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ABSTRACT. In this paper, we concern the modified Schrödinger e-

quations

−ε2∆u+ V (x)u− ε2u∆u2 = |u|22∗−2u+ g(u), x ∈ RN .

First, a existence result of ground state positive solutions is given. Nex-

t, we research multiplicity and concentration of positive solutions. Where

N ≥ 2, ε is positive parameters and 2∗ = 2N
N−2 is the critical exponent,

V ∈ C(RN ,R+), g ∈ C(R,R). Our results improve corresponding results

in [10] (X. He, A. Qian, W. Zou, Existence and concentration of positive

solutions for quasilinear Schrödinger equations with critical growth, Nonlin-

earity, 26(2013), 3137-3168).
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nent.

1 Introduction and Preliminaries

This paper deals with the existence, multiplicity and concentration of positive solu-

tions for modified Schrödinger equations with critical growth

−ε2∆u+ V (x)u− ε2∆(u2)u = |u|22∗−2u+ g(u), x ∈ RN , (1.1)

where N ≥ 2, 2∗ = 2N
N−2 . Moreover, V ∈ C(RN ,R), g ∈ C(R,R) satisfy the following

assumptions:

(V ) 0 < V0 := inf
x∈RN

V (x) < lim
|x|→∞

V (x) := V∞ ≤ ∞;

(G) (g1) g(s) = o(|s|) as |s| → 0;

(g2) there exist q ∈ (4, 22∗) and σ > PN such that

lim
s→+∞

g(s)

sq−1
= 0, g(s) ≥ C0s

σ−1, ∀ s > 0,

where PN = 4 if N ≥ 6 and PN = 2(N+2)
N−2 if N = 2, 3, 4, 5.

(g3)
g(s)
s3

is increasing in (0,+∞), g(s) = 0 for s ≤ 0.

Solutions of (1.1) are related to the standing wave solutions of the form

ψ(x, t) = e−iEt/εu(x)

for the Schrödinger equations

iε
∂ψ

∂t
= −ε2△ψ + V (x)ψ − ε2△(ψ2)ψ − f(ψ), x ∈ RN . (1.2)

The equation (1.2) appears naturally in mathematical physics and had been derived as

models of several physical phenomena. We refer the reader to [2, 4, 6] and references

therein for more physical motivations and development of physical aspects. The equation

(1.1) has been extensively studied in recent years, for example, see [1, 3, 5, 7, 9, 10, 12, 13,
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14, 15, 16, 17, 18, 19, 20, 21]. Particularly, in [10], the multiplicity and concentration of

positive solutions of the equation (1.1) were studied, where except the conditions (V ) and

(G), authors add the following two hash conditions on the function g:

(g4) g ∈ C1(R,R);

(g5) there exists θ ∈ (4, 22∗) such that

0 < θG(s) := θ

∫ s

0
g(t)dt ≤ sg(s), ∀ s ∈ (0,+∞).

Motivated by the above reason, in the present paper, our aim is to research the existence,

multiplicity and concentration of positive solutions for problem (1.1) without (g4) and (g5).

Our results show that the two conditions (g4) and (g5) are no need.

Our main results as follows:

Theorem 1 Suppose that (V ) and (G) are satisfied. Then there exist ε∗ > 0 such that

for any ε ∈ (0, ε∗), the problem (1.1) possesses a ground state positive solution.

Theorem 2 Suppose that (V ) and (G) are satisfied. Then for any δ > 0 there exist

ε∗ > 0 such that for any ε ∈ (0, ε∗), the problem (1.1) has at least catΛδ
(Λ) positive

solutions. Moreover, if uε denotes one of these solutions and ζε ∈ RN is its global maximum,

then lim
ε→0

V (ζε) = V0 and lim
|x|→∞

uε(x) = 0. Where Λ := {x ∈ RN : V (x) = V0} and

Λδ := {x ∈ RN : d(x,Λ) ≤ δ}.

We need the following preliminaries.

The Sobolev space H1(RN ) is defined by

H1(RN ) = {u ∈ L2(RN ) : |∇u| ∈ L2(RN )}

with the natural norm

∥u∥H1(RN ) = (

∫
RN

u2dx+

∫
RN

|∇u|2dx)
1
2 .

Moreover, we define the homogeneous Sobolev space

D1,2(RN ) = {u ∈ L2∗(RN ) : |∇u| ∈ L2(RN )}
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with the norm

∥u∥2D1,2(RN ) =

∫
RN

|∇u|2dx,

which can be equivalently defined as the completion of C∞
0 (RN ) under the norm ∥·∥D1,2(RN ).

We have the following results.

Lemma 1.1 ([26]) For N ≥ 2, there exists a constant C = C(N) > 0 such that

∥u∥L2∗α (RN ) ≤ C∥u∥D1,2(RN ) for every u ∈ D1,2(RN ). Moreover the embedding H1(RN ) ↪→

Ls(RN ) is continuous for any s ∈ [2, 2∗], and is locally compact whenever s ∈ [2, 2∗).

Lemma 1.2 ([26]) Assume that {un} is bounded in H1(RN ) and

lim
n→∞

sup
y∈RN

∫
BR(y)

|un(x)|2dx = 0,

where R > 0. Then un → 0 in Ls(RN ) for every 2 ≤ s < 2∗.

Remark 1.1 Similarly, at the case that the sequence {|un|
2∗} is vanishing, we can prove

that un → 0 in Ls(RN ) for every 2 < s ≤ 2∗.

The equation (1.1) is equivalent to the equation

−∆u+ V (εx)u− u∆u2 = |u|22∗−2u+ g(u), x ∈ RN . (1.3)

Set

X = {u ∈ Eε : u
2 ∈ H1(RN )},

where Eε is defined as

Eε = {u ∈ H1(RN ) :

∫
RN

V (εx)u2dx < +∞}

with the norm

∥u∥ε =
(∫

RN

(
|∇u|2 + V (εx)u2

)
dx

) 1
2
.

Define the functional

J̃ε(u) =
1

2

∫
RN

(1 + 2u2)|∇u|2dx+
1

2

∫
RN

V (εx)u2dx− 1

22∗

∫
RN

|u|22∗dx−
∫
RN

G(u)dx,
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where G(u) :=
∫ u
0 g(t)dt. Then J̃ε is well defined on X. We say that u ∈ X is a weak

solution of (1.3) if

0 =

∫
RN

(
∇u∇φ+ V (εx)uφ

)
dx+ 2

∫
RN

(u2∇u∇φ+ |∇u|2uφ)dx−
∫
RN

|u|22∗−2uφdx

−
∫
RN

g(u)φdx

= ⟨J̃ ′
ε(u), φ⟩

for all φ ∈ X. Once we get a solution uε of (1.3), then the function vε(x) := uε(
x
ε ) is a

solution of (1.1). Set

Jε(u) =
1

2

∫
RN

(1 + 2u2)|∇u|2dx+
1

2

∫
RN

V (εx)u2dx− 1

22∗

∫
RN

|u+|22∗dx−
∫
RN

G(u)dx,

where u+(x) := max{u(x), 0}. Then

⟨J ′
ε(u), φ⟩ =

∫
RN

(
∇u∇φ+ V (εx)uφ

)
dx+ 2

∫
RN

(u2∇u∇φ+ |∇u|2uφ)dx

−
∫
RN

|u+|22∗−1φdx−
∫
RN

g(u)φdx

for all u ∈ X and φ ∈ X.

Since X is not a linear space, the critical point theory can not be direct applied for the

functional Jε on X. Moreover, as V∞ = +∞, the continuous embedding Eε ↪→ Ls(RN ) is

compact for 2 ≤ s < 2∗ (see also Lemma 3.4 in [28]), so that the study of the problem is

more easy, and hence, we consider only the case V∞ < +∞.

If u is a positive weak solution of (1.3) and Jε(u) = inf{Jε(v) : v > 0 and J ′
ε(v) = 0},

then u is called a ground state positive solution of (1.3). In order to overcome the difficulty

cause by the nonlinearity of space X, we will adopt the dual method proposed by Liu-Wang-

Wang [15] and Colin-Jeanjean in [5].

