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ABSTRACT. 1n this paper, we concern the modified Schrédinger e-

quations
—2Au+ V(z)u — 2udu® = [u? 2u+ g(u), z € RY.

First, a existence result of ground state positive solutions is given. Nex-
t, we research multiplicity and concentration of positive solutions. Where
N > 2, ¢ is positive parameters and 2* = % is the critical exponent,
V € C(RN,RY), g € C(R,R). Our results improve corresponding results
in [10] (X. He, A. Qian, W. Zou, Existence and concentration of positive
solutions for quasilinear Schrodinger equations with critical growth, Nonlin-

earity, 26(2013), 3137-3168).
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nent.

1 Introduction and Preliminaries

This paper deals with the existence, multiplicity and concentration of positive solu-

tions for modified Schrédinger equations with critical growth
—2Au+V(z)u — 2A W) u = [u?* 2u+g(u), = e RV, (1.1)

where N > 2, 2* = ]\%—sz Moreover, V € C(RV,R), g € C(R,R) satisfy the following

assumptions:

(V) 0<Vp:= inf V(z) < lim V(z):= Vyx < oo;

zeRN |z|—o00

(G) (91) g(s) = o(|s]) as |s| = 0;
(g2) there exist ¢ € (4,22%) and 0 > Py such that

: g(S) o—1
_— >
SEIJPOO a1 0, g(s)>Cys ", Vs>0,

where Py = 4 if N > 6 and Py = 2052 if N — 2,3 4, 5.

(93) % is increasing in (0, +00), g(s) = 0 for s < 0.

Solutions of (1.1) are related to the standing wave solutions of the form
Y(a,t) = e P ()

for the Schrédinger equations

ie%f = =AY+ V(2)p — AW — f(), zeRY. (1.2)

The equation (1.2) appears naturally in mathematical physics and had been derived as
models of several physical phenomena. We refer the reader to [2, 4, 6] and references
therein for more physical motivations and development of physical aspects. The equation

(1.1) has been extensively studied in recent years, for example, see [1, 3, 5, 7, 9, 10, 12, 13,



14, 15, 16, 17, 18, 19, 20, 21]. Particularly, in [10], the multiplicity and concentration of
positive solutions of the equation (1.1) were studied, where except the conditions (V') and

(G), authors add the following two hash conditions on the function g:
(94) 9 € CH(R,R);
(g5) there exists 6 € (4,22%) such that

0 < 0G(s) :== 9/8 g(t)dt < sg(s), Vs e (0,400).
0

Motivated by the above reason, in the present paper, our aim is to research the existence,
multiplicity and concentration of positive solutions for problem (1.1) without (g4) and (gs).

Our results show that the two conditions (g4) and (g5) are no need.
Our main results as follows:

Theorem 1 Suppose that (V') and (G) are satisfied. Then there exist ¢* > 0 such that

for any e € (0,&*), the problem (1.1) possesses a ground state positive solution.

Theorem 2 Suppose that (V) and (G) are satisfied. Then for any § > 0 there exist
e* > 0 such that for any € € (0,¢"), the problem (1.1) has at least cat, (A) positive
solutions. Moreover, if u. denotes one of these solutions and (. € RY is its global maximum,

then lin%V(CE) = Vo and lim wuc(x) = 0. Where A := {z € RY : V(z) = Vp} and
E—

|z|—o00

As = {z € RY : d(x,A) < 6}.
We need the following preliminaries.
The Sobolev space H*(RY) is defined by
HYRN) = {u e LA RY) : |Vu| € L*(RM)}
with the natural norm
fulley = ([ wdot [ [VuPdo)t.
RN RN
Moreover, we define the homogeneous Sobolev space

DY (RN) = {u e L* (RY) : |Vu| € L*(RY)}



with the norm
2 _ 2
||UHD1,2(RN) — /]RN ‘VU| dl’,
which can be equivalently defined as the completion of C§°(R™V) under the norm |- || DL2(RN)-

We have the following results.

Lemma 1.1 (/26]) For N > 2, there ezists a constant C = C(N) > 0 such that
[ull 25 @y < Cllullpregsy for every u € DVY2(RN). Moreover the embedding H'(RV) —

L*(RN) is continuous for any s € [2,2*], and is locally compact whenever s € [2,2%).

Lemma 1.2 (/26]) Assume that {u,} is bounded in H*(RY) and

lim sup / |un ()2 dx = 0,
Br(y)

n—o0 yERN

where R > 0. Then u, — 0 in L*(RY) for every 2 < s < 2*.

Remark 1.1 Similarly, at the case that the sequence {|un|2 } is vanishing, we can prove

that u, — 0 in L¥(RN) for every 2 < s < 2%

The equation (1.1) is equivalent to the equation
—Au+V(ex)u —uAu? = |u? 2u+ g(u), = € RY. (1.3)

Set
X ={u€E.:u?ec HY(RM)},

where E. is defined as

E.={uec H'RY): / V(ex)uldr < 400}
RN

with the norm

ol

lull. = </sz (9P +V(exyu)dz) .

Define the functional

1 1 1 x
Je(u) = Q/RN(l + 2u?)|Vu|?dz + 5 /]RN V(ex)uldr — 597 /]RN lu*?" da — /]RN G(u)dz,
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where G(u) := [ g(t)dt. Then J. is well defined on X. We say that u € X is a weak
solution of (1.3) if

0= / (VuVe + V(ex)up)ds + 2/ (u*VuVe + |Vul2up)ds — / [u|?2" " 2updz
RN RN RN

- / g(u)pdz
RN
= (JL(u), )
for all ¢ € X. Once we get a solution u. of (1.3), then the function v.(z) := uc(2) is a

solution of (1.1). Set

1 1 1 *
Je(u) = / (1 + 2u?)|Vul|?dz + / V(ex)uldr — / lut*2" da — / G(u)dzx,
2 RN 2 RN 22* RN RN
where u™ (x) := max{u(z),0}. Then

(JL(u), ) = /RN (VuVp + V(ex)up)ds + Z/RN (W?VuVe + |Vulrup)de

—/ !u+!22*‘1<pdw—/ g(u)pdz
RN RN

for all w € X and ¢ € X.

Since X is not a linear space, the critical point theory can not be direct applied for the
functional J. on X. Moreover, as Vo, = +00, the continuous embedding E. — L* (]RN ) is
compact for 2 < s < 2* (see also Lemma 3.4 in [28]), so that the study of the problem is

more easy, and hence, we consider only the case Vo, < +00.

