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Abstract

In this study, we consider conformable type Coudrey-Dodd-Gibbon-Sawada-Kotera (CDGSK) equation. Three pow-

erful analytical methods are employed to obtain generalized solutions of the nonlinear equation of interest. First, the

sub-equation method is used as baseline where generalized closed form solutions are obtained and are exact for any

fractional order α. Furthermore, Residual power series (RPSM) and q-homotopy (q-HAM) analysis techniques are then

applied to obtain approximate solutions. These are possible using some properties of conformable derivative. These

approximate methods are very powerful and efficient due to the absence of the need for linearization, discretization

and perturbation. Numerical simulations are carried out showing error values, ~-curve for q-HAM and the effects of

fractional order on the solution profiles.

Keywords: Residual Power Series Method, Coudrey-Dodd-Gibbon-Sawada-Kotera Equation, Conformable Type

Derivative, q-Homotopy Analysis Method, Sub-equation Method

1 Introduction

Fractional analysis is the generalized state of classical integer order derivative and integral. Since L-Hospital’s letter

to Leibniz in 1695 after the initial work of L-Hospital and Leibniz, many mathematicians worked on the definition of

fractional derivatives and using their representations, they have made definitions of fractional derivatives and integrals.

Although, many definitions of derivative are used in fractional analysis, most studies have focused on the integral form

of the fractional derivative. The most well known fractional derivatives are Caputo and Riemann-Liouville. But these

two definitions have some disadvantages, one of them, the Riemann-Liouville definition, does not meet Dαρ = 0, for

ρ a constant when α is not a natural number and Caputo definition suppose that the function is differentiable. Both

definitions does not meet the chain rule, index rule and the derivative of the product of two functions. Because of these

shortcomings of the existing definitions, we wanted to use the conformable derivative definition. In [1,2], new results and

properties of conformable derivative are presented.

Recently, it has been observed that nonlinear fractional differential equations (NFDEs) have been solved by some ap-

proximate methods and in many cases give results with very small error even exact in some cases. In the literature,

the techniques used to find approximate solutions of nonlinear fractional partial differential equations include different

methods like homotopy perturbation method [3], Laplace analysis method [4], homotopy analysis method [5–9], Adomian

decomposition method [10], differential transformation method [11], perturbation-iteration algorithm [12], iterative Shehu

transform method [13], residual power series method in [17–25] and also q-homotopy analysis transform method in [14–16].
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In this study, exact and approximate solutions of CDGSK equation [26] given below, are obtained by using sub-equation,

residual power series method and q-homotopy analysis method with conformable derivative definition.

Dαt u+ uxxxxx + 30uuxxx + 30uxuxx + 180u2ux = 0. (1)

In this equation, the fractional order α, ( 0 < α < 1), symbolize the conformable derivative and we obtained both analytic

and approximate solutions for different α values and showed how close it is to the exact solution with tables and graphics.

The CDGSK equation is a class of fifth order Korteweg-de Vries equation which has numerous application in nonlinear

optics and quantum mechanics. In [27], physical understanding of CDGSK equation has been highlighted. Wazwaz has

obtained one-soliton solution by the tanh-coth method in [28]. Hirota transformation of the CDGSK equation and its

bilinear forms are discussed in [29–31]. Analytical solutions of CDGSK equation have been studied in many papers by

different methods (See [32–34]).

The rest of the work is arranged as follows: Section 2, we give some basic definitions and notation useful for the work in

sequel. In Section 3, we give a brief description and application of sub-equation method to CDGSK equation. Explanation

of residual power series method is presented in Section 4. In Section 5, the fundamental idea of q-homotopy analysis

method is discussed and implemented on CDGSK equation. We give a numerical comparison in Section 6 followed by

conclusion in Section 7.

2 Preliminaries

Here, we present some basic definitions and notation used in this present work.

