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Summary

In this paper we consider an anomalous di�usion model in a planar polymeric

matrix as a space-fractional di�usion problem with moving boundary condi-

tions. An iterative implicit �nite di�erence method with variable time-steps

is established to solve the proposed problem. The stability and consistency of

the numerical method are proved and the estimation of the numerical error is

conducted. The numerical results are compared with the scale-invariant solu-

tions when the di�usion coe�cient is a constant and the agreement between

the numerical results and the scale-invariant solutions is investigated. Fur-

thermore the numerical results for a test case with time-dependent di�usion

coe�cient are reported.
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1 INTRODUCTION

Mathematical models have played an important role in understanding of the mechanisms of controlled release drug
delivery systems1. The exact and approximate solutions obtained from solving the mathematical models can predict
the value of drug released, giving insights for the design of drug delivery systems2. In 1961, in a seminal publication,
Higuchi introduced a mathematical model based on the pseudo-steady-state assumption for describing the drug release
from the matrix systems3. Later, the Stefan's moving boundary problems have adopted to provide more accurate
predictions of drug release kinetics4, which led to more intricate equations incorporating di�erent mathematical
methods, such as perturbation method5 and re�ned integral method6.
For mathematical modeling of drug release systems, the Fick's law plays a central role and used as a basic

assumption1. Recently it is explored that this law deals with some limitations to describe the di�usion processes in
the complex systems, frequently called anomalous di�usion7. That is where the fractional calculus of di�erent forms
has been introduced to address those shortcomings8,9,10. Fractional di�usion equations generally are obtained by
replacing the integer derivatives orders with respect to time and/or space variables with the generalized fractional
orders11. Due to the �exibility of the fractional derivatives orders, the fractional operators are known as e�cient tools
to model and investigate many phenomena such as sub and super di�usions7,12,13,14,15,16. Di�erential equations with
derivatives of fractional order have di�erent types, such as fractional derivative of the Caputo, Riemann-Liouville,
and Grunwald-Letnikov17,18,19,20.
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This study deals with a space-fractional di�usion equation with moving boundary conditions derived from the
mathematical modeling of drug release in planar drug release devices. There are some analytical and numerical
approaches for solving moving boundary problems in literatures3,7,10. Determination of moving boundary may have a
crucial importance in many mathematical models8,9,10. Usually the classical and analytical methods can not determine
the solution of moving boundary problems with unknown boundaries. There are many numerical methods proposed
to solve these kinds of problems. Some approaches such as the boundary immobilization method (BIM)21, the heat
balance integral method22,23, the enthalpy method24,25 and the variable space grid technique21 are well used to solve
many moving boundary problems. For a moving boundary with zero initial value, some of mentioned approaches
may deal with some limitations. For instance the BIM is based on the de�nition of a new space variable to �xed
the moving boundary and near the zero, this new variable is not applicable. In this study we establish a numerical
approach as an iterative time variable �nite di�erence method to solve our interest space-fractional di�usion moving
boundary problem.
This article is con�gured as follows:

A mathematical model for the anomalous di�usion of dispersed-drug release from a planar matrix system in a perfect
sink environment is considered in section 2. In section 3, an iterative numerical approach based on the implicit �nite
di�erence method with the variable time-steps is established to solve this problem. The stability and consistency of
the numerical method are proved in section 4. To demonstrate the ability and accuracy of the numerical method, two
test problems are investigated in section 5.

2 THE PROBLEM DEFINITION

In this section we consider the anomalous space-fractional di�usion equation (SFDE) governing the drug release
process in a dispersed matrix proposed in26,27 as the following moving boundary problem

∂c(ξ, τ)

∂τ
= D(ξ, τ)C0 D

α
ξ c(ξ, τ), (0 < ξ < s(τ), 1 < α < 2), (1)

c(0, τ) = 0, ξ = 0, (2)

c(s(τ), τ) = Cs, ξ = s(τ), (3)

(C0 − Cs)
ds(τ)

dτ
= D(ξ, τ)C0 D

α−1
ξ c(ξ, τ), ξ = s(τ), (4)

s(0) = 0, τ = 0, (5)

where C
0 D

α
ξ c(ξ, τ) and C

0 D
α−1
ξ c(ξ, τ) are Caputo's fractional derivatives of order α and α − 1 respectively. C0 D

α
ξ c(ξ)

generally de�ned as17

C
0 D

α
ξ c(ξ) =

{
1

Γ(n−α)