If u is a positive weak solution of (1.3) and J.(u) = inf{J.(v) : v > 0 and J.(v) = 0},
then w is called a ground state positive solution of (1.3). In order to overcome the difficulty
cause by the nonlinearity of space X, we will adopt the dual method proposed by Liu-Wang-
Wang [15] and Colin-Jeanjean in [5].

Set f(s) := J§ V1+2t2dt. Then f is positive, strictly increasing, convex and C™ in
[0, +00). Hence, we set f = f_l for s > 0. For s <0, we put f(s) := —f(—s), and hence

F(s) = —— | Vs e (—o0,400).

VI+2f%(s)’



Set
b.(0) =5 [ IVePdo+5 [ Vien oo =g [ 10T @) da

— | G(f(v(x)))dz.

RN

Then @ is well defined in E. and 0 < v € E. is a critical point of &, if and only if u = f(v)

is a nonnegative critical point of J..

For completeness we collect here some properties of f(t).

Lemma 1.3 (see, [5, 10, 15, 18]) The function f(t) enjoys the following properties:
(1) f is uniquely defined C* function and invertible.
(2) | ()| <1 forallt € R.
(3) 1f(t)] < |t| for allt € R.
(4) lim 2 = 1.
(%) t£+moo % - 2%'
(6) 5f(t) <tf'(t) < f(t) for allt >0, §f(t) > tf(t) > f(t) for all t < 0;
(7) |f(t)] < ot |t|% for all t € R.
(8) f2(t) is strictly conver.

(9) There exists a positive constant C' such that

Clel, <1,

ORI
Clt*, 1> 1.

(10) There exists a positive constants Cy > 1 such that

[t < CollF ()] + £ )7, Y teR.

(11) |f(t) f'(t)] < % for all t € R.



(12) For each A > 0, there is a constant C(\) > 0 such that f2(\t) < C(\)f2(t) for all
teR.

(13) w is strictly decreasing for t > 0.
(14) w is strictly increasing for ¢ > 3 and t > 0.

(15) lim [t

_ _72 _
Jim [t = Lot — J572(0)] = co > 0.

N

(16) f2°(t) =272t —ct* “'Int + O(t* 1) as t — +oo.

In the following, without loss of generality, we assume 0 € A. By the condition (V') we

know that A is compact. Throughout the paper, we denote distinct constants by C' and C;.

2 Preliminary Results

Set EX = {v € E. : v"(z) # 0} and ST := S. (| EF, where S. is the unit sphere of
E..

Lemma 2.1 There exist constants C,p > 0 such that

/ \VUde—i—/ V(em)fQ(v)da:ZCHsz
RN RN

whenever ||v||: < p.

Proof: If this is false, then there is a sequence {v,} C E. such that v, — 0 in E. and

1
[ Venldet [ V) Pwnds < ol
RN RN
Set w, = H i Then

2

n 1
/ ]an|2daf+/ V(ax)w%dw—k/ V(ax)[f (;) ) _ Hwidr < —.
RN RN RN (%~ n

Notice that, up to a subsequence, one has v,(z) — 0 a.e. z € RY. Hence, for each § > 0,

the measure |[{z € RY : |v,(z)| > §}| = 0 as n — oo, and hence,

2% —2 2
/ w2dr < |[{z € RN : |vu(z)] > 0} & (/ lw,|* dz)” =0
vn (2)[>0 RN



as n — oo. Consequently, by Lemma 1.3 (4) we know that

2
v
Vien) W) 1ju2dr 0
RN Un
as n — oo, and hence we get 1 = ||w,|| — 0, a contradiction. This completes the proof.

Lemma 2.2 The functional ®. satisfies the mountain pass geometry, that is

(1) There exist 3,p > 0 such that

O:(v) > B, as |lvlle =p;
(i) There ezists e € E. such that |e||s > p and ®.(e) < 0.

Proof. (i) For any v € E.\{0}, we have

0.0) =5 [ (VoP+ V) P@)do =g [ 150N de— [ 6w

> 1/ \vv\2dx+1/ V(ex) f2(v)dz — Collv]|2".
2 RN 4 RN

(2.1)

By Lemma 2.1 we get first conclusion of Lemma 2.2.

(74) For each t > 0 and each v € E. with ||v]|c = 1 and v > 0, one has

t? 1 1 !
O (tv) = / |Vo|2dx + / V(ex) f2(tv)dx — / |f(tv)[** da — G(f(tv))dz
2 RN 2 RN 22* RN RN
t2 2 2 1 g o [P (tv)
< — dxd v dr — — t e da.
<Gl voPdsay+ [ Viemptar— g [ L

By Fatou Lemma and Lemma 1.3 (5), we know

lim inf 222" I (tv) dr = +o0.
t—+oo JpN t2*v2*

Hence lim ®.(tv) = —oo, and hence the conclusion (i7) holds. O
t—+o0

Lemma 2.3 The following properties hold:



(1) For each v € EX and t > 0, set h,(t) := ®.(tv). Then there exists an unique t, > 0
such that hy(t,) = rgmg{hu(t), Rl (ty) = 0, h,(t) > 0 in (0,t,), hl(t) < 0 in (t,,+00) and
tv € N: if and only if t = t,,, where N :={v € EX : (®.(v),v) = 0}.

(2) There exists a T > 0 independent of v such that t, > T for all v € ST. Moreover,

for each compact set D C St there exists Cp > 0 such that t, < Cp for allv € D.

(3) The map e : EF — N given by m(v) = tyv is continuous and me := M| . is a

homeomorphism between ST and Nz. Moreover, m-'(v) = Toll -
€

Proof: (1) From the proof of Lemma 2.2 we know that h,(0) = 0, hy(¢t) > 0 for small
t > 0and tliinoo hy(t) = —oo. Hence, there exists a ¢, > 0 such that hy(t,) = max hy(t) and
Rh!,(t,) = 0. Notice that

h(t)=0&tveN: &

/ ]Vv|2dm:—/ V(sx)f(tv)tf(tv)vQ(:v,O)da:—I—/ f22*71(tv+)f/(w+)|v+]2dac
RN RN

RN t’U+

SIE) P o
ry  f3(tvT) tvt '

By Lemma 1.3 (13)-(14) and the condition (g,) we know that the right side is strictly

_l’_

increasing in ¢ > 0. Hence ¢, is unique. This completes the proof of (1).