Definition 2.1. [35] The Riemann–Liouville fractional derivative operator Dαf(x) for α > 0 and η− 1 < α < η defined

as

Dαf(x) =
dη

dxη

[
1

Γ(η − α)

∫ α

x

f(t)

(x− t)α+1−η dt

]
. (2)

Definition 2.2. [36] Caputo fractional derivative of order α > 0 for n ∈ N,n− 1 < α < n defined as

Dα∗ f(x) = Jn−αDnf(x) =
1

Γ(n− α)

∫ α

x

(x− t)n−α−1
(
d

dt

)n
f(t) dt. (3)

Definition 2.3. The conformable fractional derivative of a function, f : [0,∞)→ R of order α is defined as [37]

Tα(f)(t) = lim
ε→0

f(t+ εt1−α)− (f)(t)

ε
(4)

Theorem 2.4. [38] Let α ∈ (0, 1] and f, g be α differentiable at a point t > 0. Then

1. Tα(e1f + e2g) = e1Tα(f) + e2Tα(g), for e1, e2 ∈ R.
2. Tα(tp) = ptp−α, ∀ p ∈ R.
3. Tα(f.g) = fTα(g) + gTα(f).

4. Tα( fg ) = gTα(f)−fTα(g)
g2 .

5. Tα(ρ) = 0, ρ is constant.

6. Furthermore, Tα(f)(t) = t1−α ∂f
∂t , if f is differentiable.

Definition 2.5. [1] Let f be a function with n variables x1, ..., xn and the conformable partial derivative of f of order

α ∈ (0, 1] in xi is defined as follows

dα

dxαi
f(x1, ..., xn) = lim

ε→0

f(x1, ..., xi−1, xi + εx1−αi , ..., xn)− f(x1, ..., xn)

ε
. (5)
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Definition 2.6. The α-fractional integral of a function u starting from ν ≥ 0 is defined as

J µν (u)(t) =

∫ t

ν

u(s)

s1−µ
ds. (6)

Here, α ∈ (0, 1] and the integral is the usual Riemann improper integral.

3 Sub-equation Method for Fractional Order Derivative

In this section, we set out the most important steps of the fractional sub-equation method [39,40] for solving conformable

time-fractional partial differential equations (CT-FPDEs). For a given CT-FPDE

F
(
u, Tαt , Txu, T

2
xu, T

3
xu, · · ·

)
= 0. (7)

where Tαt is a conformable derivative operator of arbitrary order.

Step 1: The fractional wave transformation [41] is in the form

u(x, t) = U(ξ), ξ = kx+ c
tα

α
. (8)

Here, c and k are constants to be determined subsequently.

Step 2: Through the use of chain rule, Eq. (7) can be rewrite to an integer order nonlinear fractional ODE

F̃
(
U(ξ),U′(ξ),U′′(ξ),U′′′(ξ), · · ·

)
= 0. (9)

Step 3: The travelling wave solution of Eq. (9) is given as

U(ξ) = a0 +

N∑
r=1

arϑ
r(ξ), aN 6= 0, (10)

where ar(r = 0, 1, · · · , N), k and c are are constants to be determined afterwards. The integer N can be found

when we balance the nonlinear terms and highest-order derivative [42] in Eq. (9) and the function ϑr(ξ) with % been

a constant, fulfills the Riccati equation given by

ϑ′(ξ) = %+ ϑ2(ξ). (11)

Step 4: A solutions set which validate Eq. (11) is described below:

ϑ(ξ) =



−
√
−% tanh(

√
−% ξ), % < 0,

−
√
−% coth(

√
−% ξ), % < 0,

√
% tan(

√
% ξ), % > 0,

−√% cot(
√
% ξ), % > 0,

− 1
ξ+l , l is a constant, % = 0.

(12)

Step 5: Substituting Eq. (10) into Eq. (9) and in addition use Eq. (11), then, setting the coefficients of ϑr(ξ) to zero, one

gets the nonlinear algebraic system of equations in ar(r = 0, 1, · · · , N), k, and c.

Step 6: Computing the solution of these nonlinear algebraic system of equations and substituting into Eq. (10), we get the

exact travelling solutions for Eq. (1).
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3.1 Implementation of Sub-equation Method to CDGSK Equation

Here, we first use Eq. (8) and chain rule to transform Eq. (1) to the below nonlinear fractional ODE

cU′(ξ) + k5U(5)(ξ) + 30k3U(ξ)U′′′(ξ) + 30k3U′(ξ)U′′′(ξ) + 180kU2(ξ)U′(ξ) = 0. (13)

After integrating the above ODE once, we have the reduced form

cU(ξ) + k5U(4)(ξ) + 30k3U(ξ)U′′(ξ) + 60kU3(ξ) = 0. (14)