Set f̃(s) :=
∫ s
0

√
1 + 2t2dt. Then f̃ is positive, strictly increasing, convex and C∞ in

[0,+∞). Hence, we set f = f̃−1 for s ≥ 0. For s ≤ 0, we put f(s) := −f(−s), and hence

f ′(s) =
1√

1 + 2f2(s)
, ∀ s ∈ (−∞,+∞).
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Set

Φε(v) =
1

2

∫
RN

|∇v|2dx+
1

2

∫
RN

V (εx)f2(v(x))dx− 1

22∗

∫
RN

|f(v+(x))|22∗dx

−
∫
RN

G(f(v(x)))dx.

Then Φ is well defined in Eε and 0 ≤ v ∈ Eε is a critical point of Φε if and only if u = f(v)

is a nonnegative critical point of Jε.

For completeness we collect here some properties of f(t).

Lemma 1.3 (see, [5, 10, 15, 18]) The function f(t) enjoys the following properties:

(1) f is uniquely defined C∞ function and invertible.

(2) |f ′(t)| ≤ 1 for all t ∈ R.

(3) |f(t)| ≤ |t| for all t ∈ R.

(4) lim
t→0

f(t)
t = 1.

(5) lim
t→+∞

f(t)√
t
= 2

1
4 .

(6) 1
2f(t) ≤ tf ′(t) ≤ f(t) for all t ≥ 0, 1

2f(t) ≥ tf ′(t) ≥ f(t) for all t ≤ 0;

(7) |f(t)| ≤ 2
1
4 |t|

1
2 for all t ∈ R.

(8) f2(t) is strictly convex.

(9) There exists a positive constant C such that

|f(t)| ≥

 C|t|, |t| ≤ 1,

C|t|
1
2 , |t| ≥ 1.

(10) There exists a positive constants C0 > 1 such that

|t| ≤ C0[|f(t)|+ |f(t)|2], ∀ t ∈ R.

(11) |f(t)f ′(t)| ≤ 1√
2
for all t ∈ R.
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(12) For each λ > 0, there is a constant C(λ) > 0 such that f2(λt) ≤ C(λ)f2(t) for all

t ∈ R.

(13) f(t)f ′(t)
t is strictly decreasing for t > 0.

(14) fq(t)f ′(t)
t is strictly increasing for q ≥ 3 and t > 0.

(15) lim
t→+∞

[t− 1
4
√
2
ln t− 1√

2
f2(t)] = c0 > 0.

(16) f22
∗
(t) = 2

N
N−2 t2

∗ − ct2
∗−1 ln t+O(t2

∗−1) as t→ +∞.

In the following, without loss of generality, we assume 0 ∈ Λ. By the condition (V ) we

know that Λ is compact. Throughout the paper, we denote distinct constants by C and Ci.

2 Preliminary Results

Set E+
ε = {v ∈ Eε : v+(x) ̸= 0} and S+

ε := Sε
∩
E+

ε , where Sε is the unit sphere of

Eε.

Lemma 2.1 There exist constants C, ρ > 0 such that∫
RN

|∇v|2dx+

∫
RN

V (εx)f2(v)dx ≥ C∥v∥2

ε

whenever ∥v∥ε ≤ ρ.

Proof : If this is false, then there is a sequence {vn} ⊂ Eε such that vn → 0 in Eε and∫
RN

|∇vn|2dx+

∫
RN

V (εx)f2(vn)dx <
1

n
∥vn∥

2

ε.

Set wn := vn
∥vn∥ε . Then∫
RN

|∇wn|2dx+

∫
RN

V (εx)w2
ndx+

∫
RN

V (εx)[
f2(vn)

v2n
− 1]w2

ndx <
1

n
.

Notice that, up to a subsequence, one has vn(x) → 0 a.e. x ∈ RN . Hence, for each δ > 0,

the measure |{x ∈ RN : |vn(x)| > δ}| → 0 as n→ ∞, and hence,∫
|vn(x)|>δ

w2
ndx ≤ |{x ∈ RN : |vn(x)| > δ}|

2∗−2
2∗ (

∫
RN

|wn|2
∗
dx)

2
2∗ → 0
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as n→ ∞. Consequently, by Lemma 1.3 (4) we know that∫
RN

V (εx)[
f2(vn)

v2n
− 1]w2

ndx→ 0

as n → ∞, and hence we get 1 = ∥wn∥ε → 0, a contradiction. This completes the proof.

Lemma 2.2 The functional Φε satisfies the mountain pass geometry, that is

(i) There exist β, ρ > 0 such that

Φε(v) ≥ β, as ∥v∥ε = ρ;

(ii) There exists e ∈ Eε such that ∥e∥ε > ρ and Φε(e) < 0.

Proof. (i) For any v ∈ Eε\{0}, we have

Φε(v) =
1

2

∫
RN

(
|∇v|2 + V (εx)f2(v)

)
dx− 1

22∗

∫
RN

|f(v+)|22∗dx−
∫
RN

G(f(v))dx

≥ 1

2

∫
RN

|∇v|2dx+
1

4

∫
RN

V (εx)f2(v)dx− C2∥v∥2
∗

ε .

(2.1)

By Lemma 2.1 we get first conclusion of Lemma 2.2.

(ii) For each t > 0 and each v ∈ Eε with ∥v∥ε = 1 and v > 0, one has

Φε(tv) =
t2

2

∫
RN

|∇v|2dx+
1

2

∫
RN

V (εx)f2(tv)dx− 1

22∗

∫
RN

|f(tv)|22∗dx−
∫
RN

G(f(tv))dx

≤ t2

2
[

∫
RN

|∇v|2dxdy +
∫
RN

V (εx)v2dx− 1

2∗

∫
RN

t2
∗−2|v|2∗ · f

22∗(tv)

t2∗ |v|2∗
dx].

By Fatou Lemma and Lemma 1.3 (5), we know

lim inf
t→+∞

∫
RN

t2
∗−2v2

∗ · f
22∗(tv)

t2∗v2∗
dx = +∞.

Hence lim
t→+∞

Φε(tv) = −∞, and hence the conclusion (ii) holds. 2

Lemma 2.3 The following properties hold:
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(1) For each v ∈ E+
ε and t > 0, set hv(t) := Φε(tv). Then there exists an unique tv > 0

such that hv(tv) = max
t≥0

hv(t), h
′
v(tv) = 0, h′v(t) > 0 in (0, tv), h

′
v(t) < 0 in (tv,+∞) and

tv ∈ Nε if and only if t = tv, where Nε := {v ∈ E+
ε : ⟨Φ′

ε(v), v⟩ = 0}.

(2) There exists a τ > 0 independent of v such that tv > τ for all v ∈ S+
ε . Moreover,

for each compact set D ⊂ S+
ε there exists CD > 0 such that tv ≤ CD for all v ∈ D.

(3) The map m̂ε : E+
ε → Nε given by m̂(v) = tvv is continuous and mε := m̂ε|

S+
ε

is a

homeomorphism between S+
ε and Nε. Moreover, m−1

ε (v) = v
∥v∥ε .

Proof : (1) From the proof of Lemma 2.2 we know that hv(0) = 0, hv(t) > 0 for small

t > 0 and lim
t→+∞

hv(t) = −∞. Hence, there exists a tv > 0 such that hv(tv) = max
t≥0

hv(t) and

h′v(tv) = 0. Notice that

h′v(t) = 0 ⇔ tv ∈ Nε ⇔∫
RN

|∇v|2dx =−
∫
RN

V (εx)
f(tv)f ′(tv)

tv
v2(x, 0)dx+

∫
RN

f22
∗−1(tv+)f ′(tv+)

tv+
|v+|2dx

+

∫
RN

g(f(tv+))

f3(tv+)
· f

3(tv+)f ′(tv+)

tv+
|v+|2dx.

By Lemma 1.3 (13)-(14) and the condition (g3) we know that the right side is strictly

increasing in t > 0. Hence tv is unique. This completes the proof of (1).

