and

Bc
rk

=

∞∪
i=k

Ωi, ∀ k ∈ N.

Hence

δ ≤ |An ∩Bc
rk
| =

∞∑
i=k

|An ∩ Ωi|, ∀ k ∈ N,

and hence

βn ≥ |An ∩Bc
r1 | =

∞∑
i=1

|An ∩ Ωi| = +∞.

This is a contradiction. Therefore, (3.10) holds. Now, we prove

lim
r→+∞

|An ∩Bc
r| = 0 uniformly in n ∈ N. (3.11)

In fact, for any ε > 0 there exists a r0 > 1 such that∫
Bc

r

|v|2dx < ε whenever r ≥ r0.

Take t1 = r0, tj ↑ +∞ be such that Dj := Bc
tj\B

c
tj+1

, Bc
r0 =

∞∪
j=1

Dj and

∫
Dj

|v|2dx < ε

2j
, ∀ j ∈ N.

By Faou Lemma, we get

lim sup
n→∞

∫
An∩Dj

|vn|2dx ≤
∫
Dj

|v|2dx < ε

2j
, ∀ j ∈ N.

Hence, as r ≥ r0, one has

δ20 lim sup
n→∞

|An ∩Bc
r| ≤δ20 lim sup

n→∞
|An ∩Bc

r0 |

≤ lim sup
n→∞

∫
An∩Bc

r0

|vn|2dx

= lim sup
n→∞

∞∑
j=1

∫
An∩Dj

|vn|2dx

<

∞∑
j=1

ε

2j
= ε.

Together with (3.10), we know that (3.11) holds.
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For any ε > 0, by (3.11) there exists a large r > 0 such that |An ∩ Bc
r| < ε. Using

(3.6)− (3.9) we know

∥g(f(vn))f ′(vn)(vn − v)∥ss = on(1). (3.12)

Similarly, we have

∥g(f(v))f ′(v)(vn − v)∥s. (3.13)

Consequently, from (3.5) we get∫
RN

[(|x|−µ ∗G(f(vn)))g(f(vn))f ′(vn)− (|x|−µ ∗G(f(v)))g(f(v))f ′(v)](vn − v)dx = on(1).

Summing up (10) and (20), together with (3.1) we obtain

on(1) =⟨I ′(vn)− I ′(v), vn − v⟩

=

∫
RN

|∇(vn − v)|2dx+

∫
RN

V (x)[f(vn)f
′(vn)− f(v)f ′(v)](vn − v)dx

−
∫
RN

[(|x|−µ ∗G(f(vn)))g(f(vn))f ′(vn)− (|x|−µ ∗G(f(v)))g(f(v))f ′(v)](vn − v)dx

≥C∥vn − v∥2E + on(1).

Hence vn → v in E. This shows that I satisfies the Cerami condition.

Next, we prove that I has a mountain pass geometry. Indeed, set A(v) := [
∫
RN (|∇v|2 +

V (x)f2(v))dx]
1
2 . As paragraph 1 of proof of Lemma 3.3 in [8] we can prove that there exist

C, ρ1 > 0 such that

A2(v) ≥ C∥v∥2E , whenever ∥v∥E ≤ ρ1. (3.14)

Similar to (3.4) we know that

|
∫
RN

[(|x|−µ ∗G(f(v)))G(f(v))dx| ≤ C∥G(f(v))∥2s ≤ C(∥v∥
q1
α
E + ∥v∥

q2
α
E )

Consequently, for small 0 < ρ < min{1, ρ1}, we have

I(v) ≥ C[∥v∥2E − ∥v∥
q1
α
E − ∥v∥

q2
α
E ] = C(ρ2 − ρ

q1
α − ρ

q2
α ) := δ > 0 whenever ∥v∥E = ρ.

Take an e ∈ E with ∥e∥E = 1. Set B(e) := 1
2

∫
RN (|x|−µ ∗ G(f(e)))G(f(e))dx and β(t) :=

B(te) for t > 0. Then, by (g2) and Lemma 2.1 (f6), one has

β′(t)

β(t)
≥ 4

t
, ∀ t > 0. (3.15)
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For s > 1, integrating (3.15) over [1, s] we obtain B(se) ≥ s4B(e). Hence

I(se) ≤ 1

2
s2 − 1

2
s4

∫
RN

(|x|−µ ∗G(f(e)))G(f(e))dx→ −∞ (3.16)

as s → +∞. Consequently, there is a s0 > max{1, ρ} such that I(v0) := I(s0e) < 0. This

shows that I has a mountain pass geometry.

