REFERENCES

Austin, M. P., Smith, T. M., Van Niel, K. P., & Wellington, A. B. (2009). Physiological responses and statistical models of the environmental niche: a comparative study of two co‐occurring Eucalyptus species. Journal of Ecology , 97 (3), 496–507.
Barve, N., Barve, V., Jiménez-Valverde, A., Lira-Noriega, A., Maher, S. P., Peterson, A. T., Soberón, J., & Villalobos, F. (2011). The crucial role of the accessible area in ecological niche modeling and species distribution modeling. Ecological Modelling , 222 (11), 1810–1819. https://doi.org/10.1016/j.ecolmodel.2011.02.011
Bentzen, R. L., & Powell, A. N. (2015). Dispersal, movements and site fidelity of post-fledging King Eiders Somateria spectabilis and their attendant females. Ibis , 157 (1), 133–146. https://doi.org/10.1111/ibi.12217
Beukema, W., Martel, A., Nguyen, T. T., Goka, K., Schmeller, D. S., Yuan, Z., Laking, A. E., Nguyen, T. Q., Lin, C.-F., Shelton, J., Loyau, A., & Pasmans, F. (2018). Environmental context and differences between native and invasive observed niches of Batrachochytrium salamandrivorans affect invasion risk assessments in the Western Palaearctic. Diversity and Distributions , 24 (12), 1788–1801. https://doi.org/10.1111/ddi.12795
Blackburn, T. M., Cassey, P., & Lockwood, J. L. (2009). The role of species traits in the establishment success of exotic birds.Global Change Biology , 15 (12), 2852–2860. https://doi.org/10.1111/j.1365-2486.2008.01841.x
Blanford, W. T. (1898). The Fauna of British India: Including Ceylon and Burma… (Vol. 4). Taylor & Francis.
Bocsi, T., Allen, J. M., Bellemare, J., Kartesz, J., Nishino, M., & Bradley, B. A. (2016). Plants’ native distributions do not reflect climatic tolerance. Diversity and Distributions , 22 (6), 615–624. https://doi.org/10.1111/ddi.12432
Breiner, F. T., Guisan, A., Bergamini, A., & Nobis, M. P. (2015). Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution , 6 (10), 1210–1218. https://doi.org/10.1111/2041-210X.12403
Broennimann, O., Treier, U. A., Müller-Schärer, H., Thuiller, W., Peterson, A. T., & Guisan, A. (2007). Evidence of climatic niche shift during biological invasion. Ecology Letters , 10 (8), 701–709. https://doi.org/10.1111/j.1461-0248.2007.01060.x
Broennimann, Olivier, Fitzpatrick, M. C., Pearman, P. B., Petitpierre, B., Pellissier, L., Yoccoz, N. G., Thuiller, W., Fortin, M.-J., Randin, C., Zimmermann, N. E., Graham, C. H., & Guisan, A. (2012). Measuring ecological niche overlap from occurrence and spatial environmental data: Measuring niche overlap. Global Ecology and Biogeography ,21 (4), 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x
Broennimann, Olivier, & Guisan, A. (2008). Predicting current and future biological invasions: both native and invaded ranges matter.Biology Letters , 4 (5), 585–589. https://doi.org/10.1098/rsbl.2008.0254
Bush, A., Catullo, R. A., Mokany, K., Thornhill, A. H., Miller, J. T., & Ferrier, S. (2018). Truncation of thermal tolerance niches among Australian plants. Global Ecology and Biogeography , 27 (1), 22–31. https://doi.org/10.1111/geb.12637
Bystriakova, N., Peregrym, M., Erkens, R. H., Bezsmertna, O., & Schneider, H. (2012). Sampling bias in geographic and environmental space and its effect on the predictive power of species distribution models. Systematics and Biodiversity , 10 (3), 305–315. https://doi.org/10.1080/14772000.2012.705357
Clobert, J. (Ed.). (2012). Dispersal ecology and evolution (1st ed). Oxford University Press.
Creley, C. M., Shilling, F. M., & Muchlinski, A. E. (2019). An Ecological Niche Model to Predict Range Expansion of the Eastern Gray Squirrel in California. Bulletin, Southern California Academy of Sciences , 118 (1), 58–70. https://doi.org/10.3160/0038-3872-118.1.58
Davis, M. A. (2009). Invasion biology . Oxford University Press on Demand.