(2) By Lemma 2.1 there exist constants C, p > 0 such that

/ \Vv]Qd:c—i—/ V(ez) f2(v)dz > C|v|:
RN RN

whenever |[v||c < p. If the first conclusion of (2) is false, then there exists a sequence

{vn} € ST such that ¢, :=t, — 0%. Hence, for large n, one has 0 < t,, < p. Notice that

t%/ ’V’Un’QdZ' + / V(€x>f(tnvn)f/(tnvn)tnvndx'
RN RN

= | o) f (tavd v da + / 9(f (tnvg ) f' (tnvy Vtnvy do.
RN RY



By (g,), (g,) and Lemma 1.3 (6)-(7) we know that
1
ZC&%

1 2 2
< 4[/RN |V (tnvn)|“dz + /]RN V(ex) f*(tnvn)dz]

1
< / |V (tnv,) |2da + / V(ex) f(tnvn)) f (tnvn)tnvndx
RN 2 RN
<Co [ 1 ) ) v da
RN
< 04/ ’tnvn’2*dl‘
RN
< Ot
This contradicts that ¢, — 0. Hence the first conclusion of (2) holds.

Now, we prove the second conclusion of (2). If this is false, then there exists a sequence
{vn} C D such that t,, :=t, — 4o00. Since D is compact, we can assume that v,, = v € D.
From the proof of Lemma 2.2 (i) we know that lim ®.(t,v,) = —oco. By Remark 1.1 in

n—oo

[25] and (g,) we know that
tg(t) —4G(t) >0, VteR.

Hence, by Lemma 1.3 (6), one has
1
e(tnvn) — §<(I’;(tnvn)7tnvn>

[ VD2 t0) = Ftstn)f ot d

! /RN[; A U U e [
- /]RN [%g(f(tnvn))f,(t”v")t”v”(x’ 0) - G(f(tnvn))]dx
11 .
Z /RN[4 = g I (v da

+ [ GO () = G (t0,))lda

> 0.
This contradicts that lim ®.(t,v,) = —oco. Hence, the second conclusion of (2) holds.
n—oo

(3) Obviously, e, me, m-! are well defined, and m_! is continuous. Since

mzt(me(v)) =v, YveSh

10



me : ST — N is a bijection. Now, we prove that m. : E& — AL is continuous. Indeed,
let {v,} C EF be such that v, — v in EI. By the conclusion (2) we know that, up to a

subsequence, t, :=t,, — to > 0 and
t?z/ |an|2d.7} + / V(gx)f(tnvn)f,(tnvn)tnvndx
RN RN

= / f22*_1(tnv,f))f/(tnvx)tnv;daz + / 9(f(tnvn)) f (tnvn)tnunda.
RN

RN
Passing to the limit as n — oo in the above equality, we get

t2 /RN |Vo|2dx + /RN V(ex) f(tov) f'(tov)tovdz

= / 2 tov ) f (tov T ) tov T da + / g(f(tov)) ' (tov)towdz.
]RN

]RN
This means that tov € Az, and hence ty = t,. Consequently, m.(v,) — Mmc(v) in EF. This

shows that m. : EX — N is continuous. This completes the proof of (3). |

Now, we define the functional U, : EX — R by \Tla(v) = ®.(m-(v)) and ¥, := \f/a|56+.

By Lemma 2.3, similar to Lemma 2.3 in [23] we can prove the following Lemma.

Lemma 2.4 (1) U, € CY(EF,R) and

G [[772¢ (w)

U (w)v = He@;(fﬁg(w))v, YweES and YveE..

(2) . € C1(SH,R) and
UL (w)v = |[|[me(w) || ®L(me(w))v, Ywe ST and Vv eT,ST,
where

TwST == {v € E. : (w,v). = 0}.

(3) If {wn} is a (C)gq sequence of W, that is V. (wy,) — d and (1 + ||wy||e)PL(wy,) — 0,
then {mg(wy)} is a (C)q sequence of ®.. If {w,} C N is a bounded (C)q sequence of @,
then {m-(w,)} is a (C)q sequence of V..

(4) w is a critical point of V. if and only if m.(w) is a critical point of ®.. Moreover,

corresponding critical values coincide and

ié%rf\llg = inf ®..

11



Using standard methods, we can prove the following Lemma 2.5.

Lemma 2.5

= inf &, = inf O, (tv) = inf Q. (tv) > 0.
TR T L @) = g @)

Lemma 2.6 Let {w,} C E. and A2 := [pn |[Vwn|?*dz + [pn V(ex) f2(wy)dz. If {A,} is

bounded, then there exists constant C > 0 such that

AR > Cljwn2. (2.2)

Proof: = We may assume that w, # 0 (Otherwise, the conclusion is trivial). If this
2

conclusion is not true, passing to a subsequence, we have wa — 0. Set v, = Hl%\ls and

2 Wn (T
gn(w) = Lf2eEl . Then

/ ande—i—/ V(ex)gn(x)dx — 0.
RN RN

Hence

/ |V,|?dz — 0, / V(ex)gn(x)dx — 0, / V(ex)v2dr — 1.
RN RN RN

We assert that for each 6 > 0, there exists a constant C; > 0 independent of n such that

meas(Qy,) < 6, where 0, := {x € RV : |w,(x)| > C1}. Otherwise, there is a §o > 0 and a

subsequence {wy, } of {w,} such that for any positive integer k,
meas({z € RN : |w,, ()| > k}) > > 0.
Set Q,, = {z € RN : |w,, (z)] > k}. By Lemma 1.3 (9) and (V)
A2 > /R V(en) P, )dr > /Q V() f2(wn, )dz > Chdo — +0

"k

as k — oo, a contradiction. Hence the assertion is true.

