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Summary

Aluminum alloymaterials is an important componentmaterial in the safe flight of air-
craft. It is very important and necessary to predict the fatigue crack growth between
holes of aviation aluminum alloy materials. At present, the investigation on the pre-
diction of the cracks between two holes andmulti-holes is a key problem to be solved.
Due to the fatigue crack growth test of aluminum alloy plate with two or three holes
was carried out by MTS fatigue testing machine, the crack length growth data under
different test conditions were obtained. In this paper, support vector regression (SVR)
was used to fit the crack data, and the parameters of SVR are optimized by grid search
algorithm at the same time. And then the model of SVR to predict the crack length
was established. Discussion on the results show that the prediction model is effec-
tive. Furthermore, the crack growth between three holes were predicted accurately
through the model of the crack law between two holes under the same load form.
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1 INTRODUCTION

As we all know, the aluminum alloy materials studied in this paper, as an important component material in the aviation field, is
widely used in the aviation industry1, and plays an important role in ensuring safety of the aviation aircraft flight. Therefore, we
should attach great importance to carry out relevant research work on it.
The investigation on fatigue crack growth prediction has a history of several decades: as early as the middle of the 19th

century, Wohler, a German railway engineer, put forward the concept of stress-life (S −N) curve and fatigue limit, and pointed
out the influence degree of factors affecting materials fatigue. After that, some researchers developed Wohler’s investigation
from 1870 to 18902,3,4,5. After decades of development, there are many researches on fatigue crack propagation, which are micro
investigation on materials and mechanism analysis by finite element method.Paris et al.6 put forward Paris formula to express
crack growth law on the basis of fracture mechanics method, which is the most widely used method in engineering. Besides,
Fathi A. Alshma et al.7 confirmed all parameters of Paris Law in the experiment, and found the crack growth speed through
the experiment and analysis.On the basis of previous studies, the investigation on crack growth and fracture is in the ascendant
in recent years8,9,10,11,12, and the main progress is described as follows: Beibei LEI13 takes 2024-T4 aluminum alloy as the
investigate object, and uses the finite element method to investigate the influence rule and mechanism of overload condition on
the change trend of subsequent fatigue crack growth rate (da∕dN).For the problem of crack propagation in a plate with a single
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Fund Project (No. 2017ZD41006) are gratefully acknowledged.
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hole central crack, Shaoqin Zhang et al.14 introduced a new Z fracture criterion which can well predict the crack propagating
direction of mode I crack in carbon-fiber reinforced composite laminates, and proposed new concepts of in-plane average strain,
in-plane dilatational strain energy density factor and reciprocal characteristic function.Furthermore, M Hajimohamadi et al.15
investigated the analytical solution of stress field and stress intensity in infinite plane with elliptical holes with unequal length of
prefabricated cracks. For the crack growth problem of two holes plate, R. R. Bhargava et al.16 proposed a mathematical model
of two unequal-collinear crack growth.Additionally, S Singh et al.17 proposed an improved strip saturation model based on the
combination of two internal electric saturation bands and studied two-dimensional (2D) arbitrarily polarized semi permeable
dielectric analytically. For the crack growth problem of porous plate, Jinfang Zhao18 et al. applied the basic principle of complex
stress function method and its approximate superposition method to the solution of stress intensity factor of collinear multiple
cracks in infinite plates, and made a preliminary exploration on the solution of porous cracks. Moreover, Zhenghong Li et al.19
used Eshelby inclusion theory and weight function method to give the approximate analytical solution of stress intensity factor
of typical porous multi-crack problem, and combined with Paris crack growth formula to predict the fatigue crack growth life.
These investigations on the prediction of fatigue crack growth are based on empirical formula, analytical method and finite
element method. Based on the existing mechanism investigation and crack growth performance, the analytical expression of
crack growth law is obtained. In view of the fact that the dealing with the actual aviation crack data which is an urgent proposition
to find as way to find a way to get the crack growth law by combining the crack growth mechanism and data-driven method, the
intelligent algorithm model of aviation fatigue crack growth based on the data-driven method will be built in the focus of this
paper.
On the other hand, support vector regression (SVR) algorithm is an extension of support vector machine algorithm in regres-