Balancing the nonlinear term U3(ξ) and the highest order derivative term U(4)(ξ) in Eq. (14), we obtain N = 2. Thus,

from Eq. (10), one get

U(ξ) = a0 + a1ϑ(ξ) + a2ϑ
2(ξ). (15)

Substituting Eq. (15) together with Eq. (11) into Eq. (14), collecting the coefficients of ϑr(ξ) and set them to zero. A set

of algebraic equations is obtained in a0, a1, a2, k, and c as follows:

ϑ0(ξ) : 60a30k + 60a0a2k
3%2 + a0c+ 16a2k

5%3 = 0,

ϑ1(ξ) : 180a20a1k + 60a0a1k
3%+ 60a1a2k

3%2 + a1c+ 16a1k
5%2 = 0,

ϑ2(ξ) : 180a20a2k + 180a0a
2
1k + 240a0a2k

3%+ 60a21k
3%+ 60a22k

3%2 + a2c+ 136a2k
5%2 = 0,

ϑ3(ξ) : 360a0a1a2k + 60a0a1k
3 + 60a31k + 300a1a2k

3%+ 40a1k
5% = 0, (16)

ϑ4(ξ) : 180a0a
2
2k + 180a0a2k

3 + 180a21a2k + 60a21k
3 + 240a22k

3%+ 240a2k
5% = 0,

ϑ5(ξ) : 180a1a
2
2k + 240a1a2k

3 + 24a1k
5 = 0,

ϑ6(ξ) : 60a32k + 180a22k
3 + 120a2k

5 = 0.

Using Mathematica to solve the above algebraic equations, we achieved the following cases:

Case 1. Let a0 = −k2%, a1 = 0, a2 = −k2, and c = −16k5%2. Substitute these values into Eq. (15) and taking into account

Eq. (8) and Eq. (12), we obtain the following solutions:

u11 = −k2%+ k2% tanh2

(√
−%
(
kx− 16k5%2

α
tα
))

, % < 0,

u12 = −k2%+ k2% coth2

(√
−%
(
kx− 16k5%2

α
tα
))

, % < 0,

u13 = −k2%− k2% tan2

(
√
%
(
kx− 16k5%2

α
tα
))

, % > 0, (17)

u14 = −k2%− k2% cot2
(
√
%
(
kx− 16k5%2

α
tα
))

, % > 0,

u15 = − k2

(l + kx)
2 , % = 0.

Case 2. Let a0 = − 1
30

(√
105k2%+ 15k2%

)
, a1 = 0, a2 = −k2, and c = 2

(√
105k5%2 − 11k5%2

)
. Substitute these values

into Eq. (15) and taking into account Eq. (8) and Eq. (12), we obtain the following solutions:
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u21 = − 1

30

(√
105k2%+ 15k2%

)
+ k2% tanh2

(
√
−%
(
kx+

2
(√

105k5%2 − 11k5%2
)

α
tα
))

, % < 0,

u22 = − 1

30

(√
105k2%+ 15k2%

)
+ k2% coth2

(
√
−%
(
kx+

2
(√

105k5%2 − 11k5%2
)

α
tα
))

, % < 0,

u23 = − 1

30

(√
105k2%+ 15k2%

)
− k2% tan2

(
√
%
(
kx+

2
(√

105k5%2 − 11k5%2
)

α
tα
))

, % > 0, (18)

u24 = − 1

30

(√
105k2%+ 15k2%

)
− k2% cot2

(
√
%
(
kx+

2
(√

105k5%2 − 11k5%2
)

α
tα
))

, % > 0.

Case 3. Let a0 = 1
30

(√
105k2%− 15k2%

)
, a1 = 0, a2 = −k2, and c = −2

(√
105k5%2 + 11k5%2

)
. Substitute these values

into Eq. (15) and taking into account Eq. (8) and Eq. (12), we obtain the following solutions:

u31 =
1

30

(√
105k2%− 15k2%

)
+ k2% tanh2

(
√
−%
(
kx−

2
(
11k5%2 +

√
105k5%2

)
α

tα
))

, % < 0,

u32 =
1

30

(√
105k2%− 15k2%

)
+ k2% coth2

(
√
−%
(
kx−

2
(
11k5%2 +

√
105k5%2

)
α

tα
))

, % < 0,

u33 =
1

30

(√
105k2%− 15k2%

)
− k2% tan2

(
√
%
(
kx−

2
(
11k5 +

√
105k5%2%2

)
α

tα
))

, % > 0, (19)

u34 =
1

30

(√
105k2%− 15k2%

)
− k2% cot2

(
√
%
(
kx−

2
(
11k5%2 +

√
105k5%2

)
α

tα
))

, % > 0.