Obviously, we can assume C7 > 1. Hence, as |w,(z)| < C1, by Lemma 1.3 (9) and (12),

one has

2(x
g(% < Cof¥(Gua(a)) < Caf*(un(@),

w,

12



Hence there exists a constant C3 > 0 such that

/ V(ex)vide < Cg/ V(ex)gn(x)dx — 0.
RN\Q, RN

By the integral absolutely continuity, there exists § > 0 such that whenever Q ¢ RY and

meas(Q) <6, [ V(ex)vide < 3. For this 4, we have

/ V(ax)v%d:c:/ V(Ew)vfldaﬁt/ V(ex)vide
RN Qn RN\Qn
1
<z +/ V(ex)vide,
2 RN\Qn
1

which implies 1 < 3, a contradiction. Hence there exists a constant C' > 0 such that

A2 > C||wy,||?. This completes the proof of Lemma 2.6. |

Lemma 2.7 Let {w,} C E- is a (C)q sequence of ®.. Then {w,} is bounded and {w, } =

on(1).

Proof: Since
d—+ On(l) > (I)s(wn) - %((I)/g(wn)7wn>
= % V(ex)[f?(wpn) — flwp)f (wp)w,]dz
RN

[ LI st — ol )
_+J£N[1gu1wn»f%um>wn—-G(f@m»ﬂdw

2
> [ 5 gD do
— Jpy 4 22% ’
the sequence { [pn | f(w;))|?* dz} is bounded. Since again
d+ on(1)
= e (wy)
1 s 1 . 1 e
== |Vwy,|“dz + = V(ex) f*(wy)dx — \f(wn )|“° da — G(f(wy))dx
2 RN 2 RN 22* RN
1 1 “d
>/ |an]2dac+/ V(ex) f2(wy da:—C/ 1?2 de,
4 RN 4 RN

13



the sequence {A,} is bounded, where A2 := [on [Vw,|*dz + [on V() f?(wy)dz. By

Lemma 2.6 we know that the sequence {w,} is bounded in E..

Next, we prove that {w,, } = 0,(1). Indeed, since {w,,} is bounded in E, so does {w,, }.

Hence, similar to (2.2) we have

[ v Pde [ V) 2w )de > Cluy 2 (2.3)
RN RN

Consequently,

= 1w+ [ vien) flun) g s da
1 _ _
> 5l VunPdes [ Vien) Pl

This completes the proof of Lemma 2.7. |
Lemma 2.8 There exists a constant r > 0 such that |w|. > r for alle > 0 and w € N;.

Proof: If this false, then there is a sequence {w,} C N, such that ||wy]|., — 0. Notice
that for each § > 0 there is Cy > 0 such that

/R |V 4 /R Vo (wn)da

g/ \an|2da:+;/ V(en) f2(wy)da
RN RN

< /I:QN \an|2d:c+ /RN V(gnx)f(wn)f/(wn)wndx

- / F) 2 (w0 Ywnda + / 9(F () (wn Ywnde
RN RN

< ¢ /R FP dr 6 /R Plwn)dr

Hence, for small § > 0, there is Cs5 > 0 such that

1 *
[ vunPar g [ Vorwnde<cs [P
RN RN RN

14



By Lemma 2.6 we know that
1 2 2 1 2 2
-C (IVwp|* 4+ wy)dz < =] |Vw,|“dx + Vo f*(wy)dx]
4 RN 4 RN RN
1
< / \Vwy|?dx + / Vo f?(wy)dz
RN 4 RN
< [ IfwhP da
RN
< 02/ wn|* da
RN
2%
< 03(/ (IVewal? + w2)dz) 7.
RN
It contradicts that ||wy]ls, — 0. This completes the proof of Lemma 2.8. |

When V =1, set E:=E., E*:= EF. For u >0 and v € E, set

T =5 [ IVePds sl [ e g [ e - [ G,

M, ={w € Et: <T/H(w),w> =0}, ¢, := /i\I/Ilf T,
o

The following the proofs of Lemmas 2.9 and 2.10 are similar to Lemmas 2.10 and 2.12

in [10], respectively. In order to completeness, we give its proof, too.

Lemma 2.9 For any p > 0, there exists w € E1 such that

T, (t Lo
—52
max Ty (tw) < 5797,

IRN \Vu|2da7

where S := .
ue€DLERN) ([on [ul?” do)2*

Proof: We consider the functional

1

_ 1 x
Ju(u) =Y, (fHu)) = Q/RN(l—l—QuQNVu]de—i—g/RN uldx — ﬁ]uﬂm dx—/RN G(u)dz.

Then, it is sufficient to prove there exists 0 # w € X such that

1 »n
Tt —y
Sup pltw) < 557

15



Indeed, since Y,(f !(tw)) = J,(tw) — —oo as t — oo, there is t* > 0 such that

Y, (f~1(t*w)) < 0. Then for v*(t) := f~1(tt*w), there holds

1
Gy < sup T,(v*(t) < sup Y(fL(tw)) = sup J,(tw) < ﬁS%
t€[0,1] >0 >0
For 6 > 0, set
[N(N —2)8]" 1
5 () = N_2
[0+ |=[?] 2

By [10] we know that S can achieved by Us. Moreover, Uy satisfies

/ |VU5\2dx:/ Us|> dz = S2.
RN RN

Let ¢p € C°(RY,[0,1]) be a non-increasing cut-off function such that

do(x) =1 if || <1, ¢o(z)=0 if |z|]>2.

Define the function

N—2

ws(x) = ¢o(:n)U5% (z) = do(x)[N(N —2)6] 5

N-—-2 .

[0+ |z]2] T
Set ns = —“. From [10] we know that
llws | 5«
[ IV =5 + 0675,
O((Sp(]vs72))7 Zf 1 < p < 2>)<7
/N‘%!Pdm: O((S%ﬂn(ﬂ), if p=2
- N _p(N-2)

0(57* 8 )’ if 2F < p < 22*.

Therefore, n5 € X and by (g2), we get

t2 t4 CO - - 22%*

Tt < 5 [ (o i+ [ VG = e [ lde - D= )
2 RN 4 RN g RN 22

It is easy to verify that t£+m h(t) = —oo and h(t) > 0 when ¢ > 0 small enough. Con-

sequently, there exists ¢5 > 0 such that max h(t) = h(ts) and h'(ts) = 0, from which we
deduce that B

/ (W%‘QJF“”?)dxﬂg/ !V(U(?)Pdw:cot?_?/ 5|7 da + 1222,
RN RN RN

16



Then the equality implies that there exists 77 > 0 such that ¢5 > T} and {ts} is bounded.