sion problem, which was first proposed by Drucker et al.20 After years of development, SVR algorithm is widely used in all
aspects of scientific investigation. The application of SVR algorithm in crack growth and life prediction are as follows. Based on
grey theory and support vector regression method, Dalian Yang et al.21 proposed GMSVR model and parameter optimization
method of artificial bee colony, and applied it to FCG prediction of 7075 aluminum alloy. Furthermore, Weizhen Song et al.22
used XFEM and SVR to predict fatigue life of plate cracks. Therefore, it is feasible to apply SVR algorithm to the crack growth
prediction of aluminum alloy plate, which has the advantage of solving such problems.
Specially, support vector regression (SVR)23,24 algorithm is a data-driven based method, which is used to fit the crack growth

data obtained from fatigue load test in this paper. Under the same load form, a model which can predict the crack rule between
three circular holes by the crack rule between two holes is established, and its fitting effect is tested. The aviation aluminum alloy
plate with two or three holes is the test materials of fatigue load test. First of all, the data of crack length and cycle number of
plate crack growth under constant amplitude load and variable amplitude load are collected in this experiment. After that, to get
the general rule of crack growth, data exploration, data pre-processing and so on are carried out. Finally, the applicable support
vector regression algorithm is used to fit the crack growth data to get the prediction results of the model and evaluate the effect
of the model. This model can be used in the field of fatigue crack growth prediction of porous edge of aluminum alloy materials
for aircraft. It can predict the crack growth length by the number of cycles, and can also predict the number of cycles by the crack
growth length through the model. The establishment of crack prediction model for aviation aluminum alloy plate can predict
three holes crack rule from two-hole crack and solve the prediction problem of unknown crack growth rule between holes. It is
a breakthrough of crack prediction between holes based on data-driven method. This model not only provides the basis for the
prediction of the crack law of aviation aluminum alloy materials, but also can be applied to the prediction of safe flight and life
of aviation aircraft, and guide the prediction of the crack growth law between holes of actual aviation aluminum alloy plate.

2 TEST CONTENT

2.1 Test introduction
In this section, to investigate the crack growth law of aviation aluminum alloy plate with two holes and three holes under constant
amplitude load and variable amplitude load respectively is one purpose of this experimental investigation. And on the other
hand, to use the suitable support vector regression algorithm to fit and analyze the experimental data is another purpose of
this experimental investigation. Besides, MTS fatigue testing machine system is used in this test, which is used in fatigue test
and crack growth test of typical aviation connection structure with multiple cracks. Moreover, The crack growth behavior was
measured by high power optical microscope. Figures 1-2 show the MTS fatigue testing machine system:
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FIGURE 1 MTS fatigue testing machine system. FIGURE 2 Test diagram of two holes plate specimen.

FIGURE 3 Schematic diagram of two holes plate specimen.

FIGURE 4 Schematic diagram of three holes plate specimen.

In addition, the most commonly used aluminum lithium alloy on the active advanced aircraft is the experimental materials
used in this test. In order to explore the propagation law of cracks between holes in aviation aluminum alloy plate, the aviation
aluminum alloy plate is divided into two holes and three holes. Besides, the schematic diagram of the two types of aviation
aluminum alloy plates used is shown in Figures 3-4:
Besides, the diameter of the small circular holes in the aluminum alloy plate specimens are 4mm, while the distance between

points B and C in the figure and the distance between points D and E are 12mm, which is shown in Figure 3 and Figure 4. The
parameters of fatigue load test are shown in Table 1:

For points A, B, C, D, E and F in Figures 3-4, preset the initial crack length respectively, so as to obtain the crack growth in
the test.
Constant amplitude load and variable amplitude load are the two categories that the style of the pre-set cracks accorded to

the test purpose. Among them, there are 11 constant amplitude plate specimens and 9 variable amplitude plate specimens. As
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TABLE 1 Table of fatigue load test parameters.

Load range Median load Load Variable load Amplitude of
(Rad/s)a (Rad/s)b amplitude median load variation

Constant amplitude load 1.3KN–13KN 7.15KN 5.85KN – –
Variable amplitude load 1.3KN–13KN 7.15KN 5.85KN 14.3KN 11.7KN

TABLE 2 Initial pre-set cracks of two holes specimen with constant amplitude.