Remark 3.1. The result for u25 and u35 is omitted because they are the same as the result of u15 for the case when

% = 0.

4 Description of Residual Power Series Method

Here, we will present some major definitions and theorems about the method we use.

Definition 4.1. [35] A power series expansion of the form

∞∑
r=0

er(t− t0)rα = e0 + e1(t− t0)α + e2(t− t0)2α + · · ·

where t > t0 and 0 < n − 1 < α ≤ n, n ∈ N is known as the fractional power series about t0. Here, en’s are constant

coefficients of the series.

Definition 4.2. Assuming that f has a FPS representation at t0 = 0 of the form

f(t) =

∞∑
r=0

ert
rα, 0 < t < R

1
α , R > 0, (20)

Furthermore, suppose that f is infinitely conformable α differentiable function, for some 0 < n− 1 < α ≤ n, n ∈ N in a

neighborhood of a point t0 = 0. Then, the coefficients er in (20) is express as

er =
f (rα)(0)

αrr!

where f (rα) represent the application of the conformable fractional derivative r-times.
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Definition 4.3. [43] A power series of the form
∞∑
r=0

fr(x)tα, is defined as a multiple fractional power series about t0 = 0,

where fr(x) is a function of x called the coefficients of the series.

Definition 4.4. [43] Assume that u(x, t) has a multiple FPS representation at t0 = 0, then,

u(x, t) =

∞∑
r=0

fr(x)trα, 0 < n− 1 < α ≤ n, x ∈ I, 0 ≤ t < R
1
α . (21)

If u
(rα)
t (x, t), r = 0, 1, 2, . . . are continuous on I × (0,R 1

α ) and fr(x) =
u
(rα)
t (x,0)
αrr! .

To exemplify the central idea of RPSM, we consider a CT-FPDE in the structure given below

Tαu(x, t) + L u(x, t) +Nu(x, t) = g(x, t), x ∈ R, n− 1 < nα ≤ n, t > 0, (22)

having initial condition

u(x, 0) = θ0(x) = θ(x), (23)

where L and N are respectively linear and nonlinear operators and g(x, t) is a known continuous function. The RPSM

make of declaratory the solution of the equation as the fractional power series expansion around t = 0 is given below as

θ(r−1)(x) = T
(r−1)α
t u(x, 0) = θ(x). (24)

The RPSM solution is

u(x, t) =

∞∑
r=0

θr(x)
trα

αnr!
. (25)

The k-th truncated series of u(x, t) which is uk(x, t) can be expressed as

uk(x, t) =

k∑
r=0

θr(x)
trα

αrr!
. (26)

The 1st RPSM approximate solution u1(x, t) is written as:

u1(x, t) = θ(x) + θ1(x)
tα

αr
. (27)

Primarily, the residual function Res is defined as:

Res(x, t) = Tαu(x, t) + L u(x, t) +Nu(x, t)− g(x, t), (28)

and the k-th residual function Resk as:

Resk(x, t) = Tαuk(x, t) + L uk(x, t) +Nuk(x, t)− g(x, t), k = 1, 2, 3, · · ·

For k = 1 the expression Res1(x, t) is written. In this expression, θ1(x) is obtained when Res1(x, 0) = 0 is regulated

for t = 0. This expression results in the first solution of the RPSM approximation, u1(x, t). In each subsequent step,

different θk(x) is obtained for each of k = 1, 2, 3, · · · , as

∂(r−1)α

∂t(r−1)α
Resk(x, 0) = 0, 0 < α ≤ 1, x ∈ I, 0 ≤ t < R, r = 1, 2, 3, · · · , (29)

is an important processing step of the RPSM [23, 25, 44]. That is, in the second step, the first conformable derivative of

each side according to α is taken and the expression is equal to zero for t = 0. In the third step, the 2nd conformable

derivative of each side according to α is taken and thus, firstly the θk(x) values and then uk(x, t) approximate solutions

are obtained respectively. In this method, it can be said that the exact result will be approached more in each step thanks

to the fractional power series of the equation taken.
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4.1 Approximate Solution of the CDGSK Equation Using RPSM