(2) By Lemma 2.1 there exist constants C, ρ > 0 such that∫
RN

|∇v|2dx+

∫
RN

V (εx)f2(v)dx ≥ C∥v∥2

ε

whenever ∥v∥ε ≤ ρ. If the first conclusion of (2) is false, then there exists a sequence

{vn} ⊂ S+
ε such that tn := tvn → 0+. Hence, for large n, one has 0 < tn < ρ. Notice that

t2n

∫
RN

|∇vn|2dx+

∫
RN

V (εx)f(tnvn)f
′(tnvn)tnvndx

=

∫
RN

f22
∗−1(tnv

+
n )f

′(tnv
+
n )tnv

+
n dx+

∫
RN

g(f(tnv
+
n ))f

′(tnv
+
n )tnv

+
n dx.
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By (g1), (g2) and Lemma 1.3 (6)-(7) we know that

1

4
Ct2n

≤ 1

4
[

∫
RN

|∇(tnvn)|2dx+

∫
RN

V (εx)f2(tnvn)dx]

≤
∫
RN

|∇(tnvn)|2dx+
1

2

∫
RN

V (εx)f(tnvn))f
′(tnvn)tnvndx

≤ C3

∫
RN

f22
∗−1(tnv

+
n )f

′(tnv
+
n )tnv

+
n dx

≤ C4

∫
RN

|tnvn|2
∗
dx

≤ C5t
2∗
n .

This contradicts that tn → 0+. Hence the first conclusion of (2) holds.

Now, we prove the second conclusion of (2). If this is false, then there exists a sequence

{vn} ⊂ D such that tn := tvn → +∞. Since D is compact, we can assume that vn → v ∈ D.

From the proof of Lemma 2.2 (ii) we know that lim
n→∞

Φε(tnvn) = −∞. By Remark 1.1 in

[25] and (g3) we know that

tg(t)− 4G(t) ≥ 0, ∀t ∈ R.

Hence, by Lemma 1.3 (6), one has

Φε(tnvn) = Φε(tnvn)−
1

2
⟨Φ′

ε(tnvn), tnvn⟩

=
1

2

∫
RN

V (εx)[f2(tnvn)− f(tnvn)f
′(tnvn)tnvn]dx

+

∫
RN

[
1

2
|f(tnv+n )|22

∗−1f ′(tnv
+
n )tnv

+
n − 1

22∗
|f(tnv+n )|22

∗
]dx

+

∫
RN

[
1

2
g(f(tnvn))f

′(tnvn)tnvn(x, 0)−G(f(tnvn))]dx

≥
∫
RN

[
1

4
− 1

22∗
]|f(tnv+n )|22

∗
dx

+

∫
RN

[
1

4
g(f(tnvn))f(tnvn)−G(f(tnvn))]dx

≥ 0.

This contradicts that lim
n→∞

Φε(tnvn) = −∞. Hence, the second conclusion of (2) holds.

(3) Obviously, m̂ε,mε, m
−1
ε are well defined, and m−1

ε is continuous. Since

m−1
ε (mε(v)) = v, ∀ v ∈ S+

ε ,
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mε : S+
ε → Nε is a bijection. Now, we prove that m̂ε : E+

ε → Nε is continuous. Indeed,

let {vn} ⊂ E+
ε be such that vn → v in E+

ε . By the conclusion (2) we know that, up to a

subsequence, tn := tvn → t0 > 0 and

t2n

∫
RN

|∇vn|2dx+

∫
RN

V (εx)f(tnvn)f
′(tnvn)tnvndx

=

∫
RN

f22
∗−1(tnv

+
n ))f

′(tnv
+
n )tnv

+
n dx+

∫
RN

g(f(tnvn))f
′(tnvn)tnvndx.

Passing to the limit as n→ ∞ in the above equality, we get

t20

∫
RN

|∇v|2dx+

∫
RN

V (εx)f(t0v)f
′(t0v)t0vdx

=

∫
RN

f22
∗−1(t0v

+)f ′(t0v
+)t0v

+dx+

∫
RN

g(f(t0v))f
′(t0v)t0wdx.

This means that t0v ∈ Nε, and hence t0 = tv. Consequently, m̂ε(vn) → m̂ε(v) in E
+
ε . This

shows that m̂ε : E
+
ε → Nε is continuous. This completes the proof of (3).

Now, we define the functional Ψ̂ε : E+
ε → R by Ψ̂ε(v) = Φε(m̂ε(v)) and Ψε := Ψ̂ε|S+

ε
.

By Lemma 2.3, similar to Lemma 2.3 in [23] we can prove the following Lemma.

Lemma 2.4 (1) Ψ̂ε ∈ C1(E+
ε ,R) and

Ψ̂′
ε(w)v =

∥m̂ε(w)∥ε
∥w∥ε

Φ′
ε(m̂ε(w))v, ∀ w ∈ E+

ε and ∀ v ∈ Eε.

(2) Ψε ∈ C1(S+
ε ,R) and

Ψ′
ε(w)v = ∥mε(w)∥εΦ′

ε(mε(w))v, ∀ w ∈ S+
ε and ∀ v ∈ TwS

+
ε ,

where

TwS
+
ε := {v ∈ Eε : ⟨w, v⟩ε = 0}.

(3) If {wn} is a (C)d sequence of Ψε, that is Ψε(wn) → d and (1 + ∥wn∥ε)Ψ′
ε(wn) → 0,

then {mε(wn)} is a (C)d sequence of Φε. If {wn} ⊂ Nε is a bounded (C)d sequence of Φε,

then {m−1
ε (wn)} is a (C)d sequence of Ψε.

(4) w is a critical point of Ψε if and only if mε(w) is a critical point of Φε. Moreover,

corresponding critical values coincide and

inf
S+
ε

Ψε = inf
Nε

Φε.
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Using standard methods, we can prove the following Lemma 2.5.

Lemma 2.5

cε := inf
Nε

Φε = inf
v∈E+

ε

max
t>0

Φε(tv) = inf
v∈S+

ε

max
t>0

Φε(tv) > 0.

Lemma 2.6 Let {wn} ⊂ Eε and A2
n :=

∫
RN |∇wn|2dx +

∫
RN V (εx)f2(wn)dx. If {An} is

bounded, then there exists constant C > 0 such that

A2
n ≥ C∥wn∥2ε. (2.2)

Proof : We may assume that wn ̸= 0 (Otherwise, the conclusion is trivial). If this

conclusion is not true, passing to a subsequence, we have A2
n

∥wn∥2ε
→ 0. Set vn = wn

∥wn∥ε and

gn(x) =
f2(wn(x))
∥wn∥2ε

. Then ∫
RN

|∇vn|2dx+

∫
RN

V (εx)gn(x)dx→ 0.

Hence ∫
RN

|∇vn|2dx→ 0,

∫
RN

V (εx)gn(x)dx→ 0,

∫
RN

V (εx)v2ndx→ 1.

We assert that for each δ > 0, there exists a constant C1 > 0 independent of n such that

meas(Ωn) < δ, where Ωn := {x ∈ RN : |wn(x)| ≥ C1}. Otherwise, there is a δ0 > 0 and a

subsequence {wnk
} of {wn} such that for any positive integer k,

meas({x ∈ RN : |wnk
(x)| ≥ k}) ≥ δ0 > 0.

Set Ωnk
:= {x ∈ RN : |wnk

(x)| ≥ k}. By Lemma 1.3 (9) and (V )

A2
nk

≥
∫
RN

V (εx)f2(wnk
)dx ≥

∫
Ωnk

V (εx)f2(wnk
)dx ≥ Ckδ0 → +∞

as k → ∞, a contradiction. Hence the assertion is true.

Obviously, we can assume C1 > 1. Hence, as |wn(x)| ≤ C1, by Lemma 1.3 (9) and (12),

one has
w2
n(x)

C2
1

≤ C0f
2(

1

C1
wn(x)) ≤ C2f

2(wn(x)).

12



Hence there exists a constant C3 > 0 such that∫
RN\Ωn

V (εx)v2ndx ≤ C3

∫
RN

V (εx)gn(x)dx→ 0.

By the integral absolutely continuity, there exists δ > 0 such that whenever Ω ⊂ RN and

meas(Ω) < δ,
∫
Ω V (εx)v2ndx <

1
2 . For this δ, we have∫

RN

V (εx)v2ndx =

∫
Ωn

V (εx)v2ndx+

∫
RN\Ωn

V (εx)v2ndx

≤ 1

2
+

∫
RN\Ωn

V (εx)v2ndx,

which implies 1 ≤ 1
2 , a contradiction. Hence there exists a constant C > 0 such that

A2
n ≥ C∥wn∥2ε. This completes the proof of Lemma 2.6.