∫ ξ
a

c(n)(x)dx
(ξ−x)α−n+1 , (n− 1 < α < n),

c(n)(ξ), α = n,
(6)

where n is a positive number; c(ξ, τ) indicates the concentration of drug in the polymer matrix; D(ξ, τ) denotes the
di�usion coe�cient and s(τ) represents the position of the moving boundary. Our goal is to calculate the concentration
of the drug di�used in the region 0 < ξ < s(τ) and the moving front position s(τ).
Equation (1) describes the fractional di�usion, where the fractional order α resides between 1 < α < 2. The

boundary condition (2) expresses the perfect sink condition, while the equation (3) indicates that the concentration
of the drug at the s(τ) equals the drug solubility Cs. Equation (4) represents the mass conservation condition at the
moving plane. The initial condition (5) is also the initial condition at s(τ)26,27.
The following assumptions are considered associate with the foregoing model:

(I) Drug release is governed by di�usion and not by dissolution or swelling phenomena.

(II) C0 and Cs represent the initial concentration of the drug and the degree of solubility of the drug in the matrix,
respectively, where C0 is assumed to be greater than Cs.

(III) The drug released enters a perfect sink environment.
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Considering R as the scale of the polymer matrix, the reduced dimensionless variables may be de�ned as26

x =
ξ

R
, t =

D
Rα

τ, C =
c

Cs
, S(t) =

s(τ)

R
.

In this case, the main equation (1) and the conditions (2)-(5) are converted to the following scaled equations

∂C(x, t)

∂t
= D(x, t)C0 D

α
xC(x, t), (0 < x < S(t), 1 < α < 2), (7)

C(0, t) = 0, x = 0, (8)

C(S(t), t) = 1, x = S(t), (9)

η
dS(t)

dt
= D(x, t)C0 D

α−1
x C(x, t), x = S(t), (10)

S(0) = 0, t = 0, (11)

where η = C0−Cs
Cs

is a constant and η > 0 .
The equations (7)-(11) clearly show that the right boundary is not �xed and proceeds over time. This makes solving
equations quite complicated.
The BIM has been proposed to solve this problem in27. In this method by applying a series of transformations, the

moving boundary becomes �xed and the set of equations is reduced to new equations. Obviously, �xing the boundaries
will make it easier to solve the equations, but as mentioned before, when t approaches to zero, the mentioned method
may deal with some limitations. In the next section in order to eliminate the restriction at the initial time t = 0, an
iterative approach based on �nite di�erence method will be established to solve this problem.

3 THE NUMERICAL METHOD

In this section, an iterative implicit �nite di�erence method with variable time-step is presented for solving the
problem (7)-(11). In this method, the space and time intervals are discretized using constant space mesh step ∆x

and variable mesh step ∆t, respectively. Each time interval from tn to tn+1, with the mesh step ∆tn is chosen so
that the moving boundary S(t) is displaced as exactly as ∆x. Hence, we look for the value of ∆tn = tn+1 − tn such
that in the time interval [tn, tn+1], the moving boundary S(t) moves from xn = n∆x = S(tn) to the next position
xn+1 = (n+ 1)∆x = S(tn+1); n = 0, 1, 2, . . . , N , where N denotes the number of space subintervals.
For discretization of equations �rst we approximate the �rst-order derivative of time ∂C

∂t , using the Euler's forward
di�erence as follows

∂C(xi, tn)

∂t
' C(xi, tn+1)− C(xi, tn)

∆t
. (12)

The space Caputo's fractional derivatives in equations (7) and (10) are approximated as follows

C
0 D

α
xC(xi, tn) =

1

Γ(2− α)

xi∫
0

∂2C

∂x′2
(x′, tn)(xi − x′)

1−α
dx′

=
1

Γ(2− α)

i−1∑
j=0

xj+1∫
xj

∂2C

∂x′2
(x′, tn)

dx′

(xi − x′)α−1

' 1

Γ(2− α)

i−1∑
j=0

∂2C

∂x2
(xj+1, tn)

xj+1∫
xj

dx′

(xi − x′)α−1

' (∆x)−α

Γ(3− α)

i−1∑
j=0

bij (C(xj , tn)− 2C(xj+1, tn) + C(xj+2, tn)) , (13)
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and

C
0 D

α−1
x C(xi, tn) =

1

Γ(2− α)

xi∫
0

∂C

∂x′
(x′, tn)(xi − x′)

1−α
dx′

=
1

Γ(2− α)

i−1∑
j=0

xj+1∫
xj

∂C

∂x′
(x′, tn)

dx′

(xi − x′)α−1

' 1

Γ(2− α)

i−1∑
j=0

∂C

∂x′
(xj+1, tn)

xj+1∫
xj

dx′

(xi − x′)α−1

' (∆x)1−α

Γ(3− α)

i−1∑
j=0

bij (C(xj+1, tn)− C(xj , tn)) , (14)

where bij =
[
(i− j)2−α − (i− j − 1)2−α] and 1 < α < 2.