Time fractional CDGSK equation is expressed as [26]:

Dαt u+ uxxxxx + 30uuxxx + 30uxuxx + 180u2ux = 0. (30)

having initial condition

u(x, 0) = −k2%− k2% tan2 (
√
%kx) . (31)

In order to find the values of θr(x) in Eq. (26), for r = 1, 2, 3, . . . , k, u(x, t) series expansion is performed. Residual

function of time fractional CDGSK equation Res(x, t) is

Res(x, t) = Dα
t u+ uxxxxx + 30uuxxx + 30uxuxx + 180u2ux. (32)

The k-th Residual function, Resk is

Resk(x, t) = Dα
t uk + ukxxxxx + 30ukukxxx + 30ukxukxx + 180u2kukx. (33)

In the first step of the residual power series algorithm, u1(x, t) truncated series is placed into the equation Res(x, t) which

is solved. The expression Res1(x, t) is obtained as

Res1(x, t) = Dα
t u1 + u1xxxxx + 30u1u1xxx + 30u1xu1xx + 180u21u1x, (34)

where

u1(x, t) = θ(x) + θ1(x)
tα

α
. (35)

Then,

Res1(x, t) = θ1 + 180

(
θ +

tαθ1
α

)2
(
θ
′
+
tαθ

′

1

α

)
+ 30

(
θ
′
+
tαθ

′

1

α

)(
θ
′′

+
tαθ

′′

1

α

)

+ 30

(
θ +

tαθ1
α

)(
θ
′′′

(x) +
tαθ

′′′

1

α

)
+ θ(5) +

tαθ
(5)

1

α
, (36)

where θ = θ(x). Thus, for Res1(x, 0) = 0,

θ1(x) = −180θ2θ′ − 30θ
′
θ
′′
− 30θ

′′′

θ
′′′

. (37)

Hence, the 1st RPSM approximate solution of CDGSK equation as

u1(x, t) = θ(x) +
tαθ1(x)

α
. (38)

Similarly, Resk(x, t) for k = 2 is given as

Res2(x, t) = Dα
t u2 + u2xxxxx + 30u2u2xxx + 30u2xu2xx + 180u22u2x. (39)

In the Res2(x, t), the following expression is written instead of u2(x, t) as

u2(x, t) = θ(x) + θ1(x)
tα

α
+ θ2(x)

t2α

2α2
. (40)
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Then,

Res2(x, t) = t1−α
(
tα−1θ1 +

t2α−1θ2
α

)
+ 180

(
θ(x) +

tαθ1
α

+
t2αθ2
2α2

)2

×

(
θ
′
+
tαθ

′

1

α
+
t2αθ

′

2

2α2

)
+ 30

(
θ
′
+
tαθ

′

1

α
+
t2αθ

′

2

2α2

)

×

(
θ
′′

+
tαθ

′′

1

α
+
t2αθ

′′

2

2α2

)
+ 30

(
θ +

tαθ1
α

+
t2αθ2
2α2

)

×

(
θ
′′′

+
tαθ

′′′

1

α
+
t2αθ

′′′

2

2α2

)
+ θ

(5)

+
tαθ

(5)
1

α
+
t2αθ

(5)

2

2α2
. (41)

Now, applying Tα conformable derivative on both sides of (41) and equating to 0 for t = 0 gives the 2nd approximate

solution of RPSM as follows:

θ2(x) = −360θθ1θ
′
− 180θ2θ

′

1 − 30θ
′

1θ
′′
− 30θ

′
θ
′′

1 − 30θ1θ
′′′
− 30θθ

′′′

1 − θ
(5)
1 , (42)

and

u2(x, t) = θ +
tαθ1
α

+
1

2α2
t2α
(
−360θθ1θ

′
− 180θ2θ

′

1

)
+

1

2α2
t2α
(
−30θ

′

1θ
′′
− 30θ

′
θ
′′

1

)
(43)

+
1

2α2
t2α
(
−30θ1θ

′′′
− 30θθ

′′′

1 − θ
(5)
1

)
.