Lemma 2.7 Let {wn} ⊂ Eε is a (C)d sequence of Φε. Then {wn} is bounded and {w−
n } =

on(1).

Proof : Since

d+ on(1) ≥ Φε(wn)−
1

2
⟨Φ′

ε(wn), wn⟩

=
1

2

∫
RN

V (εx)[f2(wn)− f(wn)f
′(wn)wn]dx

+

∫
RN

[
1

2
|f(w+

n )|22
∗−1f ′(w+

n )w
+
n − 1

22∗
|f(w+

n )|22
∗
]dx

+

∫
RN

[
1

2
g(f(wn))f

′(wn)wn −G(f(wn))]dx

≥
∫
RN

[
1

4
− 1

22∗
]|f(w+

n )|22
∗
dx,

the sequence {
∫
RN |f(w+

n )|22
∗
dx} is bounded. Since again

d+ on(1)

= Φε(wn)

=
1

2

∫
RN

|∇wn|2dx+
1

2

∫
RN

V (εx)f2(wn)dx− 1

22∗

∫
RN

|f(w+
n )|22

∗
dx−

∫
RN

G(f(wn))dx

≥ 1

4

∫
RN

|∇wn|2dx+
1

4

∫
RN

V (εx)f2(wn)dx− C

∫
RN

|f(w+
n )|22

∗
dx,

13



the sequence {An} is bounded, where A2
n :=

∫
RN |∇wn|2dx +

∫
RN V (εx)f2(wn)dx. By

Lemma 2.6 we know that the sequence {wn} is bounded in Eε.

Next, we prove that {w−
n } = on(1). Indeed, since {wn} is bounded in Eε, so does {w−

n }.

Hence, similar to (2.2) we have∫
RN

|∇w−
n |2dx+

∫
RN

V (εx)f2(w−
n )dx ≥ C∥w−

n ∥2ε. (2.3)

Consequently,

on(1) = ⟨Φ′
ε(wn), w

−
n ⟩

= [

∫
RN

|∇w−
n |2dx+

∫
RN

V (εx)f(w−
n )f

′(w−
n )w

−
n dx]

≥ 1

2
[

∫
RN

|∇w−
n |2dx+

∫
RN

V (εx)f2(w−
n )dx]

≥ C∥w−
n ∥2ε.

This completes the proof of Lemma 2.7.

Lemma 2.8 There exists a constant r > 0 such that ∥w∥ε ≥ r for all ε ≥ 0 and w ∈ Nε.

Proof : If this false, then there is a sequence {wn} ⊂ Nεn such that ∥wn∥εn → 0. Notice

that for each δ > 0 there is Cδ > 0 such that∫
RN

|∇wn|2dx+
1

2

∫
RN

V0f
2(wn)dx

≤
∫
RN

|∇wn|2dx+
1

2

∫
RN

V (εnx)f
2(wn)dx

≤
∫
RN

|∇wn|2dx+

∫
RN

V (εnx)f(wn)f
′(wn)wndx

=

∫
RN

|f(w+
n )|22

∗−1f ′(w+
n )wndx+

∫
RN

g(f(wn))f
′(wn)wndx

≤ Cδ

∫
RN

|f(w+
n )|22

∗
dx+ δ

∫
RN

f2(wn)dx.

Hence, for small δ > 0, there is Cδ > 0 such that∫
RN

|∇wn|2dx+
1

4

∫
RN

V0f
2(wn)dx ≤ Cδ

∫
RN

|f(w+
n )|22

∗
dx.

14



By Lemma 2.6 we know that

1

4
C

∫
RN

(|∇wn|2 + w2
n)dx ≤ 1

4
[

∫
RN

|∇wn|2dx+

∫
RN

V0f
2(wn)dx]

≤
∫
RN

|∇wn|2dx+
1

4

∫
RN

V0f
2(wn)dx

≤ C1

∫
RN

|f(w+
n )|22

∗
dx

≤ C2

∫
RN

|wn|2
∗
dx

≤ C3

( ∫
RN

(|∇wn|2 + w2
n)dx

) 2∗
2 .

It contradicts that ∥wn∥εn → 0. This completes the proof of Lemma 2.8.

When V ≡ 1, set E := Eε, E
+ := E+

ε . For µ > 0 and v ∈ E, set

Υµ(v) =
1

2

∫
RN

|∇v|2dx+
µ

2

∫
RN

f2(v)dx− 1

22∗

∫
RN

|f(v+)|22∗dx−
∫
RN

G(f(v))dx,

Mµ := {w ∈ E+ : ⟨Υ′
µ(w), w⟩ = 0}, c̃µ := inf

Mµ

Υµ.

The following the proofs of Lemmas 2.9 and 2.10 are similar to Lemmas 2.10 and 2.12

in [10], respectively. In order to completeness, we give its proof, too.

Lemma 2.9 For any µ > 0, there exists w ∈ E+ such that

max
t≥0

Υµ(tw) <
1

2N
S

N
2 ,

where S := inf
u∈D1,2(RN )

∫
RN |∇u|2dx

(
∫
RN |u|2∗dx)

2
2∗
.

Proof : We consider the functional

Jµ(u) = Υµ(f
−1(u)) =

1

2

∫
RN

(1+2u2)|∇u|2dx+ µ

2

∫
RN

u2dx− 1

22∗
|u+|22∗dx−

∫
RN

G(u)dx.

Then, it is sufficient to prove there exists 0 ̸= w ∈ X such that

sup
t≥0

Jµ(tw) <
1

2N
S

N
2 .
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Indeed, since Υµ(f
−1(tw)) = Jµ(tw) → −∞ as t → ∞, there is t∗ > 0 such that

Υµ(f
−1(t∗w)) < 0. Then for γ∗(t) := f−1(tt∗w), there holds

c̃µ ≤ sup
t∈[0,1]

Υµ(γ
∗(t)) ≤ sup

t≥0
Υ(f−1(tw)) = sup

t≥0
Jµ(tw) <

1

2N
S

N
2 .

For δ > 0, set

U
δ
(x) :=

[N(N − 2)δ]
N−2

4

[δ + |x|2]
N−2

2

.

By [10] we know that S can achieved by Uδ. Moreover, Uδ satisfies∫
RN

|∇Uδ|2dx =

∫
RN

|Uδ|2
∗
dx = S

N
2 .

Let ϕ0 ∈ C∞
0 (RN , [0, 1]) be a non-increasing cut-off function such that

ϕ0(x) = 1 if |x| < 1, ϕ0(x) = 0 if |x| ≥ 2.

Define the function

wδ(x) = ϕ0(x)U
1
2
δ (x) =

ϕ0(x)[N(N − 2)δ]
N−2

8

[δ + |x|2]
N−2

4

.

Set ηδ =
wδ

∥wδ∥
1
2
2∗

. From [10] we know that

∫
RN

|∇(η2δ )|2dx = S +O(δ
N−2

2 ),

∫
RN

|ηδ|pdx =


O(δ

p(N−2)
8 ), if 1 < p < 2∗,

O(δ
N
4 |lnδ|), if p = 2∗,

O(δ
N
2
− p(N−2)

8 ), if 2∗ < p < 22∗.

Therefore, ηδ ∈ X and by (g2), we get

Jµ(tηδ) ≤
t2

2

∫
RN

(|∇ηδ|2 + µη2δ )dx+
t4

4

∫
RN

|∇(η2δ )|2dx− C0

σ
tσ

∫
RN

|ηδ|σdx− t22
∗

22∗
:= h(t).

It is easy to verify that lim
t→+∞

h(t) = −∞ and h(t) > 0 when t > 0 small enough. Con-

sequently, there exists tδ > 0 such that max
t≥0

h(t) = h(tδ) and h′(tδ) = 0, from which we

deduce that∫
RN

(|∇ηδ|2 + µη2δ )dx+ t2δ

∫
RN

|∇(η2δ )|2dx = C0t
σ−2
δ

∫
RN

|ηδ|σdx+ t22
∗−2.

16



Then the equality implies that there exists T1 > 0 such that tδ ≥ T1 and {tδ} is bounded.