Set I(t) = % wn [V(03)|2dx — t;; . Then function attains its unique global maximum

at to :== (fpn |V(n§)]2dx)22*1*4. Thus, by the properties of g, for § > 0 small enough, we
deduce

max JM(L‘U{;) < h(ts)

>0
t(% 2 2 CO o o
<Uto) + < | (Vas|” +m5)de — —t5 | |ns|”dz
RN g RN
1 1 S22t o
<G g [ IVERP) T o [ (s vnide - [ sl
4 22 RN RN RN
1 N-2 (N o
=g+ TNE+C [ (Vnsl + e = [ inglodo
1 - - o(N—
— 5 5F 40067 + 06" - 0%
I N
< WSQ
Thus, the proof is completed. |

Lemma 2.10 Let {w,} C E; be a (PS)q sequence of ®. with d < ﬁS% and wy, — 0 in

E.. Then one of the following conclusions holds:
(a) wy, — 0 in E;

(b) There exists a sequence {y,} C RN and positive constants r, 3 such that

n—o0

liminf/ lwn (z)|*dx > B.
Br(yn

Proof: If (b) does not occur, then for each r > 0, up to a subsequence,

lim sup / lw, |2dz = 0.
Br(2)

n—00 2€RN

Hence, by Lemma 1.2, one has
w, — 0 in LYRY), Vtel2,2%.
By (g,), (g9,) and Lemma 1.3 (3) (7) we know that

G(f(wn))dx = on(1), /RN 9(f (wn)) f (wn)dx = 0n(1). (2.4)

RN
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Set ¢ = 20 Then 6] = | f(w,) /T + 272(w,)]| < 3|, and

2f2(wn)
14 2f2(wy,)

Hence [|¢]|: < Cllwy]le. Consequently, (P (wy,), #) = 0,(1), and hence

V| = |[1 + [Vaw,| < 2|Vawy).

72](2(11}”) w 2 X X 2 w X
[ s et [ Ve )

- / 9 (wn)) F (wn)de + / )2 da
RN RN
B /R £ () dz + 0n(1).

Since {w,} is bounded in E., up to a subsequence, there is a number [ > 0 such that

2f2(wn) 2 2
/RN[l + T3 220w 2f2(wn)]\an| dx + /RN Vex) f*(wy)dx — 1

and

/ |f(w) | dz — 1.
RN
If I > 0, then

o« e [V () Pdx
T (fan |2 (wih) 2 da)
14 2L ) G, [2d V(ex) f2(wy)d
< Jen | +1+2f2(wn)” wp|*dz + [pn V(ex) f2(wy)dz
N (Jouw |2 (wi})[2"d) 5+

SN
as n — oo. Hence [ > S%. Consequently, by (2.4), one has

d= nl;rglo O, (wy,)

= nlggo[% /RN (IVwn|? + V (ex) f* (wn) ) dz — [ G (wn))de - 2;* /RN |f (w;i)|? da]
] 212 (w,) ) ,
> nh—>nc}o{4[/RN(1 - m)\VU}M dx + /RN V(ex) f*(wy,)dx]
~ o [ 1) o)
l 1 ~
= ﬁ > ﬁs s

a contradiction. Hence [ = 0. Consequently, by the boundedness of {w,,} in E. and Lemma

2.6, one has w, — 0 in E., ie (a) holds. This completes the proof. |
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Lemma 2.11 Let {w,} C E. be a (PS)y sequence of ®. with d < ﬁS% and wy, — 0 in
E.. Then w, — 0 in E..

Proof: By Lemma 2.7 we can assume w, > 0. Consider any subsequence of {w,,}, still
denoted by {w,}. Since w, — 0 in E., up to a subsequence, we can assume w, — 0 in

LS

s (RN) for s € [2,2*) and wy,(z) — 0 a.e. z € RY. If w,, » 0 in E., then, we may assume

that w, € EX for each n, and by Lemma 2.10, there exists a sequence {z,} C R™ and

positive constants r, 7 such that

lim inf/ wp () 2dx > 7. (2.5)
By (zn)

n—oo

Hence the sequence {x,} is unbounded, and hence, we can assume
|y | := kn — oc0.
Notice that for each j € N, one has

lim lw,, (z)|?dz = 0.
oo Bar; (0)

Hence there is a m; € N such that

/ |wp (2)[2dz < ~
Bak,; (0) 2

for all n = mj 44,9 = 1,2,---. Without the loss of generality, we can assume m; 11 > m;.

Set n; := m; + j. Then
-

Wy, (x)|2de <
/szj 0) ! 2

Hence, up to a subsequence, we have

limsup/ Jwy, ()] 2dr < z (2.6)
Boy,, (0) 2

n—oo

Notice that k, — +oo. Hence, for large n, one has B, (z,) C Ba, (0), and hence (2.6)
contradicts (2.5). This shows that w, — 0 in E.. This completes the proof. |
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Lemma 2.12 Let {w,} C E. be a (PS) sequence of ®. with w, — w in E.. Set w, =

wy, —w. Then
(i) Pe(wy) = Pe(wy) — Pe(w) + 0, (1),

(id) [Pz (@n)[| = on(1).

Proof: The proof is similar to Lemma 2.14 in [10], we omit it. |

Lemma 2.13 ®. satisfies the (PS)q condition at any level d <¢,,_.

Proof:  Let {w,} C E. be a (PS)4 sequence of ®.. Then, by Lemma 2.7, {w,} is
bounded in E. and we can assume w, > 0. Hence, up to a subsequence, there is w € E.
such that w, — w in E, w, — w in L; (RY) for each s € [2,2*), w,(z) — w(z) a.e. in

RN and ®.(w) = 0. Set W, = w, —w. Then, by Lemma 2.12,
O (wy,) = P(wy) — Pe(w) + 0p(1) =d — P(w) + 0,(1) :=a+ 0,(1)

and ||®L(wy,)|| = on(1). By (g,) and Lemma 1.3 (6), we have

P (w)

= ®.(w) - 3 (@l (w),w)

— ;/RN V(ex)[f*(w) — f(w)f' (w)w]dz + /RN[;g(f(w))f’(w)w — G(f(w))]dz
s [ R et = ) s

N
2

Hence, by Lemma 2.9, a := d — ®.(w) < d < ¢, < 5182, By Lemma 2.11 we know

2
wy, — w in E.. This completes the proof. |

From the proof of Lemma 2.13 we have

Lemma 2.14 . satisfies the (PS)q condition at any level d < ﬁsg
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3 The proof of Theorem 1