If the process steps are carried out in the same way, θ3(x) and u3(x, t) are obtained respectively as

θ3(x) = −360θ21θ
′
− 360θθ2θ

′
− 720θθ1θ

′

1 − 180θ2θ
′

2 − 30θ
′

2θ
′′

− 60θ
′

1θ
′′

1 − 30θ
′
θ
′′

2 − 30θ2θ
′′′
− 60θ1θ

′′′

1 − 30θθ
′′′

2 − θ
(5)
2 , (44)

and

u3(x, t) = θ +
tαθ1
α

+
t2αθ2
2α2

+
t3α

6α3

(
−360θ21θ

′
− 360θθ2θ

′
)

+
t3α

6α3

(
−720θθ1θ

′

1 − 180θ2θ
′

2 − 30θ
′

2θ
′′
)

+
t3α

6α3

(
−60θ

′

1θ
′′

1 − 30θ
′
(x)θ

′′

2 − 30θ2θ
′′′
)

(45)

+
t3α

6α3

(
−60θ1θ

′′′

1 − 30θθ
′′′

2 − θ
(5)
2

)
.

5 Approximate Solution of the CDGSK Equation Using q-HAM

Here, application of q-homotopy analysis method [6–8] to time fractional CDGSK equation is presented. The time

fractional CDGSK equation is expressed as

Dαt u+ uxxxxx + 30uuxxx + 30uxuxx + 180u2ux = 0, (46)

having initial condition
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u(x, 0) = −k2%− k2% tan2 (
√
%kx) . (47)

First, we choose the linear operator as

L
[
ϕ(x, t; q)

]
= Dα

t ϕ(x, t; q),

having property L [B] = 0, for a constant B. The nonlinear operator N , with ϕ = ϕ(x, t; q) is define as

N (ϕ) = Dαt ϕ+ ϕxxxxx + 30ϕϕxxx + 30ϕxϕxx + 180ϕ2ϕx. (48)

Using Theorem 2.4, the above equation can be rewritten as follows:

N (ϕ) = t1−α
∂ϕ

∂t
+ ϕxxxxx + 30ϕϕxxx + 30ϕxϕxx + 180ϕ2ϕx (49)

We set up the zero-order deformation equation as

(1− nq)L (ϕ(x, t; q)− u0(x, t)) = q~H(x, t)N
(
ϕ(x, t; q)

)
, (50)

and for H(x, t) = 1, the k-th order deformation equation is

L
[
uk −X ∗k uk−1

]
= ~R1,k

(
~uk−1

)
, (51)

where

Rk
(
~uk−1

)
= t1−µ

∂uk−1
∂t

+ u(k−1)xxxxx + 30

k−1∑
i=0

uiu(k−1−i)xxx

+ 30

k−1∑
i=0

uixu(k−1−i)xx +

k−1∑
i=0

i∑
j=0

ujui−ju(k−1−i)x. (52)

The solution to Eq. (46) for k ≥ 1 result in

uk(x, y, t) = X ∗k uk−1 + ~J µt
[
Rk
(
~uk−1

)]
. (53)

Here,

X ∗k =


0 k 6 1,

n k > 1.

(54)

Upon solving Eq. (53) for k = 1, 2, 3, · · · and using Eq. (6), we derive the following

u0(x, t) = −k2%− k2% tan2 (
√
%kx) ,
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u1(x, t) = hJαt
[
t1−α

∂u0
∂t

+ u0xxxxx + 30u0u0xxx

+ 30u0xu0xx + 180u0u0u0x
]

= − 32%
7
2 ~k7tα

α
tan

(√
%kx

)
sec2

(√
%kx

)
,

u2(x, t) = nu1 + hJαt
[
t1−α

∂u1
∂t

+ u1xxxxx + 30u0u1xxx + 30u1u0xxx

+ 30u0xu1xx + 30u1xu0xx + 180u0u0u1x + 360u0u1u0x
]

= (n+ ~)u1 +
256%6~2k12t2α

α2

(
cos
(
2
√
%kx

)
− 2
)

sec4
(√
%kx

)
,

u3(x, t) = nu2 + hJαt
[
t1−α

∂u2
∂t

+ u2xxxxx + 30u0u2xxx + 30u1u1xxx + 30u2u0xxx

+ 30u0xu2xx + 30u1xu1xx + 30u2xu0xx + 180u0u0u2x + 180u1u0u1x

+ 180u0u1u1x + 180u1u1u0x + 180u0u2u0x + 180u2u0u0x
]

= (n+ ~)u2 +
256%6~2(n+ ~)k12t2α

α2

(
cos
(
2
√
%kx

)
− 2
)

sec4
(√
%kx

)
+

8192%
17
2 ~3k17t3α

3α3

(
cos
(
2
√
%kx

)
− 5
)

tan
(√
%kx

)
sec4

(√
%kx

)
.