Set l(t) = t4

4

∫
RN |∇(η2δ )|2dx − t22

∗

22∗ . Then function attains its unique global maximum

at t0 := (
∫
RN |∇(η2δ )|2dx)

1
22∗−4 . Thus, by the properties of g, for δ > 0 small enough, we

deduce

max
t≥0

Jµ(tηδ) ≤ h(tδ)

≤ l(t0) +
t2δ
2

∫
RN

(|∇ηδ|2 + η2δ )dx− C0

σ
tσδ

∫
RN

|ηδ|σdx

≤ (
1

4
− 1

22∗
)
( ∫

RN

|∇(η2δ )|2dx
) 22∗

22∗−4 + C

∫
RN

(|∇ηδ|2 + η2δ )dx− C

∫
RN

|ηδ|σdx

=
1

2N
(S +O(δ

N−2
2 ))

N
2 + C

∫
RN

(|∇ηδ|2 + η2δ )dx− C

∫
RN

|ηδ|σdx

=
1

2N
S

N
2 +O(δ

N−2
2 ) +O(δ

N−2
4 )−O(δ

N
2
−σ(N−2)

8 )

<
1

2N
S

N
2 .

Thus, the proof is completed.

Lemma 2.10 Let {wn} ⊂ Eε be a (PS)d sequence of Φε with d < 1
2N S

N
2 and wn ⇀ 0 in

Eε. Then one of the following conclusions holds:

(a) wn → 0 in Eε;

(b) There exists a sequence {yn} ⊂ RN and positive constants r, β such that

lim inf
n→∞

∫
Br(yn)

|wn(x)|2dx ≥ β.

Proof : If (b) does not occur, then for each r > 0, up to a subsequence,

lim
n→∞

sup
z∈RN

∫
Br(z)

|wn|2dx = 0.

Hence, by Lemma 1.2, one has

wn → 0 in Lt(RN ), ∀ t ∈ [2, 2∗).

By (g1), (g2) and Lemma 1.3 (3) (7) we know that∫
RN

G(f(wn))dx = on(1),

∫
RN

g(f(wn))f(wn)dx = on(1). (2.4)
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Set ϕ = f(wn)
f ′(wn)

. Then |ϕ| = |f(wn)
√

1 + 2f2(wn)| ≤ 3|wn| and

|∇ϕ| = |[1 + 2f2(wn)

1 + 2f2(wn)
]∇wn| ≤ 2|∇wn|.

Hence ∥ϕ∥ε ≤ C∥wn∥ε. Consequently, ⟨Φ′
ε(wn), ϕ⟩ = on(1), and hence∫

RN

[1 +
2f2(wn)

1 + 2f2(wn)
]|∇wn|2dx+

∫
RN

V (εx)f2(wn)dx

=

∫
RN

g(f(wn))f(wn)dx+

∫
RN

|f(w+
n )|22

∗
dx

=

∫
RN

|f(w+
n )|22

∗
dx+ on(1).

Since {wn} is bounded in Eε, up to a subsequence, there is a number l ≥ 0 such that∫
RN

[1 +
2f2(wn)

1 + 2f2(wn)
]|∇wn|2dx+

∫
RN

V (εx)f2(wn)dx→ l

and ∫
RN

|f(w+
n )|22

∗
dx→ l.

If l > 0, then

S ≤
∫
RN |∇f2(w+

n )|2dx
(
∫
RN |f2(w+

n )|2∗dx)
2
2∗

≤

∫
RN [1 +

2f2(wn)
1+2f2(wn)

]|∇wn|2dx+
∫
RN V (εx)f2(wn)dx

(
∫
RN |f2(w+

n )|2∗dx)
2
2∗

→ l
2
N

as n→ ∞. Hence l ≥ S
N
2 . Consequently, by (2.4), one has

d = lim
n→∞

Φε(wn)

= lim
n→∞

[
1

2

∫
RN

(
|∇wn|2 + V (εx)f2(wn)

)
dx−

∫
RN

G(f(wn))dx− 1

22∗

∫
RN

|f(w+
n )|22

∗
dx]

≥ lim
n→∞

{1
4
[

∫
RN

(1 +
2f2(wn)

1 + 2f2(wn)
)|∇wn|2dx+

∫
RN

V (εx)f2(wn)dx]

− 1

22∗

∫
RN

|f(w+
n )|22

∗
dx}

=
l

2N
≥ 1

2N
S

N
2 ,

a contradiction. Hence l = 0. Consequently, by the boundedness of {wn} in Eε and Lemma

2.6, one has wn → 0 in Eε, ie (a) holds. This completes the proof.
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Lemma 2.11 Let {wn} ⊂ Eε be a (PS)d sequence of Φε with d < 1
2N S

N
2 and wn ⇀ 0 in

Eε. Then wn → 0 in Eε.

Proof : By Lemma 2.7 we can assume wn ≥ 0. Consider any subsequence of {wn}, still

denoted by {wn}. Since wn ⇀ 0 in Eε, up to a subsequence, we can assume wn → 0 in

Ls
loc(RN ) for s ∈ [2, 2∗) and wn(x) → 0 a.e. x ∈ RN . If wn 9 0 in Eε, then, we may assume

that wn ∈ E+
ε for each n, and by Lemma 2.10, there exists a sequence {xn} ⊂ RN and

positive constants r, τ such that

lim inf
n→∞

∫
Br(xn)

|wn(x)|2dx ≥ τ. (2.5)

Hence the sequence {xn} is unbounded, and hence, we can assume

|xn| := kn → ∞.

Notice that for each j ∈ N, one has

lim
n→∞

∫
B2kj

(0)
|wn(x)|2dx = 0.

Hence there is a mj ∈ N such that∫
B2kj

(0)
|wn(x)|2dx <

τ

2

for all n = mj + i, i = 1, 2, · · · . Without the loss of generality, we can assume mj+1 > mj .

Set nj := mj + j. Then ∫
B2kj

(0)
|wnj (x)|2dx <

τ

2
.

Hence, up to a subsequence, we have

lim sup
n→∞

∫
B2kn (0)

|wn(x)|2dx ≤ τ

2
. (2.6)

Notice that kn → +∞. Hence, for large n, one has Br(xn) ⊂ B2kn(0), and hence (2.6)

contradicts (2.5). This shows that wn → 0 in Eε. This completes the proof.
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Lemma 2.12 Let {wn} ⊂ Eε be a (PS) sequence of Φε with wn ⇀ w in Eε. Set w̃n =

wn − w. Then

(i) Φε(w̃n) = Φε(wn)− Φε(w) + on(1),

(ii) ∥Φ′
ε(w̃n)∥ = on(1).

Proof : The proof is similar to Lemma 2.14 in [10], we omit it.

Lemma 2.13 Φε satisfies the (PS)d condition at any level d ≤ c̃V∞ .

Proof : Let {wn} ⊂ Eε be a (PS)d sequence of Φε. Then, by Lemma 2.7, {wn} is

bounded in Eε and we can assume wn ≥ 0. Hence, up to a subsequence, there is w ∈ Eε

such that wn ⇀ w in Eε, wn → w in Ls
loc(RN ) for each s ∈ [2, 2∗), wn(x) → w(x) a.e. in

RN and Φ′
ε(w) = 0. Set w̃n = wn − w. Then, by Lemma 2.12,

Φε(w̃n) = Φε(wn)− Φε(w) + on(1) = d− Φε(w) + on(1) := a+ on(1)

and ∥Φ′
ε(w̃n)∥ = on(1). By (g3) and Lemma 1.3 (6), we have

Φε(w)

= Φε(w)−
1

2
⟨Φ′

ε(w), w⟩

=
1

2

∫
RN

V (εx)[f2(w)− f(w)f ′(w)w]dx+

∫
RN

[
1

2
g(f(w))f ′(w)w −G(f(w))]dx

+

∫
RN

[
1

2
|f(w+)|22∗−1f ′(w+)w+ − 1

22∗
|f(w+)|22∗ ]dx

≥ 0.

Hence, by Lemma 2.9, a := d − Φε(w) ≤ d ≤ c̃V∞ < 1
2N S

N
2 . By Lemma 2.11 we know

wn → w in Eε. This completes the proof.