Moreover, for any finite-dimensional subspace Ẽ ⊂ E, we assert that there exists a

constant R > ρ such that I < 0 on Ẽ\BR. Otherwise, there is a sequence {vn} ⊂ Ẽ such

that sn := ∥vn∥E → ∞ and I(vn) ≥ 0. Set en := vn
∥vn∥E . By (3.16), one has

0 ≤ I(vn) = I(snen) ≤
1

2
s2n − 1

2
s4n

∫
RN

(|x|−µ ∗G(f(en)))G(f(en))dx,

and hence

lim
n→∞

∫
RN

(|x|−µ ∗G(f(en)))G(f(en))dx = 0.

By the Fatou Lemma we know that∫
RN

(|x|−µ ∗G(f(e)))G(f(e))dx = 0.

Hence e(x) = 0 a.e. x ∈ RN . By the equivalency of all norms in Ẽ, there is a constant

C2 > 0 such that

∥v∥22 ≥ C2∥v∥2E , ∀ v ∈ Ẽ.

Hence

0 = lim
n→∞

∥en∥22 ≥ lim
n→∞

b∥en∥2E = C2,

a contradiction. This shows that there exists a constant R > 0 such that I < 0 on Ẽ\BR.

Since E ↪→ L2(RN ) and L2(RN ) is a separable Hilbert space, E has a countable orthog-

onal basis {ej}. Set Ek := span{e1, ..., ek} and Zk := E⊥
k , then E = Ek ⊕ Zk. Hence

I|Sρ∩Zk
≥ δ > 0.

Notice that the Deformation Theorem still hold under the Cerami condition (see [32]).

Hence Theorem 2.2 and Theorem 9.12 in [25] hold under the Cerami condition. Therefore,
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Theorem 3.1 follows from Theorem 2.2 and Theorem 9.12 in [25]. This completes the proof.

�

Remark 3.2 From the proof of Theorem 3.1 we know that when V∞ = +∞, the limit

of q1 can relax as 2α(2− µ
N ) ≤ q1.

Theorem 3.3 Assume the conditions (V ) with V∞ < +∞ and (g1) hold. If V ∈

C1(RN ,R) with x · ∇V (x) ∈ L∞(RN ) and V (rx) is non-increasing in r ∈ R. Then the

equation (1.1) has a nontrivial solution. Especially, if V ≡ 1, then the equation (1.1) has a

ground state solution.

Proof. Set

P (v) :=
N − 2

2

∫
RN

|∇v|2dx+
N

2

∫
RN

V (x)f2(v)dx+
1

2

∫
RN

(x · ∇V (x))f2(v)dx

− 2N − µ

2

∫
RN

(|x|−µ ∗G(f(v)))G(f(v))dx.

Define a mapping Φ : R× E → E by

Φ(r, v)(x) := v(e−rx), ∀ (r, v) ∈ R× E → E.

Then

I(Φ(r, v)) =
e(N−2)r

2

∫
RN

|∇v|2dx+
eNr

2

∫
RN

V (erx)f2(v)dx

− e(2N−µ)r

2

∫
RN

(|x|−µ ∗G(f(v)))G(f(v))dx.

Set

Γ̃ := {γ̃ ∈ C([0, 1],R× E) : γ̃(0) = (0, 0), I ◦ Φ(γ̃(1)) < 0}.

Then

Γ := {Φ ◦ γ̃ : γ̃ ∈ Γ̃} = {γ ∈ C([0, 1], E) : γ(0) = 0, I(γ(1)) < 0}

and

inf
γ̃∈Γ̃

sup
t∈[0,1]

I ◦ Φ(γ̃(t)) = inf
γ∈Γ

sup
t∈[0,1]

I(γ(t)) := c.