The rest of the solution can be achieved appropriately. Thus, the q-HAM series solution is

U [N ](x, t;n; ~) = u0(x, t) +

N∑
i=1

ui(x, t)

(
1

n

)i

6 Numerical Comparison

Here, we demonstrate the numerical simulation of the CDGSK equation. The exact solution taken from Eq. (17) is given

as

u(x, t) = −k2%− k2% tan2

(
√
%
(
kx− 16k5%2

α
tα
))

, 0 < α ≤ 1, t > 0. (55)

In particularly, in Figs. 2 to 5, the graphical comparison of RPSM and q-HAM obtained solution with the exact solution

for diverse fractional order α (α = 0.5, 0.75, 0.95) is presented. We can see that for each fractional order, the cited graphs

are almost indistinguishable. The error in the form of absolute error of the two proposed methods has been carried out

in tabular form and displayed in Tabs. 1 to 3. From these table, we observed that the difference between the numerical

values obtained by RPSM, q-HAM and the exact values are almost identical. The absolute error formula used for the

numerical computation is

Error = |U [3] − u(x, t)|. (56)

In order to ensure fast convergence of q-HAM series solution, the choice of the auxiliary parameter ~ is essential. In Fig. 1,

the ~-curves which guarantee the optimal choice of ~ is depicted for different fractional order α and n. The horizontal line

segment in the ~-curves presents the range for ~. These curves help to adjust and control the region of the convergence

of q-HAM solution.
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Table 1: Exact, approximate by RPSM and q-HAM (n = 1, ~ = −1), U [3]-solution along with absolute errors for t = 0.1,

% = 0.3, k = 0.4, and α = 0.95.

Approximate solution Absolute error

x Exact solution RPSM q-HAM RPSM q-HAM

0.1 -0.0480210836 -0.0480210836 -0.0480210836 2.660372× 10−14 2.660372× 10−14

0.2 -0.0480882993 -0.0480882993 -0.0480882993 2.692291× 10−14 2.692291× 10−14

0.3 -0.0482019495 -0.0482019495 -0.0482019495 2.747108× 10−14 2.747108× 10−14

0.4 -0.0483624729 -0.0483624729 -0.0483624729 2.824824× 10−14 2.824824× 10−14

0.5 -0.0485704918 -0.04857049178 -0.0485704918 2.926132× 10−14 2.926132× 10−14

0.6 -0.0488268172 -0.0488268172 -0.0488268172 3.053807× 10−14 3.053807× 10−14

0.7 -0.0491324555 -0.0491324555 -0.0491324555 3.209238× 10−14 3.209238× 10−14

0.8 -0.0494886173 -0.0494886173 -0.0494886173 3.393119× 10−14 3.393119× 10−14

0.9 -0.0498967272 -0.0498967272 -0.0498967272 3.611694× 10−14 3.611694× 10−14

1.0 -0.0503584364 -0.0503584364 -0.0503584364 3.862882× 10−14 3.862882× 10−14

Table 2: Exact, approximate by RPSM and q-HAM (n = 1, ~ = −1), U [3]-solution along with absolute errors for t = 0.1,

% = 0.3, k = 0.4, and α = 0.75.