Serial number A B C D

1 1 1 0 0
2 1 1.5 0 0
3 1 1 1 1
4 1 1.5 1 1
5 1 1.5 1.5 1
6 0.5 1.5 0.5 0.5
7 0.5 1.5 1.5 0.5
8 0.5 0.5 0.5 0.5
9 0.5 1.5 0 0
10 0.5 1.5 1.5 0.5
11 0.5 0.5 0 0

TABLE 3 Initial pre-set cracks of three holes specimen with constant amplitude.

Serial number A B C D E F

18 0.5 0.5 1.5 1.5 0.5 0.5

shown in the Table 2 and Table 3, the statistics of crack pre-set of plate specimen under constant amplitude load (the crack
length refers to the length of crack propagation with the initial crack tip as the origin, unit: mm):

It can be seen that the Table 4 and Table 5 (unit: mm) is shown the statistics of the pre-set cracks of the plate specimen under
variable amplitude load:

The vertical line of point B and C is taken as the axis of symmetry for two holes aluminum alloy plate in this paper. It can
be seen that point A corresponds to point D and point B corresponds to point C. If the initial crack length of four points is the
same, it is regarded as the case of initial crack symmetry. Similarly, the vertical line of point C and point D is taken as the axis of
symmetry for three holes aluminum alloy plate. It can be seen that point A corresponds to point F, point B corresponds to point
E, and point C corresponds to point D. In the case of the above initial crack configuration, the type of the initial crack length
at each hole edge of the two-hole aluminum alloy plate is involved in this paper. In this way, the random configuration of the
initial crack can be considered. It can provide the basis for the follow-up investigation work through the above analysis.
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TABLE 4 Initial pre-set cracks of two holes specimen with variable amplitude.

Serial number A B C D

1 0.5 0.5 0 0
2 0.5 1.5 0 0
3 0.5 0.5 0.5 0.5
4 0.5 1.5 0.5 0.5
5 0.5 1.5 1.5 0.5

TABLE 5 Initial pre-set cracks of three holes specimen with variable amplitude.

Serial number A B C D E F

9 0.5 0.5 1.5 0.5 0.5 0.5

TABLE 6 Partial test data of constant amplitude two holes test specimen 03.

A B C D

13000 0.6 0.9 0.9 0.9
13200 0.6 0.9 0.9 1
13400 0.7 1 1.1 1
13600 0.8 1 1.1 1.05
13800 0.8 1.2 1.2 1.05

⋯
18900 5 4.7 5 5.6
18925 5.2 4.7 5 5.9
18950 5.5 4.7 5 6.2
18975 5.7 4.7 5 6.6
19000 6 4.7 5 7

2.2 Test process
Firstly, the above-mentioned constant amplitude fatigue load spectrum and variable amplitude fatigue load spectrum (see Table
1) which are suitable for laboratory use are adopted. Secondly, the fatigue crack growth test of porous plate specimen under
constant amplitude load spectrum is carried out. The fatigue crack growth data of multiple cracks are collected, and the growth
rule is analyzed. Finally, the fatigue crack growth test of plate specimen with porous edge cracks under variable amplitude load
is carried out. Therefore, the data of crack length and number of cycles are collected to provide test data for the prediction of
crack length. According to the previous solution, it also can even establish the life of fatigue multi crack propagation law.

2.3 Experimental data
In this section, the test data of crack growth length and cycle times of 20 groups of aluminum alloy specimens are obtained,
which are saved in 20 Excel files respectively through the above fatigue loading test. Some original data of crack growth for
the above-mentioned aluminum alloy specimens are presented in this paper. The initial cracks at points A, B, C and D in the
constant amplitude two hole test specimen 03 are all 1.0 mm test data, some of which are shown in Table 6 (the data in the first
column of the table is the number of cycles, and the rest are in mm):
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TABLE 7 Partial test data of constant amplitude three holes test specimen 18.

A B C D E F

5000 0 0 0 0 0 0
28000 0 0 0 0 0 0
28500 0 0 0 0.1 0 0
29000 0 0 0 0.2 0 0
29500 0 0 0 0.3 0 0

⋯
64250 3.4 2 8 7.2 2.8 6.6
64500 3.7 2 8 7.2 2.8 7.5
64750 4 2 8 7.2 2.8 7.6
64973 6.2 2 8 7.2 2.8 10.2
64976 17.2 2 8 7.2 2.8 16.8

TABLE 8 Partial test data of variable amplitude two holes test specimen 03 (Complement).