From the proof of Theorem 3.1 we know that for small ρ > 0, we have

I(v) ≥ δ > 0 whenever ∥v∥E = ρ.

12



Moreover, for any v ∈ E\{0} and t > 0, set vt(x) = v(xt ). Then

I(vt) =
tN−2

2

∫
RN

|∇v|2dx+
tN

2

∫
RN

V (tx)f2(v)dx− t2N−µ

2

∫
RN

(|x|−µ ∗G(f(v)))G(f(v))dx

≤ t
N−2

2

∫
RN

|∇v|2dx+
tN

2
C

∫
RN

f2(v)dx− t2N−µ

2

∫
RN

(|x|−µ ∗G(f(v)))G(f(v))dx

→ −∞

as t→ +∞. Hence, I has a mountain pass geometry, and hence c > 0. Using Theorem 2.9

in [28], for M = [0, 1], M0 = {0, 1}, X = R×E and φ = I ◦Φ, we know that there exists a

sequence {(rn, vn)} ⊂ R× E such that

lim
n→∞

I(Φ(rn, vn)) = c and (I ◦ Φ)′(rn, vn) → 0.

Notice that

⟨(I ◦ Φ)′(rn, vn), (r, v)⟩ = ⟨I ′(Φ(rn, vn)),Φ(rn, v)⟩+ rP (Φ(rn, vn)), ∀ (r, v) ∈ R× E.

We have

I ′(Φ(rn, vn)) → 0, P (Φ(rn, vn)) → 0.

Set wn := Φ(rn, vn). Then

c+ on(1) = I(wn)−
1

2N − µ
P (wn)

=
e(N−2)rn

2
· N + 2− µ

2N − µ

∫
RN

|∇vn|2dx+
eNrn

2
· N − µ

2N − µ

∫
RN

V (ernx)f2(vn)dx

− e(N+2)rn

2(2N − µ)

∫
RN

(x · ∇V (ernx))f2(vn)dx.

For any x ∈ RN , set h(r) := V (rx). Then 0 ≥ h′(r) = x · ∇V (rx) for all r ∈ R. Hence

c+ on(1) = I(wn)−
1

2N − µ
P (wn)

≥e
(N−2)rn

2
· N + 2− µ

2N − µ

∫
RN

|∇vn|2dx+
eNrn

2
· N − µ

2N − µ

∫
RN

V (ernx)f2(vn)dx

=
N + 2− µ

2(2N − µ)

∫
RN

|∇wn|2dx+
N − µ

2(2N − µ)

∫
RN

V (x)f2(wn)dx

≥ N − µ

2(2N − µ)
A2(wn) ≥ C∥wn∥2E .

This shows {wn} ⊂ E is bounded.
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Next, we prove that there exist σ0 > 0, δ0 > 0 and {xn} ⊂ RN such that

lim inf
n→∞

∫
Bσ0 (xn)

|wn|2 ≥ δ0. (3.17)

Indeed, if the conclusion is not true, then by Lemma 1.21 in [28] we know that

wn → 0 in Ls(RN ), ∀ s ∈ [2, 2∗).

Similar to the case (10) of Theorem 3.1 we can prove

lim
n→∞

∫
RN

[(|x|−µ ∗G(f(wn)))g(f(wn))f(wn)dx = 0.

Hence

on(1) =⟨I ′(wn),
f(wn)

f ′(wn)
⟩

=

∫
RN

[1 + (2α− 1) · 2α|f(wn)|2(2α−1)

1 + 2α|f(wn)|2(2α−1)
]|∇wn|2dx+

∫
RN

V (x)f2(wn)dx+ on(1)

≥C∥wn∥2E + on(1),

and hence ∥wn∥E → 0. Consequently, 0 < c = lim
n→∞

I(wn) = 0, a contradiction. Therefore,

(3.17) holds.

By the boundedness of {wn} and (3.17) we know that, up to a subsequence, there exists

a v0 ∈ E\{0} such that wn ⇀ v0 in E, wn → v0 in Lt
loc(RN ) for each t ∈ [1, 2∗) and

wn(x) → v0(x) a.e. x ∈ RN . Form the proof of the case (20) of Theorem 3.1 we know

wn → v0 in E. Consequently, I(v0) = c, I ′(v0) = 0 and P (v0) = 0. This shows that v0 is a

nontrivial solution of (1.5). Consequently, u0 := f(v0) is a nontrivial solution of (1.1).