Suppose Cni and Dni denote the approximate values of C(xi, tn) and D(xi, tn), respectively. Using the approximations
(12) and (13) at tn+1, the discretized form of equation (7) may be written as follows

Cn+1
i − Cni

∆t
=
Dn+1
i (∆x)−α

Γ(3− α)

i−1∑
j=0

bij
(
Cn+1
j − 2Cn+1

j+1 + Cn+1
j+2

)
. (15)

Assuming r = ∆t
(∆x)α , we have

Cn+1
i − Dn+1

i r

Γ(3− α)

i−1∑
j=0

bij
(
Cn+1
j − 2Cn+1

j+1 + Cn+1
j+2

)
= Cni . (16)

Since the lengths of the time steps are variable, we use rn instead of r, and introduce equation (16) as an iterative
relation as follows Cn+1

i − D
n+1
i rn

Γ(3− α)

i−1∑
j=0

bij
(
Cn+1
j − 2Cn+1

j+1 + Cn+1
j+2

)(q)

= Cni , i = 1, . . . , n, (17)

where the superscript q over the bracket shows the q-th iteration. The boundary conditions are discretized as follows

Cn0 = 0, (n = 1, 2, . . . ), (18)

Cnn = 1, (n = 1, 2, . . . ), (19)[
η

∆x

∆tn

]
=

Dn+1
i (∆x)1−α

Γ(3− α)

i−1∑
j=0

bij
(
Cn+1
j+1 − C

n+1
j

), i = 1, . . . , n. (20)

Using the conditions (18) and (19), one may solve the system of equations (17) to determine the vector Cn+1 =(
Cn+1

1 , . . . , Cn+1
n

)
. Using Cn+1 we can write the equation (20) as an iteration relation to update the value of ∆tn as

follows

∆t(q+1)
n =

 η (∆x)
α

Γ(3− α)

Dn+1
i

(
i−1∑
j=0

bij
(
Cn+1
j+1 − C

n+1
j

))


(q)

. (21)

The iteration process of determining the value of ∆tn is continued until the appropriate accuracy criterion be satis�ed
as ∣∣∣∆tn(q+1) −∆tn

(q)
∣∣∣ ≤ ε.

To begin the above iteration process, the starting time step ∆t0 needs to be determined. To this end, one can
determine the value of ∆t0 using the boundary condition (20) for n = 0 as follows

∆t0 =
η(∆x)αΓ(3− α)

D1
1b10 (C1

1 − C1
0 )
. (22)
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Now suppose n = i = 1, then using the equations (17)-(19) yields[
C2

1 −
D2

1r1

Γ(3− α)
b10

(
C2

0 − 2C2
1 + C2

2

)](q)

= C1
1 , (23)

C2
0 = 0, (24)

C2
2 = 1. (25)

It should be pointed out that the value of ∆t1 in (23) is unknown. The proposed iteration process is started using the
initial assumption ∆t

(0)
1 = ∆t0. After determination of C2

1 from the equations (23)-(25), ∆t
(1)
1 is obtained as follows[

η
∆x

∆t1

](1)

=

[
D2

1(∆x)1−α

Γ(3− α)
b10

(
C2

1 − C2
0

)](0)

. (26)

The iteration process repeated until the accuracy is achieved for the time step. The mentioned results may be
used to calculate the time steps ∆tn and Cn at each time level tn; n = 2, 3, . . . .
We summarized this iteration approach as the following algorithm:

Algorithm:

• Step 1: The starting time step ∆t0 is calculated using the equation (22) and the boundary conditions (18)-(19).

• Step 2: The values of ∆tn at each step of the iteration of the algorithm are calculated using equation (21). The
initial value ∆t

(0)
n is considered as

∆t(0)
n = ∆tn−1, n = 1, 2, . . . . (27)

After determining the time-step at this step, the linear system (17) and the nonlinear equation (20) are solved
by applying boundary conditions (18) and (19).

• Step 3: After determining the unknowns in step 2, the value of ∆tn is updated with the help of equation (21).

• Step 4: The steps 2 and 3 are repeated until the following criteria be satis�ed∣∣∣(∆tn)
(q+1) − (∆tn)

(q)
∣∣∣ ≤ ε.

4 THE STABILITY, CONSISTENCY AND CONVERGENCE ANALYSIS

In this section, the stability and consistency of the proposed implicit �nite di�erence method are investigated. First
the stability is analyzed using a kind of von Neumann method.

Theorem 1. The implicit �nite di�erence method (17) for space-fractional di�usion equation SFDE (1) is
unconditionally stable.