A B C D

11000 0 0.1 0.1 0.1
11500 0 0.1 0.1 0.1
12000 0.1 0.1 0.1 0.1
12500 0.1 0.1 0.1 0.1
13000 0.1 0.2 0.2 0.1

⋯
15750 0.5 0.5 0.6 0.6
16000 0.6 0.5 0.6 0.6 Added a variant
16500 0.6 0.5 0.6 0.6

⋯
42100 6.3 4.8 6.2 7.2
42200 6.5 4.8 6.2 7.5
42300 7 4.8 6.2 7.8
42400 8 4.8 6.2 9
42448 17.1 4.8 6.2 18.2

The initial crack configuration of the constant amplitude three-hole specimen 18 is as follows: the initial crack at point A, B,
E and F is 0.5mm and the initial crack at point C and point D is 1.5mm. Some of the data are shown in Table 7 (the data in the
first column of the table is the number of cycles, and the rest are in mm):

However, the initial cracks at points A, B, C and D in the two hole variable amplitude test specimen 03(Complement) are all
0.5 mm test data, some of which are shown in Table 8 (the data in the first column of the table is the number of cycles, and the
rest are in mm):

The initial crack configuration of variable amplitude three-hole specimen 09 is as follows: the initial crack at point A, B, D,
E, F is 0.5mm and the initial crack at point C is 1.5mm. Some of the data are shown in Table 9 (the data in the first column of
the table is the number of cycles, and the rest are in mm):
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TABLE 9 Partial test data of variable amplitude three holes test specimen 09.

A B C D E F

5000 0 0 0 0 0 0
10000 0 0 0 0 0 0
15000 0 0 0 0 0 0
20000 0 0 0 0 0 0
25000 0 0 0 0 0 0

⋯
46000 0 0.1 1.8 1.1 0.2 0
47000 0 0.1 1.9 1.2 0.2 0 Added a variant
48000 0 0.1 1.9 1.2 0.2 0

⋯
132500 6.3 2.8 7.2 8.7 2.3 5.3
133000 8 2.8 7.2 8.7 2.3 5.9
133250 9.1 2.8 7.2 8.7 2.3 6.7
133500 10.5 2.8 7.2 8.7 2.3 7.7
133532 17.3 2.8 7.2 8.7 2.3 18

3 THE THEORY OF SUPPORT VECTOR REGRESSION

As we know, support vector regression (SVR) is a development of support vector machine algorithm, which was first extended to
support vector regression by Drucker et al.20 Support vector regression is a small sample learning method with solid theoretical
basis. And the traditional process from induction to deduction can be avoid by it. By this means, SVR simplified greatly the
usual regression problem. Support vector regression algorithm avoids "dimension disaster" in a sense, and has good robustness.
The main principles of SVR are as follows:
Given training samples T = {(x1, y1), (x2, y2), ..., (xm, ym)}, yi ∈ ℝ. The regression model shaped as f (x) = wTx + b is

the learning objective function. Moreover, the model parameters which make f (x) as close as possible to y, w and b are to be
determined.
Next, support vector regression23 assumes that we can tolerate the maximum deviation of " between f (x) and y. That is to

say, the loss is only calculated when the absolute value of the difference between f (x) and y is greater than ". As shown in
Figure 5, this is equivalent to building a spacing band (i.e., the part sandwiched between the two dashed lines in the figure) with
a width of " centered on f (x) (i.e., the solid line in the figure). Whereas if the training samples fall into this interval, they are
considered to be correctly predicted.
Therefore, the SVR problem can be formalized as

min
w,b

1
2
‖w‖2 + b (1)

Where, b = C
∑m
i=1 l"(f (xi) − yi), C is the regularization constant. It can be seen from Fig.6 that, l" is the "-insensitive loss

function shown in Figure 6.

l"(z) =

{

0, if |z| ≤ ";
|z| − ", otherwise.