Proof: By Lemma 2.2 we know that the functional ®. satisfies the mountain pass geom-
etry, then using a version of the mountain pass theorem (e. g. see Theorem 6.3.4 in [27]),
there exists a sequence {wy} C E. such that nan;O D (wy) = ¢, and (1 + ||wp|e)||PL(wn)|| =
on(1). By condition (V) we can assume that Vj = V(0) = xierIlRfN V(z). For any p € R
with Vo < p < Vo, we have EVO < ¢y < ¢, . By Lemma 2.9, ¢, < ﬁsg By virtue of
Lemmas 2.2, 2.7 and Theorem 6.3.4 in [27] we know that ¢, is a critical value of T, with
corresponding positive critical point w € E. For any r > 0, take . € C°(RY,[0,1]) be
such that n, = 1if |z| < r and n, = 0 if |z| > 2r. Set v, := n,w, it is easy to verify that
v € E for each » > 0. By Lemma 2.3 there exists ¢, > 0 such that v, := t,v, € M,.
Hence there is 79 > 0 such that v = v, satisfies T,(v) < ¢,__. In fact, if this is false, then
Y, (vr) = Tp(trve) > ¢, for all > 0. Notice that v, — win £ as r — +oo and w € M,,.

We can deduce that t, — 1 as r — +o00. Hence,

< Tim _ _
< lﬁgﬁgj Tu(trvr) = Tp(w) = ¢, < ¢y,

CVoo

a contradiction. This shows T, (v) < ¢, . Notice that Vo = V(0) < p and supp(v) is

compact. By the continuity of V, there is an €* > 0 such that

V(exr) <p, V €€ (0,e%) and x € supp(v).

Hence,
P (tv) < T,(tv), V € (0,") and t >0,
and
= < — _ o~ «
I?Zag(@g(tv) < I?Zagc’fu(tv) T.(v) <ec, , V e€(0,&).
Consequently,

ce <¢,_, V e€(0,e%).

By virtue of Lemma 2.13, up to a subsequence, one has w, — v in E.. Hence ®L(v) =0

and ®.(v) = c.. Moreover, Harnack inequality (see [24]) implies v(x) > 0 in RY. Hence
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f(v) is a ground positive solution of (1.3). This completes the proof of Theorem 1.

u
i

Remark 3.1 From the above proof we know that all non zero critical points of ®. are

positive.

4 The proof of Theorem 2

Since V; > 0, by Lemma 2.9, EVO < ﬁS 7. From the proof of Theorem 1 we know that

EVO is a critical value of TVO with corresponding positive critical point w € FE.

Let 7 be a smooth nonincreasing cut-off function defined in [0, c0) such that n(s) =1 if

OSSS%andn(s)inst1.ForeacthA,let

ET — Z

0e2(x) = n(lex — z|)w( ), VxeRYN.

Then o. . € E-\{0} for all z € A. In fact, using the change of variable z = x — £, one has

EX — Z

| Ve o= [ Vieai(en - st )do

RN g

= /|~|<1 V(ez + 2)n(|e2])w?(2)dE

<C w?(z)dr < +oo.
RN

Let r = L. Then go.(e) = n(*52 (e - 2) and

2]

/ Ve - (x) Pdi = / L@ vy £ 2w
RN RN T r r

SC’(/ w2d:6+/ |Vw|?dz)
L <Ja|<r RN

SC’/ (|Vw]? + w?)dz < +oo.
RN

Hence, for each € > 0 there exists unique t. > 0 such that
max P (¢ =d(t
t2(§( a( Qa,z) a( sge,z)

22



by Lemma 2.3.

We introduce the map . : A — N by setting Ac(z) = tc0c .. Then \.(z) has a compact

support for any z € A. Moreover, we have the following fact for A..

Lemma 4.1 lin% D (N\(2)) = Cy, » uniformly in z € A.
E—r

Proof:  Suppose that the result is false, then there exists (o > 0,{z,} C A and &, > 0
with €, — 0 such that

|<I>6n ()\En (Zn)) - EVO| > (o > 0. (4.1)

By Lemmas 2.6 and 2.8 we know that there is a rg > 0 such that

/R 90O, D O, (DA, (o) + £, )P PO, (DA, (o)l
- / V(A (z0)) P + / V(enz) Fh, (z)) /O, (za) A, (2)d
RN RN

(4.2)
> 5 VO GPda+ [ Vi) PO, )

> ro.

Hence ¢, - 0, and hence there exists a top > 0 such that {_ > to. If t_ - oo, then, for

large n, one has

t "(t t
C”’LUH2E 2 / ’vgsn7zn|2d$ +/ V(ﬁnl’)f( En anyz’ﬂ)f ( 5271, anyzn) en QETL»
RN RN tan

_/ g(f(/\an(Zn)))f’(&n(zn))/\sn(Zn)+/ [f A, )P O, (z0)) A (20)
N RN RN $2

&n

- dx

dx

t EnT — Zn EnT—2n 22%

21 [ Mlanlleon = alutE)P

2 RN t?n

1/ If(tmn(an\xl)w(a:))lwd
= — i

2 RN t?n

1 t 22*
S

2 Szl <52 t,

€n

> CtQ*_Q/ w? dr — 400,
%<|x\<1
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a contradiction. Hence, t, < C. Consequently, we can assume that t, — T > 0. By

Lebesgue’s theorem, one has

tim [ 19, GPde+ | Vel ) O, (), (e

n—oo

72 2 /
_7 /R Vwldrdy + /R Vo (Tu(@)) F(Tw(e)) Tu(e)ds,

im [ (A, (za)) PO, ()M, (2n)de = /RN | (Tw (@)1 (Tw(x)) Tw(x)de

n—oo RN

and

lim g(f(&n(zn)))f'(/\sn(zn))&n(Zn)dff»‘=/ 9(f(Tw(@)))f (Tw(x))Tw(z)dz.

Consequently, from (4.2), one has
T2/ |Vw|*dx + Vb/ f(Tw(z)) f (Tw(x))Tw(z)dx
RN RN

:/RN g(f(Tw(w)))f'(Tw(x))TUJ(w)dfc+/ | (Tw ()| f (Tw(x))Tw(x)de.