Proof. To derive the stability condition we substitute a separated solution Cni = ξne
Iβi∆x in equation (17) where

I =
√
−1 and β ∈ [0, π] is the real spatial wave-number. Inserting this expression we obtain

ξn+1e
Iβi∆x − D

n+1
i rn

Γ(3− α)

i−1∑
j=0

bij(ξn+1e
Iβj∆x − 2ξn+1e

Iβ(j+1)∆x + ξn+1e
Iβ(j+2)∆x)

= ξne
Iβi∆x, (i = 1, . . . , N − 1), (28)

Divided (28) by eIβi∆x we get

ξn+1

1− D
n+1
i rn

Γ(3− α)

i−1∑
j=0

bij(e
Iβ(j−i)∆x − 2eIβ(j−i+1)∆x + eIβ(j−i+2)∆x)


= ξn. (29)
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Using the Euler's formula eIω = cosω + I sinω, one may rewrite (29) as

ξn+1

1 + 4 sin2(
β∆x

2
)
Dn+1
i rn

Γ(3− α)

i−1∑
j=0

bij (cos(β(j − i+ 1)∆x) + I sin(β(j − i+ 1)∆x))


= ξn. (30)

The behavior of ξn determines the stability. If we consider ξn+1 = ζξn where ζ = ζ(β) is independent of time, then
we have

ζ =
1

1 + 4 sin2(β∆x
2 )

Dn+1
i rn

Γ(3−α)

∑i−1
j=0 bij (cos(β(j − i+ 1)∆x) + I sin(β(j − i+ 1)∆x))

. (31)

The method is stable if |ζ| ≤ 1, i.e.,∣∣∣∣∣∣ 1

1 + 4 sin2(β∆x
2 )

Dn+1
i rn

Γ(3−α)

∑i−1
j=0 bij (cos(β(j − i+ 1)∆x) + I sin(β(j − i+ 1)∆x))

∣∣∣∣∣∣ ≤ 1. (32)

We claim that this inequality is satis�ed for every rn. To show this fact suppose γin = 4 sin2(β∆x
2 )

Dn+1
i rn

Γ(3−α) and
z = γin(A+ IB) where

A =

i−1∑
j=0

bij cos(β(j − i+ 1)∆x),

B =

i−1∑
j=0

bij sin(β(j − i+ 1)∆x). (33)

The inequality (32) is satis�ed if and only if γin|z|2 + 2Re(z) ≥ 0. It is clear that γin|z|2 ≥ 0. Furthermore one can
show that Re(z) ≥ 0 for every i = 1, 2, · · ·N (N > 2), and β ∈ [0, π]. To this end note that the de�nition of bij yields

I) 0 < bij < 1; j = 0, 1, . . . , i− 2, bi,i−1 = 1,

II) If k1 < k2 then bik1 < bik2 .

For i = 1, 2, we have

i = 1 : A = b10 = 1,

i = 2 : A = b20 cos β
N + b21 ≥ 0,

(34)

and for i = 3, 4, . . . , N , we can derive

A = bi0 cos(
i− 1

N
)β + bi1 cos(

i− 2

N
)β + · · ·+ bi,i−2 cos

β

N
+ 1

= (bi0 cos(
i− 1

N
)β + bi,i−2 cos

β

N
) + (bi1 cos(

i− 2

N
)β + bi,i−3 cos

2β

N
) + · · ·+ 1

=

{
1 + cos β

N +
∑N

2 −2

k=0 Φk; N : Even

1 +
∑[N2 ]−1

k=0 Φk; N : Odd

where Φk = bik cos
(
i
N −

k+1
N

)
β + bi,i−2−k cos k+1

N β.

It is clear that 0 ≤ k+1
N β ≤ π

2 ; k = 0, 1, . . . ,
[
N
2

]
− 1, therefore bi,i−2−k cos k+1

N β ≥ 0 and we can conclude

Φk ≥ bik

(
cos(

i

N
− k + 1

N
)β + cos

k + 1

N
β

)
= bik

(
(1 + cos

i

N
β) cos

k + 1

N
β + sin

i

N
β sin

k + 1

N
β

)
≥ 0. (35)

Using (34) and (35) ensure us that A ≥ 0 and this complete the proof of this statement.
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Theorem 2. The implicit �nite di�erence method (17) is consistence with the space-fractional di�usion equation
SFDE (1).

Proof. First de�ne

Lα(C) =
∂C(ξ, τ)

∂τ
−D(ξ, τ)C0 D

α
ξ C(ξ, τ),

Tα(C) = Cn+1
i − D

n+1
i rn

Γ(3− α)

i−1∑
j=0

bij(C
n+1
j − 2Cn+1

j+1 + Cn+1
j+2 )− Cni .