(2)

By introducing relaxation variables �i and �̂i, equation (1) can be rewritten as

min
w,b,�i,�̂i

1
2
‖w‖2 + C

m
∑

i=1
(�i + �̂i) (3)
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FIGURE 5 Schematic diagram of support vector regression.
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FIGURE 6 "-insensitive loss function.

s.t. f (xi) − yi ≤ " + �i,

yi − f (xi) ≤ " + �̂i,

�i ≥ 0, �̂i ≥ 0, i = 1, 2, ..., m.

Therefore, the solution of SVR can be obtained by Lagrange multiplier method as follows
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f (x) =
m
∑

i=1
(�̂i − �i)xTi x + b (4)

Furthermore, the samples of (�̂i − �i) ≠ 0 in Equation (4) are the support vectors of SVR, which must fall outside the "
-interval. Obviously, SVR’s support vector is only a part of the training sample, that is, its solution is still sparse.
If the feature mapping form f (x) = wT�(x) + b is considered, then the corresponding solution can be obtained by Lagrange

multiplier method

w =
m
∑

i=1
(�̂i − �i)�(xi) (5)

Substituting Equation (5) into f (x) = wT�(x) + b, SVR can be expressed as

f (x) =
m
∑

i=1
(�̂i − �)�(x, xi) + b (6)

Where, �(xi, xj) = �(xi)T�(xj) represent the kernel function. The kernel function used in this paper is Gauss kernel function,
whose expression is �(xi, xj) = exp(− ‖xi−xj‖2

2�2
). Where, � > 0 stand for the width of Gaussian kernel.

4 PREDICTION OF CRACK LENGTH BY SVR

4.1 Data standardization
As we all know, the input data to be normalized is required in SVR algorithm. Therefore, it is necessary to normalize the data to
be processed. The data to be used needs to be determined before normalization. According to the data exploration in the early
stage, we can know from the visual graph that the crack length data is in the state of non expansion when the number of cycles is
small. That is, a large number of zero values in the original data have no impact on the prediction results, so it can be discarded.
After a certain length that the crack length reaches, the crack length remains unchanged when the number of cycles in the later
period is large. Therefore, this part of the data can be discarded and only part of the data with changing rules can be retained. The
influence of point A and point D of two-hole plate and point A and point F of three-hole plate on interpore crack propagation is
ignored in this test. Therefore, the following investigate contents only consider the crack growth of between holes. We also add
the initial crack length of each crack to each row of crack data, so that the crack data has a certain physical significance.
For convenience, standardization methods in data standardization as follows:
Transform sequence x1, x2, ..., xn : x∗i =

xi− min
1≤j≤n

xj

max
1≤j≤n

xj− min
1≤j≤n

xj
, the new sequence x∗1, x

∗
2, ..., x

∗
n ∈ [0, 1] is dimensionless. The data can

be standardized first for data preprocessing.
Using the Matplotlib Library in Python to draw the image and get the relevant statistics for each test specimen. Data prepro-

cessing images of between holes cracks of the above specimen are presented in this paper. Each image drawn below does not
consider the zero values data in the front part of the data file, and the number of cycles is processed by the above normalization
method. The abscissa is the number of cycles after normalization, and the ordinate is the crack length in mm. So as expected
shown in Figures 7-10 for the specific image:
After the above standardized treatment, the crack length is treated as follows: The crack data of point B and point C are added

to get the cumulative crack length, which is recorded as BCI, and the cumulative crack length is about 12 mm for the two holes
crack specimen. Meanwhile, the crack data of points B, C, D and E are added and record them as BCDEI to get the cumulative
crack length, which is about 25 mm for the three holes crack specimen.
After the above-mentioned processing, the pre-processing image of crack growth data of each test piece is obtained. The

abscissa is the number of cycles, and the ordinate is the sum of crack length between holes BCI or BCDEI data which unit is
mm in all the following figures. See Figures 11-14 for the specific image:
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FIGURE 7 Normalized data of two holes with constant
amplitude.
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FIGURE 8 Normalized data of three holes with constant
amplitude 18.
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FIGURE 9 Normalized data of two holes variable ampli-
tude.
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FIGURE 10 Normalized data of three holes variable ampli-
tude 09.