RN
This shows Tw € M, . Notice that w € M, . Lemma 2.3 implies that T" = 1. Moreover,

similar to the above arguments, we can prove that

lim @, (X, (zn)) = Ty (w) = ¢,

n—o00 Vo

This contradicts to 4.1. This completes the proof of Lemma 4.1. |

For any § > 0, let p = p(6) > 0 be such that A5 C B,(0). Define x : RY — RV as

follows:

.%', ’1" S p7
x@) =9
Moreover, we also define the map . : V. — RN by

ey Xelw(@)Pde
BE( ) - f]RN ]w(:z)Pd:c

We have the following fact for S, its proof similar to Lemma 5.2 in [22].
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Lemma 4.2 lin% Be(Ae(2)) = z uniformly in z € A.
E—

Lemma 4.3 For each p > 0, let {w,} C M, with Y ,(w,) — ¢,. Then {w,} has a

subsequence strongly convergent in E, In particular, there exists a minimizer for c,.

Proof: From the proof of Lemma 2.7 we know that {w,} is bounded in E. By Lemma

29,¢, < ﬁS% Notice that

+ = E+ . 2 2 — 1 = B =
Sy ={we /]RN |Vw]| da:—i—u/RN |w(z)|“dz (w) =0}

and

(B(w).u) =2 [

ox |Vw|*dx + ,u/ lw(z)|*dx] = 2

RN
for all w € S;". Hence B’'(w) # 0 for all w € S;". By Proposition 9 in [23],
p p

T :=TY,o0m,: E\{0} - R

is a C' functional. Set {v,} := {m_ '(w,)} C S}. Since ¥, (v,) = ¢

., for 1%27 up to a

subsequence, one has

¢, <Wu(u) <¥¢

“w

1
+ 3

By Theorem 1.1 in [8], there exists a sequence {v3} C S,f" such that

U (0r) < Uu(vr), e —klle <

el

and for each v € F\{0} with v # v, one has
~ - 1 "
T(0) > (i) — o~ il
Hence, for any v € S:[, we have
- 1 -
Up(v) > Wy (vg) — EHU — Ukl B-

Consequently, similar to the proof of Theorem 3.1 in [8], we can prove that there is a J; € R
such that
1, @) = 1 (@) — 8B’ (@)l <

x|
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Therefore,

O = v +op(1), Uu(0) = ¢, ¥, (0r) = or(1).

Hence we may assume that {vn} is a (PS)z, sequence of V). By Lemma 2.4, {wn} is a
bounded (PS)EN sequence of T,. Hence, by Lemma 2.7, we may assume that w,, > 0. By
Lemma 2.14, going to a subsequence if necessary, we may assume that w, — w in E. This

completes the proof. |

Lemma 4.4 Let ¢, — 0 and w, € N, be such that lim ®. (w,) = EVO. Then, there
n—oo
exists a sequence {z,} C RN such that wy,(- + z,) has a convergent subsequence in E and

Zn = Enzn — 2z € A.

Proof: By Lemma 2.8, we know that ||wy|., - 0. Moreover, by w, € N, and
lim @, (wy) = ¢, , from the proof of Lemma 2.7 we know that {w,} is bounded in E. We
n—oo

claim that there exist {z,} € RY and r > 0 such that

lim inf/ lwp|*dz =7 > 0. (4.3)
By (zn)

n—o0

Indeed, if this is false, then for any r» > 0, one has

lim sup / |wy|?dx = 0.
B(2)

n—o0 2€RN

By Lemma 1.2 we know that w,, — 0 in L*(R") for s € [2,2*). Notice that w, € N.,. We

have

/ (IVwa|? + V (ena) f (wn) f' (wp)wy) dx = / | ()P 7wy ywit doe + 0, (1),
RN RN
Since {w,} is bounded in F, up to a subsequence, we can assume that

lim | ([Vwal® + V(ena) f(wa) ' (wn)walde = Tim [ | f ()] (u) Jul dz = L.

n—oo ]RN n—oo ]RN

As the proof of corresponding part of Lemma 2.10, we can prove L = 0, and hence

i fwall., =0,
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a contradiction. Hence (4.3) holds.

Let w,, = wy (- + z,). By the boundedness of {w,} in E and (4.3), up to a subsequence,
we have @, — @ # 0 in E and w,(r) — w(z) a.e. in RY. Let {t,} C (0,00) be such that

Up, i= ty W, € My, and set Z, = £,2,. By (V1) and w,, € N,,, we get

CVO STVU (tHGTJ

:%[ti /RN \VzﬂnPdw—i—/RN Vof? (tniy)da]
) -
~ ([ Gt + o [\ e

[t2 /RN |Vw,|?dz + /RN V(en) f2(tnwn)dz)]

1 X
1 Gt e + o5 [ 1) e
]RN 22* ]RN
=, (thwy) < ®c,, (wn) = Evo + on(1).
Hence

nlg{olo Ty, (vp) = nILH;O Ty, (thwy) = EVO > 0.

By Lemma 4.3, up to a subsequence, one has v, — v in E. Moreover, by (4.3), one has

7 =lim inf/ |w,|2dz = lim inf/ |y, (2)2dz
n—oo Br(zn) n—oo BT(O)
.. ~ 2

Consequently, for large n, one has 0 < & < ||wy||%, and hence

T ~
0< §ti < thwnan = HUnHJZE <C.
Hence {t,} is bounded. Therefore, without loss of generality, we may assume that t, — t*.

By lim Ty, (v,) = 5VO > 0 we get t* > 0, hence, up to a subsequence, we have v,, — v =
n—oo

t*w#0in E. w, — t%v =w in E. The first conclusion is proved.

Now, we show that {Z,} is bounded in RY. Otherwise, up to a subsequence, one has

|Z,| — oo. Notice that, up to a subsequence, we have v, — v # 0 in E.
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By Fatou’s lemma we have

Gy =Tro(0) < T (0) = T (v) = 5 (Xl (0),0)

:% /RN(Voon(v) —Vof(w)f (v)v)de + /RN(;g(f(v))f'(v)v — G(f(v)))dx
+ /IRN(;|f(U+)|22*—1f/(U+)U+ _ 2;* ‘f(v+)|22*)d$
< Tminf [, (v) — £ (X (00, v0)]

:l%niioréf O, (vy) < T}Ln;o D, (wy) = ¢y -

This is a contradiction. This shows that {Z,} is bounded in RY. Hence, up to a subsequence,
Z, — 2z € RV If 2 € RV\A, then Vi < V(z). As the above, we can get a contradiction.