To show the consistency of the �nite di�erence method (17), we �rst indicate the truncation error of this approach.
Suppose

C
0 D

α
xC(xi, tn+1) =

(∆x)
−α

Γ(3− α)

i−1∑
j=0

bij
(
Cn+1
j − 2Cn+1

j+1 + Cn+1
j+2

)
.

Using the standard centered di�erence formula, we have

C
0 D

α
xC(xi, tn+1) =

(∆x)
2−α

Γ(3− α)

i−1∑
j=0

bij

[
∂2C

∂x′2
((j + 1)∆x, tn+1) +O(∆x2)

]

=
(∆x)

2−α

Γ(3− α)

i−1∑
j=0

bij
∂2C

∂x′2
((j + 1)∆x, tn+1) +

(∆x)
2−α

i2−α

Γ(3− α)
O(∆x2)

=
(∆x)

2−α

Γ(3− α)

i−1∑
j=0

bij
∂2C

∂x′2
((j + 1)∆x, tn+1) +

xi
2−α

Γ(3− α)
O(∆x2)

=
(∆x)

2−α

Γ(3− α)

i−1∑
j=0

bij
∂2C

∂x′2
((j + 1)∆x, tn+1) +O(∆x2). (36)

By the integral mean value theorem, we have

C
0 D

α
xC(xi, tn+1) =

1

Γ(2− α)

i−1∑
j=0

xj+1∫
xj

∂2C

∂x′2
(x′, tn+1)

dx′

(xi − x′)α−1

=
(∆x)

2−α

Γ(3− α)

i−1∑
j=0

bij
∂2C

∂x′2
(ξj , tn+1), (37)

where ξj ∈ [j∆x, (j + 1)∆x]. Subtracting (37) from (36) gives

∣∣∣C0 Dα
xC(xi, tn+1) − C

0 D
α
xC(xi, tn+1)

∣∣
=

∣∣∣∣∣∣ (∆x)
2−α

Γ(3− α)

i−1∑
j=0

bij

[
∂2C

∂x′2
((j + 1)∆x, tn+1)− ∂2C

∂x′2
(ξj , tn+1)

]
+O(∆x2)

∣∣∣∣∣∣
=

∣∣∣∣∣∣ (∆x)
2−α

Γ(3− α)

i−1∑
j=0

bij · O(∆x) +O(∆x2)

∣∣∣∣∣∣
=

∣∣∣∣∣ (∆x)
2−α

i2−α

Γ(3− α)
· O(∆x) +O(∆x2)

∣∣∣∣∣
= O(∆x) +O(∆x2)

≡ O(∆x). (38)

On the other hand
C(xi, tn+1)− C(xi, tn)

∆tn
=
∂C(xi, tn)

∂t
+O(∆tn). (39)



8 Morteza Garshasbi et al

From (38) and (39) one can drive
|Lα(C)− Tα(C)| ≤ O(∆tn) +O(∆x). (40)

Finally using equation (21) we conclude that the limit of right hand side of (40) tends to zero if O(∆x) −→ 0 and
this complete the proof of this theorem.

Now suppose that u and v ∈ Rm, m = 1, 2, . . . , N . For these vectors let de�ne the following inner product and the
induced norm

〈u, v〉 = ∆x

m∑
i=1

viui, ‖u‖2 = 〈u, u〉 . (41)

To �nd an error estimate for the numerical solution let us recall Grownwall's inequality28.

Lemma 1. Assume that a discrete function {fi | i = 0, 1, . . . ,M, Mη = T} satis�es the following inequality

fi − fi−1 ≤ λ1ηfi + λ2ηfi−1 + ηγi,

where λ1, λ2 and γi(i = 1, 2, . . . , N) are nonnegative constants. Then

Max
1≤i≤M

|fi| ≤ (f0 + η

M∑
l=1

γl)e
2(λ1+λ2)T , (42)

where η is su�ciently small such that (λ1 + λ2)η ≤ M−1
2M , (M > 1).

Theorem 3. Suppose that C(x, t) ∈ C2,1, 0 < D(x, t) ≤ D∗ and τ = Max
0≤i≤N−1

|∆ti| . If τ,∆x and τ
∆xα are small

enough, then there is a positive constant Λ, such that

‖en‖ ≤ Λ(τ + ∆x), (43)

where en = (en1 , . . . , e
n
n−1) denotes the vector of errors with

eni = C(xi, tn)− Cni ; n = 1, 2, . . . , N − 1, i = 1, 2, . . . , n− 1. (44)

Proof. Using equations (17) and (40) one may obtain

en+1 =
1

∆xα
Γen+1 + en +Rn+1, (45)

where Rn+1 denotes the vector of truncation errors as Rn+1 = (Rn+1
1 , . . . , Rn+1

n ) and Γ is the coe�cient matrix of
system of equations (17). Associated with Theorem 2 there is a positive C1 such that

|Rn+1
i | ≤ dn+1

i · C1(∆t+ ∆x); dn+1
i = D(xi, tn+1);

