References
1. Jiang Y, Huan Q, Fabris L, Bazan GC, Ho W. Submolecular
control, spectroscopy and imaging of bond-selective chemistry in single
functionalized molecules. Nat Chem. 2013;5(1):36-41.
2. Wang Z, Danovich D, Ramanan R, Shaik S. Oriented-External
electric fields create absolute enantioselectivity in Diels–Alder
reactions: importance of the molecular dipole moment. JACS.2018;140(41):13350-13359.
3. Ordomsky VV, Khodakov AY, Legras B, Lancelot C.
Fischer–Tropsch synthesis on a ruthenium catalyst in two-phase systems:
an excellent opportunity for the control of reaction rate and
selectivity. Catal Sci Technol. 2014;4(9):2896-2899.
4. Stuerga D, Gonon K, Lallemant M. Microwave heating as a new
way to induce selectivity between competitive reactions. application to
isomeric ratio control in sulfonation of naphthalene.Tetrahedron. 1993;49(28):6229-6234.
5. Burk MJ, Feng S, Gross MF, Tumas W. Asymmetric catalytic
hydrogenation reactions in supercritical carbon dioxide. JACS.1995;117(31):8277-8278.
6. Lee I, Morales R, Albiter MA, Zaera F. Synthesis of
heterogeneous catalysts with well shaped platinum particles to control
reaction selectivity. PNAS. 2008;105(40):15241-15246.
7. Shaik S, de Visser SP, Kumar D. External electric field will
control the selectivity of enzymatic-like bond activations. JACS.2004;126(37):11746-11749.
8. Meir R, Chen H, Lai W, Shaik S. Oriented electric fields
accelerate Diels–Alder reactions and control the endo/exo selectivity.ChemPhysChem. 2010;11(1):301-310.
9. Hirao H, Chen H, Carvajal MA, Wang Y, Shaik S. Effect of
external electric fields on the C−H bond activation reactivity of
nonheme iron−oxo reagents. JACS. 2008;130(11):3319-3327.
10. Shaik S, Mandal D, Ramanan R. Oriented electric fields as
future smart reagents in chemistry. Nat Chem.2016;8(12):1091-1098.
11. Shaik S, Ramanan R, Danovich D, Mandal D. Structure and
reactivity/selectivity control by oriented-external electric fields.Chem Soc Rev. 2018;47(14):5125-5145.
12. Ramanan R, Danovich D, Mandal D, Shaik S. Catalysis of
methyl transfer reactions by oriented external electric fields: are
gold–thiolate linkers innocent? JACS. 2018;140(12):4354-4362.
13. Che F, Gray JT, Ha S, Kruse N, Scott SL, McEwen J-S.
Elucidating the roles of electric fields in catalysis: a perspective.ACS Catal. 2018;8(6):5153-5174.
14. Cassone G, Pietrucci F, Saija F, Guyot F, Saitta AM.
One-step electric-field driven methane and formaldehyde synthesis from
liquid methanol. Chem Sci. 2017;8(3):2329-2336.
15. Cassone G, Sponer J, Sponer JE, Pietrucci F, Saitta AM,
Saija F. Synthesis of (d)-erythrose from glycolaldehyde aqueous
solutions under electric field. Chem Commun.2018;54(26):3211-3214.
16. Aragonès AC, Haworth NL, Darwish N, et al. Electrostatic
catalysis of a Diels–Alder reaction. Nature.2016;531(7592):88-91.
17. Huang X, Tang C, Li J, et al. Electric field–induced
selective catalysis of single-molecule reaction. Sci Adv.2019;5(6):eaaw3072.
18. Cassone G, Sofia A, Rinaldi G, Sponer J. Catalyst-free
hydrogen synthesis from liquid ethanol: an ab initio molecular dynamics
study. J Phys Chem C. 2019;123(14):9202-9208.
19. Xu B, Tao NJ. Measurement of single-molecule resistance by
repeated formation of molecular junctions. Science.2003;301:1221-1223.
20. Venkataraman L, Klare JE, Nuckolls C, Hybertsen MS,
Steigerwald ML. Dependence of single-molecule junction conductance on
molecular conformation. Nature. 2006;442(7105):904-907.
21. Frisenda R, Janssen VAEC, Grozema FC, van der Zant HSJ,
Renaud N. Mechanically controlled quantum interference in individual
π-stacked dimers. Nat Chem. 2016;8(12):1099-1104.
22. Schwarz F, Kastlunger G, Lissel F, et al. Field-induced
conductance switching by charge-state alternation in organometallic
single-molecule junctions. Nat Nanotechnol. 2016;11(2):170-176.
23. Tachiya M. Effect of an external electric field on the rate
of diffusion‐controlled reactions. J Chem Phys.1987;87(8):4622-4626.
24. Deshmukh SD, Tsori Y. Communication: control of chemical
reactions using electric field gradients. J Chem Phys.2016;144(19):191102.
25. Wang N, Kaminski K, Petera J, Allgeier AM, Weatherley LR.
Electrostatically enhanced catalytic phase transfer hydrogenation of
acetophenone under low external electric field. Chem Eng J.2019;374:1096-1101.
26. Wu X, Liu J, Di Tommaso D, et al. A multilateral
mechanistic study into asymmetric transfer hydrogenation in water.Chem Eur J. 2008;14(25):7699-7715.
27. Bier M, Palusinski OA, Mosher RA, Saville DA.
Electrophoresis: mathematical modeling and computer simulation.Science. 1983;219(4590):1281-1287.
28. Levine ML, Cabezas H, Bier M. Transport of solutes across
aqueous phase interfaces by electropgoresis - mathematical modeling.J Chromatogr. 1992;607(1):113-118.
29. Zhu HT, Yang B, Gao CJ, Wu YQ. Ion transfer modeling based
on Nernst-Planck theory for saline water desalination during
electrodialysis process. Asia-Pac J Chem Eng. 2020;15(2):11.
30. Petera J, Weatherley LR, Rooney D, Kaminski K. A finite
element model of enzymatically catalyzed hydrolysis in an electrostatic
spray reactor. Comput Chem Eng. 2009;33(1):144-161.
31. Ohkuma T, Utsumi N, Tsutsumi K, Murata K, Sandoval C,
Noyori R. The hydrogenation/transfer hydrogenation network: asymmetric
hydrogenation of ketones with chiral
η6-arene/n-tosylethylenediamine−ruthenium(II) catalysts. JACS.2006;128(27):8724-8725.
32. Pavlova A, Rösler E, Meijer EJ. Mechanistic aspects of
using formate as a hydrogen donor in aqueous transfer hydrogenation.ACS Catal. 2016;6(8):5350-5358.
33. Rumble JR. CRC handbook of chemistry and physics (100th
edition). CRC Press, 2019.
34. Prego M, Cabeza O, Carballo E, Franjo CF, Jime´nez E.
Measurement and interpretation of the electrical conductivity of
1-alcohols from 273 K to 333 K. J Mol Liq. 2000;89(1):233-238.
35. Prego M, Rilo E, Carballo E, Franjo C, Jiménez E, Cabeza O.
Electrical conductivity data of alkanols from 273 to 333 K. J Mol
Liq. 2003;102(1):83-91.
36. Smallwood IM. Handbook of organic solvent properties.
London:Amold, 1996.
37. Pavlova A, Meijer EJ. Understanding the Role of Water in
Aqueous Ruthenium-Catalyzed Transfer Hydrogenation of Ketones.ChemPhysChem. 2012;13(15):3492-3496.