Davis, M. A., Grime, J. P., & Thompson, K. (2000). Fluctuating resources in plant communities: a general theory of invasibility.Journal of Ecology , 88 (3), 528–534. https://doi.org/10/b2mdrd
Di Cola, V., Broennimann, O., Petitpierre, B., Breiner, F. T., D’Amen, M., Randin, C., Engler, R., Pottier, J., Pio, D., & Dubuis, A. (2017). ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography , 40 (6), 774–787. https://doi.org/10.1111/ecog.02671
Dias, P. C. (1996). Sources and sinks in population biology.Trends in Ecology & Evolution , 11 (8), 326–330. https://doi.org/10.1016/0169-5347(96)10037-9
Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range‐shifting species. Methods in Ecology and Evolution ,1 (4), 330–342. https://doi.org/10.1111/j.2041-210X.2010.00036.x
Elliott, A., Garcia, E. F. J., Boesman, P., & Kirwan, G. M. (2020, April 12). Asian Openbill (Anastomus oscitans) . Handbook of the Birds of the World Alive. http://www.hbw.com/species/asian-openbill-anastomus-oscitans
Escobar, L. E., Qiao, H., Phelps, N. B., Wagner, C. K., & Larkin, D. J. (2016). Realized niche shift associated with the Eurasian charophyte Nitellopsis obtusa becoming invasive in North America. Scientific Reports , 6 (1), 1–15. https://doi.org/10.1038/srep29037
Feng, X., & Papeş, M. (2017). Physiological limits in an ecological niche modeling framework: A case study of water temperature and salinity constraints of freshwater bivalves invasive in USA. Ecological Modelling , 346 , 48–57. https://doi.org/10.1016/j.ecolmodel.2016.11.008
Gallagher, R. V., Beaumont, L. J., Hughes, L., & Leishman, M. R. (2010). Evidence for climatic niche and biome shifts between native and novel ranges in plant species introduced to Australia: Climate niches and exotic species. Journal of Ecology , 98 (4), 790–799. https://doi.org/10.1111/j.1365-2745.2010.01677.x
Gaston, K. J., & Chown, S. L. (1999). Why Rapoport’s rule does not generalise. Oikos , 309–312. https://doi.org/10.2307/3546727
Guisan, A., Petitpierre, B., Broennimann, O., Daehler, C., & Kueffer, C. (2014). Unifying niche shift studies: insights from biological invasions. Trends in Ecology & Evolution , 29 (5), 260–269. https://doi.org/10.1016/j.tree.2014.02.009
Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling , 135 (2–3), 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9
Han, L., Han, B., Liang, D., & Gao, G. (2016). Rang expansion of Asian Open-billed stork in southwest China. Sichuan Journal of Zoology ,35 (1), 149. https://doi.org/10.11984/j.issn.1000-7083.20150130
Ingenloff, K., Hensz, C. M., Anamza, T., Barve, V., Campbell, L. P., Cooper, J. C., Komp, E., Jimenez, L., Olson, K. V., Osorio-Olvera, L., Owens, H. L., Peterson, A. T., Samy, A. M., Simões, M., & Soberón, J. (2017). Predictable invasion dynamics in North American populations of the Eurasian collared dove Streptopelia decaocto .Proceedings of the Royal Society B: Biological Sciences ,284 (1862), 20171157. https://doi.org/10.1098/rspb.2017.1157
Jackson, S. T., & Overpeck, J. T. (2000). Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology , 26 (S4), 194–220. https://doi.org/10.1017/S0094837300026932
Janzen, D. H. (1967). Why mountain passes are higher in the tropics.The American Naturalist , 101 (919), 233–249. https://doi.org/10.1086/282487
Jiang, A. (2010). A new distribution site of the Asian Open-billed Stork (Anastomus oscitans ) in southwestern China. Chinese Birds ,1 (4), 259–260. https://doi.org/10.5122/cbirds.2010.0020
Jinnath, A., Mansur, A., Saikia, M. K., & Saikia, P. K. (2016). Food and feeding behaviour of Openbill stork (Anastomus oscitans ) in Assam, India. Journal of Global Biosciences , 5 (6), 4188–4196.
Johnson, M. L., & Gaines, M. S. (1990). Evolution of dispersal: theoretical models and empirical tests using birds and mammals.Annual Review of Ecology and Systematics , 21 (1), 449–480. https://doi.org/10.1146/annurev.es.21.110190.002313
Joppa, L. N., McInerny, G., Harper, R., Salido, L., Takeda, K., O’Hara, K., Gavaghan, D., & Emmott, S. (2013). Troubling trends in scientific software use. Science , 340 (6134), 814–815. https://doi.org/10.1126/science.1231535
Kambach, S., Lenoir, J., Decocq, G., Welk, E., Seidler, G., Dullinger, S., Gégout, J.-C., Guisan, A., Pauli, H., Svenning, J.-C., Vittoz, P., Wohlgemuth, T., Zimmermann, N. E., & Bruelheide, H. (2019). Of niches and distributions: range size increases with niche breadth both globally and regionally but regional estimates poorly relate to global estimates.Ecography , 42 (3), 467–477. https://doi.org/10.1111/ecog.03495
Kass, J. M., Vilela, B., Aiello‐Lammens, M. E., Muscarella, R., Merow, C., & Anderson, R. P. (2018). Wallace: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods in Ecology and Evolution ,9 (4), 1151–1156. https://doi.org/10.1111/2041-210X.12945
Keane, R. M., & Crawley, M. J. (2002). Exotic plant invasions and the enemy release hypothesis. Trends in Ecology & Evolution ,17 (4), 164–170. https://doi.org/10.1016/S0169-5347(02)02499-0
Kokko, H. (2006). From Individual Dispersal to Species Ranges: Perspectives for a Changing World. Science , 313 (5788), 789–791. https://doi.org/10.1126/science.1128566
Lei, Y., Wei, G., Liu, Q., Liu, W., Li, Z., Wang, R., & Tian, K. (2017). Population Dynamics of Asian Openbill (Anastomus oscitans ) in Caohai Nature Reserve, Guizhou, China. Chinese Journal of Zoology , 52 (2), 203–209. https://doi.org/10.13859/j.cjz.201702003
Lim, K. C., Lim, S. Y., & Ooi, B. Y. (2008). Asian openbillAnastomus oscitans in Chuping, Perlis. Malaysian Nature Society, Malaysia Bird Report , 26–27.