From the proof of Lemma 2.13 we have

Lemma 2.14 Φε satisfies the (PS)d condition at any level d < 1
2N S

N
2 .
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3 The proof of Theorem 1

Proof : By Lemma 2.2 we know that the functional Φε satisfies the mountain pass geom-

etry, then using a version of the mountain pass theorem (e. g. see Theorem 6.3.4 in [27]),

there exists a sequence {wn} ⊂ Eε such that lim
n→∞

Φε(wn) = cε and (1+ ∥wn∥ε)∥Φ′
ε(wn)∥ =

on(1). By condition (V ) we can assume that V0 = V (0) = inf
x∈RN

V (x). For any µ ∈ R

with V0 < µ < V∞, we have c̃V0 < c̃µ < c̃V∞ . By Lemma 2.9, c̃µ <
1
2N S

N
2 . By virtue of

Lemmas 2.2, 2.7 and Theorem 6.3.4 in [27] we know that c̃µ is a critical value of Υµ with

corresponding positive critical point w ∈ E. For any r > 0, take ηr ∈ C∞
0 (RN , [0, 1]) be

such that ηr = 1 if |x| < r and ηr = 0 if |x| ≥ 2r. Set vr := ηrw, it is easy to verify that

vr ∈ E for each r > 0. By Lemma 2.3 there exists tr > 0 such that ṽr := trvr ∈ Mµ.

Hence there is r0 > 0 such that ṽ = ṽr0 satisfies Υµ(ṽ) < c̃V∞ . In fact, if this is false, then

Υµ(ṽr) = Υµ(trvr) ≥ c̃V∞ for all r > 0. Notice that vr → w in E as r → +∞ and w ∈ Mµ.

We can deduce that tr → 1 as r → +∞. Hence,

c̃V∞ ≤ lim inf
r→+∞

Υµ(trvr) = Υµ(w) = c̃µ < c̃V∞ ,

a contradiction. This shows Υµ(ṽ) < c̃V∞ . Notice that V0 = V (0) < µ and supp(ṽ) is

compact. By the continuity of V , there is an ε∗ > 0 such that

V (εx) < µ, ∀ ε ∈ (0, ε∗) and x ∈ supp(ṽ).

Hence,

Φε(tṽ) ≤ Υµ(tṽ), ∀ ε ∈ (0, ε∗) and t ≥ 0,

and

max
t≥0

Φε(tṽ) ≤ max
t≥0

Υµ(tṽ) = Υµ(ṽ) < c̃V∞ , ∀ ε ∈ (0, ε∗).

Consequently,

cε < c̃V∞ , ∀ ε ∈ (0, ε∗).

By virtue of Lemma 2.13, up to a subsequence, one has wn → v in Eε. Hence Φ′
ε(v) = 0

and Φε(v) = cε. Moreover, Harnack inequality (see [24]) implies v(x) > 0 in RN . Hence
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u := f(v) is a ground positive solution of (1.3). This completes the proof of Theorem 1.

Remark 3.1 From the above proof we know that all non zero critical points of Φε are

positive.

4 The proof of Theorem 2

Since V0 > 0, by Lemma 2.9, c̃V0 <
1
2N S

N
2 . From the proof of Theorem 1 we know that

c̃V0 is a critical value of ΥV0
with corresponding positive critical point w ∈ E.

Let η be a smooth nonincreasing cut-off function defined in [0,∞) such that η(s) = 1 if

0 ≤ s ≤ 1
2 and η(s) = 0 if s ≥ 1. For each z ∈ Λ, let

ϱε,z(x) = η(|εx− z|)w(εx− z

ε
), ∀ x ∈ RN .

Then ϱε,z ∈ Eε\{0} for all z ∈ Λ. In fact, using the change of variable z̃ = x− z
ε , one has∫

RN

V (εx)ϱ2ε,z(x)dx =

∫
RN

V (εx)η2(|εx− z|)w2(
εx− z

ε
)dx

=

∫
|εz̃|≤1

V (εz̃ + z)η2(|εz̃|)w2(z̃)dz̃

≤C
∫
RN

w2(x)dx < +∞.

Let r = 1
ε . Then ϱε,z(x) = η(

|x− z
ε
|

r )w(x− z
ε ) and∫

RN

|∇ϱε,z(x)|2dx =

∫
RN

|1
r
w(x)∇η( |x|

r
) + η(

|x|
r
)∇w(x)|2dx

≤C(
∫

r
2
<|x|<r

w2dx+

∫
RN

|∇w|2dx)

≤C
∫
RN

(|∇w|2 + w2)dx < +∞.

Hence, for each ε > 0 there exists unique tε > 0 such that

max
t≥0

Φε(tϱε,z) = Φε(tεϱε,z)
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by Lemma 2.3.

We introduce the map λε : Λ → Nε by setting λε(z) = tεϱε,z. Then λε(z) has a compact

support for any z ∈ Λ. Moreover, we have the following fact for λε.

Lemma 4.1 lim
ε→0

Φε(λε(z)) = c̃V0 , uniformly in z ∈ Λ.

Proof : Suppose that the result is false, then there exists ζ0 > 0, {zn} ⊂ Λ and εn > 0

with εn → 0 such that

|Φεn(λεn(zn))− c̃V0 | ≥ ζ0 > 0. (4.1)

By Lemmas 2.6 and 2.8 we know that there is a r0 > 0 such that∫
RN

[g(f(λεn
(zn)))f

′(λεn
(zn))λεn

(zn) + |f(λεn
(zn))|22

∗−1f ′(λεn
(zn))λεn

(zn)]dx

=

∫
RN

|∇(λεn
(zn))|2dx+

∫
RN

V (εnx)f(λεn
(zn))f

′(λεn
(zn))λεn

(zn)dx

≥ 1

2
[

∫
RN

|∇(λεn
(zn))|2dx+

∫
RN

V (εnx)f
2(λεn

(zn))dx]

≥ r0.

(4.2)

Hence tεn 9 0, and hence there exists a t0 > 0 such that tεn ≥ t0. If tεn 9 ∞, then, for

large n, one has

C∥w∥2E ≥
∫
RN

|∇ϱεn,zn |2dx+

∫
RN

V (εnx)
f(tεnϱεn,zn)f

′(tεnϱεn,zn)tεnϱεn,zn
t2
εn

dx

=

∫
RN

g(f(λεn
(zn)))f

′(λεn
(zn))λεn

(zn)

t2
εn

+

∫
RN

|f(λεn
(zn))|22

∗−1f ′(λεn
(zn))λεn

(zn)

t2
εn

dx

≥ 1

2

∫
RN

|f(tεnη(|εnx− zn|)w( εnx−zn
εn

))|22∗

t2
εn

dx

=
1

2

∫
RN

|f(tεnη(εn|x|)w(x))|
22∗

t2
εn

dx

≥ 1

2

∫
|x|≤ 1

2εn

|f(tεnw(x))|
22∗

t2
εn

dx

≥ Ct2
∗−2

εn

∫
1
2
<|x|<1

w2∗dx→ +∞,
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a contradiction. Hence, tεn ≤ C. Consequently, we can assume that tεn → T > 0. By

Lebesgue’s theorem, one has

lim
n→∞

[

∫
RN

|∇λεn
(zn)|2dx+

∫
RN

V (εnx)f(λεn
(zn))f

′(λεn
(zn))λεn

(zn)dx]

= T 2

∫
RN

|∇w|2dxdy +
∫
RN

V0f(Tw(x))f
′(Tw(x))Tw(x)dx,

lim
n→∞

∫
RN

|f(λεn
(zn))|22

∗−1f ′(λεn
(zn))λεn

(zn)dx =

∫
RN

|f(Tw(x))|22∗−1f ′(Tw(x))Tw(x)dx

and

lim
n→∞

∫
RN

g(f(λεn
(zn)))f

′(λεn
(zn))λεn

(zn)dx =

∫
RN

g(f(Tw(x)))f ′(Tw(x))Tw(x)dx.

Consequently, from (4.2), one has

T 2

∫
RN

|∇w|2dx+ V0

∫
RN

f(Tw(x))f ′(Tw(x))Tw(x)dx

=

∫
RN

g(f(Tw(x)))f ′(Tw(x))Tw(x)dx+

∫
RN

|f(Tw(x))|22∗−1f ′(Tw(x))Tw(x)dx.

This shows Tw ∈ MV0
. Notice that w ∈ MV0

. Lemma 2.3 implies that T = 1. Moreover,

similar to the above arguments, we can prove that

lim
n→∞

Φεn(λεn
(zn)) = ΥV0(w) = c̃V0 .