4.2 Prediction steps of SVR
Obviously, the steps of using support vector regression to predict the crack length are as follows: first, establish the support
vector regression model for the normalized BCI crack data of the constant amplitude two holes specimen, obtain the training
and testing errors, and then test the effect of the model on the constant amplitude two holes specimen. Then, support vector
regression model was established and predicted for BCDEI crack data of normalized constant amplitude three holes specimen,
observe the error and deviation verify the prediction effect of the model. Finally, the prediction model is established for the
variable amplitude specimen similar to the above prediction steps.
The SVR algorithm in scikit-learn is used to build the SVR model for crack prediction of aviation aluminum alloy plate

by adjusting the parameters such as kernel (i.e., specify the kernel type to be used in the algorithm), gamma (i.e., for kernel
coefficient) and C (i.e., for penalty parameter C of error term) in this paper.
Furthermore, this paper adopts the grid search optimization algorithm when adjusting the parameters. Grid search optimiza-

tion algorithm is a kind of exhaustive search algorithm which optimizes the parameters by cross validation, and then obtains the
optimal learning algorithm. That is to say, to traverse and search the corresponding permutation and combination values of each
parameter in a given range, and each group of combination results constitutes a "grid". Then, each combination is applied to
the training learning algorithm, and the evaluation results are obtained by cross validation. After traversing and training all the
parameter combinations, the grid search algorithm will automatically return the best parameter combination with the highest
score, and its corresponding learning model is the optimal regression model.
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FIGURE 11 Cumulative length of two holes with constant
amplitude.
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FIGURE 12 Cumulative length of three holes with constant
amplitude 18.
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FIGURE 13 Cumulative length of two holes with variable
amplitude.
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FIGURE 14 Cumulative length of three holes with variable
amplitude 09.

It is known that the kernel, gamma and C parameters need to be adjusted in SVR. For kernel, i.e., the type of the kernel
function, we specify to use radial basis kernel function. For gamma and C parameters, we use GridSearchCV method in Scikit-
learn to optimize the grid search parameters and get the optimal parameters in this paper. Where, the value range of gamma
is set {0.01, 0.1, 1, 10, 100}, that is gamma ∈ {0.01, 0.1, 1, 10, 100}, the value range of C is set {1, 10, 100, 1000}, that is
C ∈ {1, 10, 100, 1000}. According to the range of gamma and C from the above, there are 20 grid points in this method.

4.3 Evaluating indicator
Data set partition standard: For the division of data sets under different load spectra, this paper uses two-hole data under the
corresponding load spectrum as training data and three-hole data as test data.
The commonly used cross validationmethod inmachine learning is used for the aspect ofmodel evaluation in data set partition.

In view of the fact that the half-fold cross validation method25 is specifically used in this paper. The reliable evaluation of the
model effect is obtained by making full use of the data set, so as to verify the performance of the established SVR model for
crack prediction of aviation aluminum alloy plate.
Additionally, error analysis indicators: mean square error26, root mean square error27 and other error analysis indicators are

commonly used in regression problems. Variance, standard deviation, mean square error and root mean square error are the
error evaluation indicators used in this paper. The calculation formulas of each indicator are as follows:
Variance (S2):
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S2 = 1
m

m
∑

i=1
(yi − ȳ)2 (7)

Standard deviation (S):

S =

√

√

√

√

1
m

m
∑

i=1
(yi − ȳ)2 (8)

Mean Square Error (MSE):

MSE = 1
m

m
∑

i=1
(yi − ŷi)2 (9)

Root Mean Square Error (RMSE):

RMSE =

√

√

√

√

1
m

m
∑

i=1
(yi − ŷi)2 (10)

Where, m, yi, ŷi and ȳ are the total number of samples, the predicted value of the model, the real value, the sample mean
value, respectively.
It is significant to compare variance, standard deviation with MSE and RMSE. For example, if the MSE of prediction

error is almost equal to the variance of the target (orRMSE is almost equal to the standard deviation of the target), this indicates
that the prediction algorithm is not effective. By simply averaging the target value to replace the prediction algorithm, almost the
same effect can be achieved. If the prediction error RMSE is about half of the actual target standard deviation, this is already
a pretty good performance. Because the variance andMSE comparison and the standard deviation and RMSE comparison
have a certain correlation. And thus, the comparison between standard deviation and RMSE is the main error indicator used
in this paper.