≤ D∗C1(τ + ∆x) ≡ C2(τ + ∆x). (46)

In addition Γ can be written as
Γ = I +MDB, (47)

where MD = diag(g1, g2, ..., gn)n×n and B = (b̄ij)n×n with gi =
dn+1
i

Γ(3−α) ,

b̄ij =



0, j > i+ 1,

−1, j = i+ 1,

2− bi,i−2, j = i,

−bi,i−3 + 2bi,i−2 − 1, j = i− 1,

−bi,i−4 + 2bi,i−3 − bi,i−2, j = i− 2,
...

...

2bi0 − bi1, j = 1.

(48)

Computing the inner product of (45) with en+1 yields〈
en+1, en+1

〉
=

∆tn
∆xα

〈
Γen+1, en+1

〉
+
〈
en, en+1

〉
+ ∆tn

〈
Rn+1, en+1

〉
.
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Using Schwarz inequality, we have

‖en+1‖2 ≤ ∆tn
∆xα

‖Γ‖‖en+1‖2 + ‖en‖‖en+1‖+ ∆tn‖Rn+1‖‖en+1‖.

If ‖en+1‖ = 0, then obviously the proof is completed. Let ‖en+1‖ 6= 0, then we obtain

‖en+1‖ − ‖en‖ ≤ τ

∆xα
‖Γ‖‖en+1‖+ τC2(τ + ∆x).

Implying Grownwall's inequality (42), for su�ciently small τ and ∆x such that τ
∆xα ‖Γ‖ ≤

N−1
2N we have

Max
1≤n≤N

‖en‖ ≤

(
‖e0‖+ τ

N∑
n=1

C2(τ + ∆x)

)
e2
‖A‖
∆xα ·T . (49)

Note that T = N · τ, ‖e0‖ = 0. Furthermore there is a constant C3 such that ‖Γ‖ ≤ C3. Therefore we can conclude
that

Max
1≤n≤N

‖en‖ ≤ N · τC2(∆t+ ∆x)

= Λ(∆t+ ∆x),

and this complete the proof.

Finally associate with Theorem 3, one may draw that when ∆x→ 0 then τ → 0 and ‖en‖ → 0 hold and this show
the convergence properties of �nite di�erence scheme (17).

5 NUMERICAL RESULTS AND DISCUSSION

In this section, the proposed iteration approach is conducted to investigate two test problems.

Example 1. Consider the di�usion equation (1) with constant di�usion coe�cient D. With this assumption, one
may introduce the solution of the problem (1)-(5), known as the scale-invariant solution, as follows26,27

C(x, t) =
1

pW(−1,1− 1
α )(α,2)(p

α)
xt−

1
αW(−1,1− 1

α )(α,2)

(
xαt−1

)
,

where W(µ,a)(ν,b)(z) denotes the generalized Wright function. This function is de�ned as follows

W(µ,a)(ν,b)(z) =

∞∑
k=0

zk

Γ(a+ µk)Γ(b+ νk)
,

where p is constant and can be calculated using α and η.
To show the ability of the numerical method, the numerical results are compared with the results obtained based

on the scale-invariant solution. Figures 1 and 2 show the concentration C(x, t) and the moving boundary position
S(t) obtained from the variable time-step method and the scale-invariant solution at the �nal computed time tf for
α = 1.75, η = 1.5 and D = 1. The numerical achievements show a good agreement between the scale-invariant and
numerical solutions.

We use the following formula to approximate the rate of convergence of the numerical results

p = logθ−1

‖Eh‖
‖Eθh‖

,

where ‖Eh‖ denotes the error norm obtained using the spatial mesh size h.
Table 1 presents the length of the time steps, the number of iterations, and the accuracy of numerical results, for

∆x = 0.1, α = 1.75, η = 1.5 and D = 1.

Table 2 demonstrates the comparison between the numerical and scale-invariant solutions for moving boundary
position sets at �nal computed time tf . The numerical and scale-invariant solutions for C(x, tf ) are compared in Table
3 . This results obtained for α = 1.5, η = 1.5,D = 1 and N = 10, 20 and 30. According to the results, one can see
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FIGURE 1 The comparison between the concentration of C(x, t) obtained from the numerical method and the
scale-invariant solutions at the �nal computed time tf for D = 1, N = 30, α = 1.75 and η = 1.5.