Approximate solution Absolute error

x Exact solution RPSM q-HAM RPSM q-HAM

0.1 -0.0480191935 -0.0480191935 -0.0480191935 4.320225× 10−13 4.320225× 10−13

0.2 -0.0480843794 -0.0480843794 -0.0480843794 4.372613× 10−13 4.372613× 10−13

0.3 -0.0481959848 -0.0481959848 -0.0481959848 4.461015× 10−13 4.461015× 10−13

0.4 -0.0483544404 -0.0483544404 -0.0483544404 4.586886× 10−13 4.586886× 10−13

0.5 -0.0485603602 -0.0485603602 -0.0485603602 4.751893× 10−13 4.751893× 10−13

0.6 -0.0488145469 -0.0488145469 -0.0488145469 4.958603× 10−13 4.958603× 10−13

0.7 -0.0491179982 -0.0491179982 -0.0491179982 5.209722× 10−13 5.209722× 10−13

0.8 -0.0494719153 -0.0494719153 -0.0494719153 5.509065× 10−13 5.509065× 10−13

0.9 -0.0498777135 -0.0498777135 -0.0498777135 5.861353× 10−13 5.861353× 10−13

1.0 -0.0503370336 -0.0503370336 -0.0503370336 6.271650× 10−13 6.271650× 10−13
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Table 3: Exact, approximate by RPSM and q-HAM (n = 1, ~ = −1), U [3]-solution along with absolute errors for t = 0.1,

% = 0.3, k = 0.4, and α = 0.50.

Approximate solution Absolute error

x Exact solution RPSM q-HAM RPSM q-HAM

0.1 -0.0480135515 -0.0480135515 -0.0480135515 2.186624× 10−11 2.186624× 10−11

0.2 -0.0480719974 -0.0480719973 -0.0480719973 2.212602× 10−11 2.212602× 10−11

0.3 -0.0481768150 -0.0481768149 -0.0481768149 2.256859× 10−11 2.256859× 10−11

0.4 -0.0483284086 -0.0483284086 -0.0483284086 2.320018× 10−11 2.320018× 10−11

0.5 -0.0485273655 -0.0485273654 -0.0485273654 2.402978× 10−11 2.402978× 10−11

0.6 -0.0487744602 -0.0487744602 -0.0487744602 2.506933× 10−11 2.506933× 10−11

0.7 -0.0490706617 -0.0490706617 -0.0490706617 2.633396× 10−11 2.633396× 10−11

0.8 -0.0494171410 -0.0494171410 -0.0494171410 2.784233× 10−11 2.784233× 10−11

0.9 -0.0498152813 -0.0498152813 -0.0498152813 2.961705× 10−11 2.961705× 10−11

1.0 -0.0502666898 -0.0502666897 -0.0502666897 3.168525× 10−11 3.168525× 10−11
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Figure 1: ~-curves plot in (a) n = 1 and in (b) n = 2 when x = 0.1, t = 0.01 with different α
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Figure 2: The graphical comparison of RPSM and q-HAM (n = 1, ~ = −1) solution with exact solution when % = 0.3,

k = 0.4, and α = 0.95.
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Figure 3: The graphical comparison of RPSM and q-HAM (n = 1, ~ = −1) solution with exact solution when % = 0.3,

k = 0.4, and α = 0.75.
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Figure 4: The graphical comparison of RPSM and q-HAM (n = 1, ~ = −1) solution with exact solution when % = 0.3,

k = 0.4, and α = 0.50.
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Figure 5: The 2D comparison of RPSM, q-HAM (n = 1, ~ = −1), and exact solution in (a) α = 0.95, (b) α = 0.75, (c)

α = 0.50 when % = 0.3, and k = 0.4.

7 Conclusion

In this study, exact and approximate solutions of Coudrey-Dodd-Gibbon-Sawada-Kotera (CDGSK) equation by sub-

equation method, residual power series method (RPSM) and q-homotopy analysis method (q-HAM) is obtained. With

these methods and the definition of the conformable derivative, it is shown that another complex method and definition

are not required. From the cited graphs and tables, one can acknowledge that the obtained approximate solution shows

a very good agreement with the exact solution for different α (precisely, α = 0.95, 0.75 and 0.5). In addition, it is

seen that conformable derivative are more open, simple and understandable than other derivative definitions. The exact

and approximate solutions obtained can be used in understanding the physical phenomena of the proposed problem in

mathematical physics. Finally, from the results obtained by the two proposed method, we can conclude that the proposed

techniques are significantly efficient and can be employed to examine strong nonlinear fractional order mathematical

models to understand the nature of complex phenomena.
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[25] Şenol M, Ayşe ATA. Approximate solution of time-fractional KdV equations by residual power series method.

Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi 2018;20(1):430-439.
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