This contradicts to 4.1. This completes the proof of Lemma 4.1.

For any δ > 0, let ρ = ρ(δ) > 0 be such that Λδ ⊂ Bρ(0). Define χ : RN → RN as

follows:

χ(x) =

 x, |x| ≤ ρ,

ρ
|x|x, |x| ≥ ρ.

Moreover, we also define the map βε : Nε → RN by

βε(w) =

∫
RN χ(εx)|w(x)|2dx∫

RN |w(x)|2dx
.

We have the following fact for βε, its proof similar to Lemma 5.2 in [22].
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Lemma 4.2 lim
ε→0

βε(λε(z)) = z uniformly in z ∈ Λ.

Lemma 4.3 For each µ > 0, let {wn} ⊂ Mµ with Υµ(wn) → c̃µ. Then {wn} has a

subsequence strongly convergent in E, In particular, there exists a minimizer for c̃µ.

Proof : From the proof of Lemma 2.7 we know that {wn} is bounded in E. By Lemma

2.9, c̃µ <
1
2N S

N
2 . Notice that

S+
µ := {w ∈ E+ :

∫
RN

|∇w|2dx+ µ

∫
RN

|w(x)|2dx− 1 := B(w) = 0}

and

⟨B′(w), w⟩ = 2[

∫
RN

|∇w|2dx+ µ

∫
RN

|w(x)|2dx] = 2

for all w ∈ S+
µ . Hence B

′(w) ̸= 0 for all w ∈ S+
µ . By Proposition 9 in [23],

Υ̂ := Υµ ◦ m̂µ : E\{0} → R

is a C1 functional. Set {vn} := {m−1
µ

(wn)} ⊂ S+
µ . Since Ψµ(vn) → c̃µ , for

1
k2
, up to a

subsequence, one has

c̃µ ≤ Ψµ(vk) ≤ c̃µ +
1

k2
.

By Theorem 1.1 in [8], there exists a sequence {ṽk} ⊂ S+
µ such that

Ψµ(ṽk) ≤ Ψµ(vk), ∥vk − ṽk∥E ≤ 1

k

and for each v ∈ E\{0} with v ̸= ṽk, one has

Υ̂(v) > Ψµ(ṽk)−
1

k
∥v − ṽk∥E .

Hence, for any v ∈ S+
µ , we have

Ψµ(v) > Ψµ(ṽk)−
1

k
∥v − ṽk∥E .

Consequently, similar to the proof of Theorem 3.1 in [8], we can prove that there is a δk ∈ R

such that

∥Ψ′
µ(ṽk)∥ = ∥Υ̂′(ṽk)− δkB

′(ṽk)∥ ≤ 1

k
.
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Therefore,

ṽk = vk + ok(1), Ψµ(ṽk) → c̃µ , Ψ′
µ(ṽk) = ok(1).

Hence we may assume that {vn} is a (PS)c̃µ sequence of Ψµ. By Lemma 2.4, {wn} is a

bounded (PS)c̃µ sequence of Υµ. Hence, by Lemma 2.7, we may assume that wn ≥ 0. By

Lemma 2.14, going to a subsequence if necessary, we may assume that wn → w in E. This

completes the proof.

Lemma 4.4 Let εn → 0 and wn ∈ Nεn be such that lim
n→∞

Φεn(wn) = c̃V0 . Then, there

exists a sequence {zn} ⊂ RN such that wn(· + zn) has a convergent subsequence in E and

z̃n = εnzn → z ∈ Λ.

Proof : By Lemma 2.8, we know that ∥wn∥εn 9 0. Moreover, by wn ∈ Nεn and

lim
n→∞

Φεn(wn) = c̃V0 , from the proof of Lemma 2.7 we know that {wn} is bounded in E. We

claim that there exist {zn} ⊂ RN and r > 0 such that

lim inf
n→∞

∫
Br(zn)

|wn|2dx = τ > 0. (4.3)

Indeed, if this is false, then for any r > 0, one has

lim
n→∞

sup
z∈RN

∫
Br(z)

|wn|2dx = 0.

By Lemma 1.2 we know that wn → 0 in Ls(RN ) for s ∈ [2, 2∗). Notice that wn ∈ Nεn . We

have∫
RN

(
|∇wn|2 + V (εnx)f(wn)f

′(wn)wn

)
dx =

∫
RN

|f(w+
n )|22

∗−1f ′(w+
n )w

+
n dx+ on(1).

Since {wn} is bounded in E, up to a subsequence, we can assume that

lim
n→∞

∫
RN

[|∇wn|2 + V (εnx)f(wn)f
′(wn)wn]dx = lim

n→∞

∫
RN

|f(u+n )|22
∗−1f ′(u+n )u

+
n dx = L.

As the proof of corresponding part of Lemma 2.10, we can prove L = 0, and hence

lim
n→∞

∥wn∥εn
= 0,
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a contradiction. Hence (4.3) holds.

Let w̃n = wn(·+ zn). By the boundedness of {wn} in E and (4.3), up to a subsequence,

we have w̃n ⇀ w̃ ̸= 0 in E and w̃n(x) → w̃(x) a.e. in RN . Let {tn} ⊂ (0,∞) be such that

vn := tnw̃n ∈ MV0 and set z̃n = εnzn. By (V1) and wn ∈ Nεn , we get

c̃V0 ≤ΥV0(tnw̃n)

=
1

2
[t2n

∫
RN

|∇w̃n|2dx+

∫
RN

V0f
2(tnw̃n)dx]

− [

∫
RN

G(f(tnw̃n))dx+
1

22∗

∫
RN

|f(tnw̃+
n )|22

∗
dx]

≤1

2
[t2n

∫
RN

|∇wn|2dx+

∫
RN

V (εnx)f
2(tnwn)dx]

− [

∫
RN

G(f(tnwn))dx+
1

22∗

∫
RN

|f(tnw+
n )|22

∗
dx]

=Φεn(tnwn) ≤ Φεn(wn) = c̃V0 + on(1).

Hence

lim
n→∞

ΥV0(vn) = lim
n→∞

ΥV0(tnw̃n) = c̃V0 > 0.

By Lemma 4.3, up to a subsequence, one has vn → v in E. Moreover, by (4.3), one has

τ = lim inf
n→∞

∫
Br(zn)

|wn|2dx = lim inf
n→∞

∫
Br(0)

|w̃n(z)|2dz

≤ lim inf
n→∞

∥w̃n∥2E .

Consequently, for large n, one has 0 < τ
2 < ∥w̃n∥2E , and hence

0 <
τ

2
t2n < ∥tnw̃n∥2E = ∥vn∥2E ≤ C.

Hence {tn} is bounded. Therefore, without loss of generality, we may assume that tn → t∗.

By lim
n→∞

ΥV0(vn) = c̃V0 > 0 we get t∗ > 0, hence, up to a subsequence, we have vn → v =

t∗w̃ ̸= 0 in E. w̃n → 1
t∗ v = w̃ in E. The first conclusion is proved.

Now, we show that {z̃n} is bounded in RN . Otherwise, up to a subsequence, one has

|z̃n| → ∞. Notice that, up to a subsequence, we have vn → v ̸= 0 in E.
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By Fatou’s lemma we have

c̃V0 =ΥV0(v) < ΥV∞(v) = ΥV∞(v)− 1

2
⟨Υ′

V0
(v), v⟩

=
1

2

∫
RN

(V∞f
2(v)− V0f(v)f

′(v)v)dx+

∫
RN

(
1

2
g(f(v))f ′(v)v −G(f(v)))dx

+

∫
RN

(
1

2
|f(v+)|22∗−1f ′(v+)v+ − 1

22∗
|f(v+)|22∗)dx

≤ lim inf
n→∞

[Φεn(vn)−
1

2
⟨Υ′

V0
(vn), vn⟩]

= lim inf
n→∞

Φεn(vn) ≤ lim
n→∞

Φεn(wn) = c̃V0 .

This is a contradiction. This shows that {z̃n} is bounded in RN . Hence, up to a subsequence,

z̃n → z ∈ RN . If z ∈ RN\Λ, then V0 < V (z). As the above, we can get a contradiction.

Hence, z ∈ Λ and the lemma is proved.