4.4 Result analysis
According to the previous solution, this paper presents a visual image of the results of predicting the crack length of three holes
aluminum alloy plate specimens under the same load spectrum. In the visualization image, Figure 15 and Figure 17 are the
images of test data and prediction data. Besides, Figure 16 and Figure 18 are the learning curve images. In the images in Figure
15 and Figure 17, the red line is the line graph of test data, and the blue line is the line graph of support vector regression
prediction data.
However, through the optimization of SVR parameters by grid search algorithm, we get the optimal SVR model for alu-

minum alloy plate under constant amplitude. The parameters of it are as follows: SVR (C=100.0, cacℎe_size=200, coef0=0.0,
degree=3, epsilon=0.1, gamma=10.0, kernel="RBF", max_iter=-1, sℎrinking=true, tol=0.001, verbose=false). Among
them,
kernel="RBF" is the setting parameters, C=100.0 and gamma=10.0 are the optimization parameters of grid search algorithm.
And other parameters are the default values. A simple interpretation can be given as follows.
Figures 15-16 show the results of constant amplitude two holes specimen 18:
The standard deviation is about 10.11, the RMSE of this model is about 0.64 which is far less than the standard deviation. It

is easily found that the effect of this model is very well. The results of half-fold cross validation are: 0.99942329, 0.99940067,
0.9994369, 0.9991129, 0.9994331, the mean value is: 0.9993613737263342, which also shows that the prediction effect of the
model is good. In this way, the model can be used for this problem.
Moreover, through the optimization of SVR parameters by grid search algorithm, we get the optimal SVR model for alu-

minum alloy plate under variable amplitude. The parameters of it are as follows: SVR (C=1000.0, cacℎe_size=200, coef0=0.0,
degree=3, epsilon=0.1, gamma=1.0, kernel="RBF",max_iter=-1, sℎrinking=true, tol=0.001, verbose=false). Among them,
kernel="RBF" is the setting parameters, C=1000.0 and gamma=1.0 are the optimization parameters of grid search algorithm.
And other parameters are the default values. A simple interpretation can be given as follows.
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FIGURE 15 Prediction of crack length with constant ampli-
tude 18 by SVR.
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FIGURE 16 Learning curve of constant amplitude 18.

Figures 17-18 show the results of constant amplitude three holes specimen 09:
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FIGURE 17 Prediction of crack length with variable ampli-
tude 09 by SVR.
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FIGURE 18 Learning curve of variable amplitude 09.

The standard deviation is about 9.56, the RMSE of this model is about 0.86 which is far less than the standard deviation. It
is easily found that the effect of this model is very well. The results of half-fold cross validation are: 0.99930434, 0.99930836,
0.99873057, 0.999125, 0.9991911, with the mean value of 0.9991318738985194, which also shows that the prediction effect of
the model is good. In this way, the model can be used for this problem.
Additionally, through the establishment, implementation and evaluation of the above models, it can be seen that the constant

amplitude data and the variable amplitude data are two different types of models. The crack propagation law between the holes of
two-hole aluminum alloy plate and three-hole aluminum alloy plate has roughly the same trend in each type of model. Therefore,
three holes crack data can be predicted by two holes crack data under the same load form. In practical application, we can refer to
the crack configuration form of the specimen in this paper, find a crack configuration form model similar to the actual situation.
In addition, we can get the crack growth prediction results through the model.
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5 CONCLUSIONS

The SVR model can be used to predict the crack between holes in similar aluminum alloy plates. Using different models under
different conditions can make the prediction more accurate: use the model with higher score in constant amplitude model
under constant amplitude condition; use the model with higher score in variable amplitude model under constant amplitude
condition. According to the results, we can know that two holes and three holes aluminum alloy plate have roughly the same
crack propagation law under the same load spectrum. It leads us to predict the crack law between three holes with constant
amplitude by the crack law between two holes with constant amplitude. And at the same time, we also can predict the crack
law between three holes with variable amplitude by the crack law between two holes with variable amplitude. Alternatively, the
data-driven SVR algorithm model for crack growth prediction is a useful supplement to the existing methods for crack growth
prediction in this paper. The accuracy of the model can meet the accuracy requirements of the aviation crack growth problem.
In view of this, the established model can be modified into the aviation crack growth prediction method to a certain extent, and
can guide the actual prediction of the law of the aviation cracks between holes.
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