FIGURE 2 The comparison between the position of the moving boundary S(t) obtained from the numerical method
and the scale-invariant solutions for D = 1, N = 50, α = 1.75 and η = 1.5.

that by increasing the number of mesh points, the numerical results are getting closer to the scale-invariant results.
Furthermore, we can conclude from the results that near the moving boundary, the concentration C(x, t) is increased.

Figure 3 shows the concentration C(x, tf ) derived from the numerical method for α = 1.1, 1.5 and 1.9. Furthermore
Table 4 displays the values of C(x, tf ) at some space mesh points for α = 1.5, 1.6, 1.7 and 1.8. The numerical results
explore that increasing the values of α, decrease the values of C(x, tf ).

The e�ect of fractional order α on the moving boundary position are investigated in Figure 4 and Table 5 . We
see that increasing the values of α, increases the values of S(t).
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TABLE 1 The length of the time steps, the number of iterations and the absolute errors for D = 1, N = 10, α = 1.75

and η = 1.5.

xn ∆tn q
∣∣∣(∆tn)

(q+1) − (∆tn)
(q)
∣∣∣

0.1 0.041561 0 0.00031

0.2 0.058775 3 0.00069

0.3 0.074356 3 0.00006

0.4 0.088873 3 0.00038

0.5 0.102644 3 0.00054

0.6 0.115827 3 0.00062

0.7 0.128530 3 0.00067

0.8 0.140827 3 0.00069

0.9 0.152776 3 0.00070

1.0 0.164421 3 0.00070

TABLE 2 The comparison between the position of the moving boundary S(t) obtained from the numerical method
and the scale-invariant solutions at the �nal computed time tf for D = 1, α = 1.5, η = 1.5 and di�erent values of N .

S(tf )

N Numerical solution Scale-invariant solution Absolute error Convergence rate

10 1.0006 1.0641 6.3501× 10−2 �
20 1.0016 1.0349 3.3253× 10−2 0.9356
30 1.0025 1.0245 2.1943× 10−2 0.9690

FIGURE 3 The concentration C(x, t) obtained from the numerical method at the �nal computed time tf using
D = 1, N = 30, η = 1.5 for di�erent values of α.

Example 2. As another test problem, we investigate the numerical method for variable di�usion coe�cient as
D = D(t) = e−t

2

. The length of the time steps, the number of iterations and the absolute error for ∆x = 0.1, α = 1.75

and η = 1.5 are displayed in Table 6 .
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TABLE 3 The comparison between the concentration C(x, t) obtained from the numerical method and the scale-
invariant solutions at the �nal calculated time tf for D = 1, α = 1.5, η = 1.5, N = 10, 20 and 30.

C(x, tf )

N x Numerical solution Scale-invariant solution Absolute error Convergence rate

0.1 0.1196 0.1122 7.4275× 10−3

0.3 0.3500 0.3283 2.1703× 10−2

10 0.5 0.5622 0.5288 3.3399× 10−2 �
0.7 0.7531 0.7112 4.1860× 10−2

0.9 0.9227 0.8754 4.7346× 10−2

0.1 0.1194 0.1153 4.0539× 10−3

0.3 0.3492 0.3373 1.1883× 10−2

20 0.5 0.5610 0.5427 1.8249× 10−2 0.8812
0.7 0.7521 0.7293 2.2790× 10−2

0.9 0.9223 0.8967 2.5643× 10−2

0.1 0.1197 0.0031 3.1837× 10−3

0.3 0.3498 0.0091 9.1398× 10−3

30 0.5 0.5616 0.0136 1.3671× 10−2 0.8845
0.7 0.7525 0.0165 1.6546× 10−2

0.9 0.9225 0.0179 1.7946× 10−2

TABLE 4 The concentration C(x, tf ) obtained from the numerical method using D = 1, N = 10, η = 1.5 for
di�erent values of α.

The numerical solution C(x, tf )

x α = 1.5 α = 1.6 α = 1.7 α = 1.8

0.1 0.1196 0.1177 0.1158 0.1140

0.2 0.2367 0.2335 0.2302 0.2269

0.3 0.3500 0.3461 0.3419 0.3376

0.4 0.4587 0.4546 0.4500 0.4453

0.5 0.5622 0.5584 0.5541 0.5493

0.6 0.6603 0.6572 0.6535 0.6493

0.7 0.7531 0.7508 0.7479 0.7444

0.8 0.8405 0.8391 0.8371 0.8347

0.9 0.9227 0.9221 0.9212 0.9199

Table 7 demonstrates the concentration C(x, tf ) obtained from the numerical method for N = 10, 20 and 30 at
some spatial mesh points.

The position of the moving boundary S(t) obtained from the numerical method at the �nal computed time tf for
N = 10, 20 and 30 are given in Table 8 .