Let

h(ε) := max
z∈Λ

|Φε(λε(z))− c̃V0 |.

Then, by Lemma 4.1, lim
ε→0+

h(ε) = 0. Define the set

Ñε = {w ∈ Nε : Φε(w) ≤ c̃V0 + h(ε)}.

Then, for each z ∈ Λ, we have λε(z) ∈ Ñε for each ε > 0.

By Lemma 4.4, similar to Lemma 4.5 in [10], we can prove the following Lemma.

Lemma 4.5 For any δ > 0, we have

lim
ε→0

sup
w∈Ñε

d(βε(w),Λδ) = 0.

Proof of theorem 2. For each δ > 0, Lemma 4.2 implies that there is an ε
δ
> 0 such

that

|βε(λε(z))− z| < δ, ∀ ε ∈ (0, ε
δ
), ∀ z ∈ Λ.

Notice that for each z ∈ Λ, one has λε(z) ∈ Ñε for each ε > 0. The diagram

βε ◦ λε : Λ → Ñε → Λδ
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is well defined for all ε ∈ (0, ε
δ
). Similar to corresponding part in [11] we can prove

cat
Ñε

(Ñε) ≥ catΛδ
(Λ).

Notice that as E+
ε is a nonempty open set of a Banach space, Theorem 5.19 in [26] holds,

too. For each ε ∈ (0, ε
δ
), take V = S+

ε , X = E+
ε and φ = Ψ̂ε in this theorem. Then, by

Lemma 2.4, φ ∈ C1(X,R), φ|V = Ψε ∈ C1(V,R) and

inf
V
φ = inf

S+
ε

Ψε = inf
Nε

Φε = c̃V0 .

Now, we prove that, for small ε > 0, Ψε satisfies the (PS)d condition for all d ∈ [c̃V0 , c̃V0 +

h(ε)]. In fact, let {wn} ⊂ S+
ε be a (PS)d sequence of Ψε with d ∈ [c̃V0 , c̃V0 + h(ε)]. Then,

by Lemma 2.4, {vn} := {mε(wn)} ⊂ Nε is a (PS)d sequence of Φε. Notice that for small

ε > 0, one has c̃V0 + h(ε) < c̃V∞ . We can assume that for each ε ∈ (0, ε
δ
), c̃V0 + h(ε) < c̃V∞ .

Then, by Lemma 2.13, we may assume vn → v in Eε. Hence wn → w := m−1
ε (v). This

shows that Ψε satisfies the (PS)d condition. Consequently, by Theorem 5.20 in [26], Ψε

has at least cat
Ñε

(Ñε) critical points in Ψ
c̃
V0

+h(ε)

ε := {w ∈ S+
ε : Ψε(w) ≤ c̃V0 + h(ε)}, and

hence Φε has at least cat
Ñε

(Ñε) ≥ catΛδ
(Λ) positive critical points in Ñε by Remark 3.1.

If wε ∈ Ñε denotes such a critical point of Φε, then uε := f(wε) is a positive solution of

(1.3). Consequently, the function vε(x) := uε(
x
ε ) is a positive solution of (1.1). Therefore,

the problem (1.1) has at least catΛδ
(Λ) positive solutions.

Moreover, the maximum point ζε of vε is related to the maximum point ξε of uε with

ζε = εξε. Hence, to prove the concentration property of solution for (1.1) we just need to

show lim
ε→0+

V (εξε) = V0.

Let {εn} ⊂ R+ be such that εn → 0+. Set wn := wεn . Then

c̃V0 ≤ cεn ≤ Φεn(wn) ≤ c̃V0 + h(εn) → c̃V0 .

Hence Φεn(wn) → c̃V0 . By Lemma 4.4 there exists a sequence {zn} ⊂ RN such that wn(·+zn)

has a convergent subsequence in E and z̃n = εnzn → z ∈ Λ. Set ψn(x) := wn(x+ zn) for all

x ∈ RN . Then we can assume that ψn → ψ ̸= 0 in E. We claim that ψn ∈ L∞(RN ) and

there exists C > 0 such that

∥ψn∥ ≤ C, ∀ n ∈ N.
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In fact, for any R > 0, 0 < r ≤ R
2 , take η ∈ C∞(RN , [0, 1]) such that

η(x) =

 0, if |x| ≤ R− r,

1, if |x| ≥ R,

and |∇η| ≤ 2
r . For l > 0, set

ψl,n(x) =

 ψn(x), if ψn(x) ≤ l,

l, if ψn(x) ≥ l,

and

ϕl,n = η2ψ
2(θ−1)
l,n ψn, ωl,n = ηψθ−1

l,n ψn

with θ > 1 to be determined later. For convenience’ sake, we shall omit dx and dy in the

following integrals.

Since wn is a critical point of Φεn , take ϕl,n as the test function, one has

0 =

∫
RN

∇ψn∇ϕl,n +

∫
RN

V (εn(x+ zn))f(ψn)f
′(ψn)ϕl,n

−
∫
RN

|f(ψn)|22
∗−1f ′(ψn)ϕl,n −

∫
RN

g(f(ψn))f
′(ψn)ϕl,n.

Hence ∫
RN

η2ψ
2(θ−1)
l,n |∇ψn|2

=

∫
RN

|f(ψn)|22
∗−1f ′(ψn)ϕl,n +

∫
RN

g(f(ψn))f
′(ψn)ϕl,n − 2

∫
RN

ηψ
2(θ−1)
l,n ψn∇ψn∇η

−
∫
RN

V (εn(x+ zn))f(ψn)f
′(ψn)ϕl,n − 2(θ − 1)

∫
RN

η2ψ2θ−3
l,n ψn∇ψn∇ψl,n.

Using Lemma 1.3, similar to proof of Lemma 4.6 in [10], we can prove that there is K > 0

such that

∥ψn∥L∞ ≤ K, ∀ n ∈ N

and lim
|x|→∞

ψn(x) = 0, uniformly in n ∈ N.

Let Pn be the global maximum of ψn. Then ξεn := Pn+zn is the global maximum of wn.

Since lim
|x|→∞

ψn(x) = 0 uniformly in n ∈ N, the sequence {Pn} ⊂ RN is bounded. Otherwise,
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we may assume |Pn| → ∞, and hence lim
n→∞

ψn(Pn) = 0. Hence, for any 0 < τ < 1
4V0, one

has

2
2∗
2 ψ2∗−2

n (Pn) <
τ

2

for large n. Moreover, by (g1), there exists ρ0 > 0 such that |g(s)s | < τ
2 whenever 0 < |s| < ρ0 .

Notice that for large n, one has 0 < f(ψn(x)) ≤ f(ψn(Pn)) ≤ ψn(Pn) < ρ0 for all x ∈ RN .

Hence, for large n,

1

2
[

∫
RN

|∇ψn|2 +
∫
RN

V (εn(x+ zn))f
2(ψn)]

≤
∫
RN

|∇ψn|2 +
∫
RN

V (εn(x+ zn))f(ψn)f
′(ψn)ψn

=

∫
RN

|f(ψn)|22
∗−1f ′(ψn)ψn +

∫
RN

g(f(ψn))f
′(ψn)ψn

≤2
2∗
2 ψ2∗−2

n (Pn)

∫
RN

f2(ψn) +

∫
RN

g(f(ψn))

f(ψn)
f(ψn)f

′(ψn)ψn

≤τ
∫
RN

f2(ψn),

and hence∫
RN

|∇wn|2 +
∫
RN

V (εnx)f
2(wn) =

∫
RN

|∇ψn|2 +
∫
RN

V (εn(x+ zn))f
2(ψn) = 0

for large n. Therefore, ∫
RN

|∇wn|2 +
∫
RN

V0f
2(wn) = 0

for large n. By Lemma 2.6 there is a constant C > 0 such that

0 =

∫
RN

|∇wn|2 +
∫
RN

V0f
2(wn) ≥ C∥wn∥E .

Hence, wn = 0 for large n, a contradiction. This shows that the sequence {Pn} ⊂ RN is

bounded. Consequently, εnξεn → z ∈ Λ. Therefore, lim
n→∞

V (εnξεn ) = V (z) = V0. This

completes the proof of Theorem 2. 2
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[6] J. M. do Ó, O. H. Miyagaki, S. H. M. Soares, Soliton solutions for a quasilinear
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