If V ≡ 1, then set M := {v ∈ E\{0} : I ′(v) = 0} and c∗ := inf
v∈M

I(v). Since v0 ∈ M,

c ≥ c∗. On the other hand, for any w0 ∈ M , one has Pohozaev identity P (w0) = 0. Define

γ : [0,+∞) → E by

γ(t)(x) =

 w0(
x
t ), t > 0,

0, t = 0.

We claim that γ : [0,+∞) → E is continuous. Indeed, if t0 ∈ (0,+∞), 0 < tn → t0, then

∥γ(tn)∥2E = tN−2
n

∫
RN

|∇w0|2dx+ tNn

∫
RN

|w0|2dx→ ∥γ(t0)∥2E .

14



Hence there exists a v ∈ E such that γ(tn) ⇀ v in E, γ(tn) → v in Lp
loc(R

N ) for each

p ∈ [1, 2∗), γ(tn)(x) → v(x) a.e. x ∈ RN . Notice that for any φ ∈ C∞
0 (RN ), one has∫

RN

γ(tn)(x)φ(x)dx =

∫
RN

tNn w0(x)φ(tnx))dx→
∫
RN

γ(t0)(x)φ(x)dx.

By the density of C∞
0 (RN ) in L2(RN ) we know that γ(tn)⇀ γ(t0) in L

2(RN ). Consequently,

γ(t0) = v, and hence γ(tn) → γ(t0) in E. This shows that γ : (0,+∞) → E is continuous.

Moreover, as 0 < tn → 0, we have ∥γ(tn)∥E → 0, obviously. Therefore, γ : [0,+∞) → E is

continuous.

Notice that as t > 0,

I(γ(t)) =
tN−2

2

∫
RN

|∇w0|2dx+
tN

2

∫
RN

f2(w0)dx

− t2N−µ

2

∫
RN

(|x|−µ ∗G(f(w0)))G(f(w0))dx

and
d

dt
I(γ(t)) =

(N − 2)tN−3

2

∫
RN

|∇w0|2dx+
NtN−1

2

∫
RN

f2(w0)dx

− (2N − µ)t2N−µ−1

2

∫
RN

(|x|−µ ∗G(f(w0)))G(f(w0))dx.

Since 0 < µ < 2 < N ,

d

dt
I(γ(t))|t=1 =

N − 2

2

∫
RN

|∇w0|2dx+
N

2

∫
RN

f2(w0)dx

− 2N − µ

2

∫
RN

(|x|−µ ∗G(f(w0)))G(f(w0))dx

=P (w0) = 0,

d

dt
I(γ(t))|t<1 =t

2N−µ−1[
N − 2

2tN+2−µ

∫
RN

|∇w0|2dx+
N

tN−µ2

∫
RN

f2(w0)dx

− (2N − µ)

2

∫
RN

(|x|−µ ∗G(f(w0)))G(f(w0))dx]

>t2N−µ−1P (w0) = 0

and
d

dt
I(γ(t))|t>1 =t

2N−µ−1[
N − 2

2tN+2−µ

∫
RN

|∇w0|2dx+
N

2tN−µ

∫
RN

f2(w0)dx

− 2N − µ

2

∫
RN

(|x|−µ ∗G(f(w0)))G(f(w0))dx]

<t2N−µ−1P (w0) = 0.
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Hence I(γ(1)) = max
t≥0

I(γ(t)). Moreover, obviously, there exists a t∗ > 0 such that I(γ(t∗)) <

0. Define γ1 : [0, 1] → E by γ1(t) := γ(tt∗). Then γ1 ∈ Γ. Hence

c ≤ sup
t∈[0,1]

I(γ1(t)) = sup
t∈[0,1]

I(γ(tt∗)) ≤ I(γ(1)) = I(w0),

and hence c ≤ c∗. Therefore, c = c∗. This shows v0 is a ground state solution (1.5), and

hence u0 = f(v0) is a ground state solution (1.1).
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