Hence, z € A and the lemma is proved. |

Let
h(e) := max |P.(Ae(2)) — ¢,

z€A Vo ‘

Then, by Lemma 4.1, lim h(e) = 0. Define the set
e—07t
Ne={w e Nz : @ (w) <&, +h(e)}.
Then, for each z € A, we have A\.(z) € N for each & > 0.

By Lemma 4.4, similar to Lemma 4.5 in [10], we can prove the following Lemma.

Lemma 4.5 For any § > 0, we have

lim sup d(B:(w),As) = 0.

e—0 weN.

Proof of theorem 2. For each § > 0, Lemma 4.2 implies that there is an ¢, > 0 such
that
1B:(Ae(2)) — 2| <9, Vee(0,g), VzeA.

Notice that for each z € A, one has A-(z) € N. for each £ > 0. The diagram
Beode: A= N — Ag
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is well defined for all € € (0,¢,). Similar to corresponding part in [11] we can prove

cat (Ne) > cat, (A).

Notice that as EY is a nonempty open set of a Banach space, Theorem 5.19 in [26] holds,
too. For each ¢ € (0,¢,), take V =S, X = E and ¢ = U, in this theorem. Then, by
Lemma 2.4, ¢ € CY(X,R), |, = ¥. € C}(V,R) and

il‘}fgo:glijlazij\r}ef@g:cvo.

Now, we prove that, for small ¢ > 0, U, satisfies the (P.S), condition for all d € [EVO,EVO +
h(e)]. In fact, let {w,,} C ST be a (PS)q sequence of V. with d € [¢, , ¢, + h(¢)]. Then,
by Lemma 2.4, {v,} := {m.(w,)} C N is a (PS)4 sequence of ®.. Notice that for small
€ >0, one has ¢, +h(e) <¢, . We can assume that for each ¢ € (0,¢,), ¢, +h(e) <¢,_.
Then, by Lemma 2.13, we may assume v, — v in F.. Hence w, — w := m;l(v). This
shows that W, satisfies the (PS)y condition. Consequently, by Theorem 5.20 in [26], V.
has at least cat . (N.) critical points in \IISVO e ={w e SF: V. (w) < ¢y, +h(e)}, and
hence ®. has at least cat . (N.) > cat, (A) positive critical points in N. by Remark 3.1.
If w, € Ne denotes such a critical point of ®., then u. := f(w;) is a positive solution of
(1.3). Consequently, the function v.(x) := uc(Z) is a positive solution of (1.1). Therefore,
the problem (1.1) has at least cat,, (A) positive solutions.

Moreover, the maximum point (. of v. is related to the maximum point & of u. with

(. = €&.. Hence, to prove the concentration property of solution for (1.1) we just need to

show lim V(g&) = Vp.

e—0t

Let {e,} C Ry be such that &, — 0. Set w,, := w,,. Then

CVO

<ec, <@, (w,) < Cy, T h(en) — Cy, -

Hence @, (w,) — ¢, . By Lemma 4.4 there exists a sequence {2,} C RY such that wy, (-+25)
has a convergent subsequence in F and Z, = e,2, — 2z € A. Set 1, (x) := wy(z + 2,,) for all
r € RN, Then we can assume that ¢, — ¢ # 0 in E. We claim that ¢, € L¥(R") and
there exists C' > 0 such that

|lvn]| <C, VneN
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In fact, for any R >0, 0 <7r < %, take n € C°°(RY, [0, 1]) such that

0, iflz|<R-—m,
L if |z = R,

and |Vn| < % For | > 0, set

Un(z), if n(z)
L, if Pn(x)

IN

L,
L,

¢l,n(x) =

v

and

2(60—1 —
¢l,n = 772'(%’51 )wna Win = nwznlwn

with 6§ > 1 to be determined later. For convenience’ sake, we shall omit dx and dy in the

following integrals.

Since wy, is a critical point of ®. , take ¢;,, as the test function, one has

0= [ TuTunt [ Vienla+ z) ) Wi

RN

- / PP ()i — / 9(F () f ()i
RN RN
Hence
/ AT
RN In
= / @) 7 () b1 + / 9 @) f (W) b1 — 2 / by Vi Vi
RN RN RN
— /RN V(€n($ + Zn))f(d)n)f/(wn)gbl,n — 2(9 — 1) /RN U2¢12,Z73¢nvwnv1/1z,n.

Using Lemma 1.3, similar to proof of Lemma 4.6 in [10], we can prove that there is K > 0
such that
[dnllee < K, ¥ eEN

and lim 1, (x) = 0, uniformly in n € N.

|z| =00
Let P, be the global maximum of ¢,,. Then §_ := P, + 2, is the global maximum of w,.

Since lim 1, (z) = 0 uniformly in n € N, the sequence {P,} C R¥ is bounded. Otherwise,

|z|—00
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we may assume |P,| — oo, and hence lim 4, (P,) = 0. Hence, for any 0 < 7 < 1V{, one
n—oo
has

%2*2 T
2 ¢n7(Pn)<§

for large n. Moreover, by (g, ), there exists p, > 0 such that |@\ < 5 whenever 0 < [s] < p,,.
Notice that for large n, one has 0 < f(¢n(2)) < f(¥n(Pp)) < ¥n(Py) < p, for all z € RV,
Hence, for large n,

1

= 2 En\T Z 2
UL VP [ Vien(o+ 2w

2 /
< [Vl [ Vel ) f @7 G
- / )2 (o + / 9(F () () o
]%N ]RN
§222¢72:_2(Pn)/ fg(wn)+/ g(f(wn))
RN RN

f(tn)
<7 fQ(wn)>

RN

F@n)f (¥n)tn

and hence

[ vun+ [ Ve = [ 196P+ [ Viealot 2 ) =0
RN RN RN RN
for large n. Therefore,
[ v+ [ Vo) =0
RN RN
for large n. By Lemma 2.6 there is a constant C' > 0 such that

0= / Vwal? + / Vo2 (wn) = Cllwnllz.
RN RN

Hence, w, = 0 for large n, a contradiction. This shows that the sequence {P,} C R¥ is
bounded. Consequently, €, — z € A. Therefore, lim V(e,§, ) = V(2) = V. This
n—oo

completes the proof of Theorem 2. O
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