Figure 5 displays the concentration C(x, tf ) derived from the numerical method using N = 20, η = 1 and
α = 1.1, 1.5 and 1.9. Clearly, when the values of the fractional order α increased, the concentration of the drug is
decreased.
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FIGURE 4 The behavior of the position of the moving boundary S(t) obtained from the numerical method for
D = 1, N = 30, η = 1 against to the di�erent values of α.

TABLE 5 The position of the moving boundary S(t) obtained from the numerical method at the �nal computed
time tf for D = 1, η = 1.5 and di�erent values of α.

α 1.2 1.4 1.6 1.8

S(tf ) 1.0006 1.0011 1.0023 1.0035

TABLE 6 The length of the time steps, the number of iterations and absolute error for N = 10, α = 1.75 and
η = 1.5.

xn ∆tn q
∣∣∣(∆tn)

(q+1) − (∆tn)
(q)
∣∣∣

0.1 0.041736 0 0.00034

0.2 0.058739 2 0.01700

0.3 0.074954 2 0.01621

0.4 0.089827 2 0.01487

0.5 0.103716 2 0.01388

0.6 0.116957 2 0.01324

0.7 0.129691 2 0.01273

0.8 0.142005 2 0.01231

0.9 0.153962 2 0.01195

1.0 0.165609 2 0.01164

The values of concentration C(x, tf ) derived from the numerical method for N = 10, η = 1,∆x = 0.1 against to
the di�erent values of α are exhibited in Table 10 . From Table 10 , it can be concluded that by increasing the values
of α, the values of C(x, tf ) are decreased.

Figure 6 shows the behavior of the position of the moving boundary obtained numerically for α = 1.1, 1.3, 1.5, 1, 7

and 1.9. Also S(t) obtained from the numerical method at the �nal computed time tf for α = 1.1, 1.3, 1.5 and 1.7 are
shown in Table 10 . It can be seen that increasing the values of α increases the values of S(t).
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TABLE 7 The concentration C(x, tf ) derived from the numerical method using α = 1.75, η = 1.5 for N = 10, 20

and 30.

The numerical solution C(x, tf )

x N = 10 N = 20 N = 30

0.1 0.1162 0.1150 0.1146

0.2 0.2310 0.2286 0.2279

0.3 0.3432 0.3398 0.3388

0.4 0.4518 0.4477 0.4466

0.5 0.5560 0.5517 0.5505

0.6 0.6555 0.6514 0.6502

0.7 0.7498 0.7462 0.7451

0.8 0.8387 0.8360 0.8352

0.9 0.9220 0.9206 0.9201

TABLE 8 The position of the moving boundary S(t) obtained from the numerical method at tf for α = 1.75, η = 1.5

and N = 10, 20, 30.

N Numerical solution S(tf )

10 1.0006

20 1.0033

30 1.0052

FIGURE 5 The concentration C(x, tf ) obtained from the numerical method for N = 20, η = 1 and di�erent values
of α.

6 CONCLUSIONS

In this paper, a mathematical model for the anomalous di�usion process in planar matrix systems with a moving
boundary condition is investigated. For zero initial condition of moving boundary, instead of using the front �xing
approach, an iterative time variable implicit �nite di�erence approach is developed to solve the proposed problem.
The stability, consistency and convergence of the numerical method are proved. The numerical results and the scale-
invariant solutions are compared when the di�usion coe�cient is constant and a good agreement between numerical
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TABLE 9 The concentration C(x, tf ) obtained from the numerical method for N = 10, η = 1 and di�erent values
of α .

The numerical solution C(x, tf )

x α = 1.3 α = 1.5 α = 1.7 α = 1.9

0.0 0.0000 0.0000 0.0000 0.0000

0.1 0.1349 0.1300 0.1248 0.1196

0.2 0.2629 0.2558 0.2470 0.2376

0.3 0.3822 0.3752 0.3647 0.3526

0.4 0.4927 0.4870 0.4766 0.4634

0.5 0.5947 0.5910 0.5818 0.5690

0.6 0.6888 0.6871 0.6799 0.6687

0.7 0.7757 0.7756 0.7706 0.7618

0.8 0.8561 0.8569 0.8540 0.8481

0.9 0.9307 0.9315 0.9304 0.9275

FIGURE 6 The behavior of the position of the moving boundary S(t) obtained from the numerical method for
N = 20, η = 1 and di�erent values of α.

TABLE 10 The position of the moving boundary S(t) obtained from the numerical method at the �nal computed
time tf for η = 1 and di�erent values of α.

α 1.1 1.3 1.5 1.7

S(tf ) 0.9998 1.0011 1.0034 1.0061

and scale-invariant solutions are derived. Another test problem is numerically investigated for a variable di�usion
coe�cient.
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