Liu, Q., Buzzard, P., & Luo, X. (2015). Rapid range expansion of Asian Openbill Anastomus oscitans in China. Forktail , 31 , 118–120.
Lockwood, J. L., Cassey, P., & Blackburn, T. (2005). The role of propagule pressure in explaining species invasions. Trends in Ecology & Evolution , 20 (5), 223–228. https://doi.org/10.1016/j.tree.2005.02.004
Lovette, I. J., & Fitzpatrick, J. W. (2016). Handbook of bird biology . John Wiley & Sons.
Low, B. W., Lim, K. S., Yap, F., Lee, T. K., Lim, K. C., & Yong, D. L. (2013). First record of the Asian openbill, Anastomus oscitans(Aves: Ciconiidae) in Singapore, with notes on foraging and dispersive movements. Nature in Singapore , 6 , 25–29.
Lv, S., Zhang, Y., Liu, H.-X., Hu, L., Yang, K., Steinmann, P., Chen, Z., Wang, L.-Y., Utzinger, J., & Zhou, X.-N. (2009). Invasive snails and an emerging infectious disease: results from the first national survey on Angiostrongylus cantonensis in China. PLoS Neglected Tropical Diseases , 3 (2). https://doi.org/10.1371/journal.pntd.0000368
Mandle, L., Warren, D. L., Hoffmann, M. H., Peterson, A. T., Schmitt, J., & von Wettberg, E. J. (2010). Conclusions about niche expansion in introduced Impatiens walleriana populations depend on method of analysis. PLoS One , 5 (12). https://doi.org/10.1371/journal.pone.0015297
Marchetti, M. P., Moyle, P. B., & Levine, R. (2004). Invasive species profiling? Exploring the characteristics of non‐native fishes across invasion stages in California. Freshwater Biology , 49 (5), 646–661. https://doi.org/10.1111/j.1365-2427.2004.01202.x
Marmion, M., Parviainen, M., Luoto, M., Heikkinen, R. K., & Thuiller, W. (2009). Evaluation of consensus methods in predictive species distribution modelling. Diversity and Distributions ,15 (1), 59–69. https://doi.org/10.1111/j.1472-4642.2008.00491.x
McCauley, S. J., Davis, C. J., Werner, E. E., & Robeson, M. S. (2014). Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies. Journal of Animal Ecology , 83 (4), 858–865. https://doi.org/10.1111/1365-2656.12181
McClure, H. E. (1998). Migration and survival of the birds of Asia . White Lotus Press.
Mesgaran, M. B., Cousens, R. D., & Webber, B. L. (2014). Here be dragons: a tool for quantifying novelty due to covariate range and correlation change when projecting species distribution models.Diversity and Distributions , 20 (10), 1147–1159. https://doi.org/10.1111/ddi.12209
Muscarella, R., Galante, P. J., Soley‐Guardia, M., Boria, R. A., Kass, J. M., Uriarte, M., & Anderson, R. P. (2014). ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution , 5 (11), 1198–1205. https://doi.org/10.1111/2041-210X.12261
Ørsted, I. V., & Ørsted, M. (2019). Species distribution models of the Spotted Wing Drosophila ( Drosophila suzukii , Diptera: Drosophilidae) in its native and invasive range reveal an ecological niche shift. Journal of Applied Ecology , 56 (2), 423–435. https://doi.org/10.1111/1365-2664.13285
Osorio-Olvera, L., Barve, V., Barve, N., & Soberón, J. (2016). Nichetoolbox: from getting biodiversity data to evaluating species distribution models in a friendly GUI environment, R package version 0.2. 0.0. Github .
Owens, H. L., Campbell, L. P., Dornak, L. L., Saupe, E. E., Barve, N., Soberón, J., Ingenloff, K., Lira-Noriega, A., Hensz, C. M., & Myers, C. E. (2013). Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecological Modelling , 263 , 10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011
Paradis, E., Baillie, S. R., Sutherland, W. J., & Gregory, R. D. (1998). Patterns of natal and breeding dispersal in birds. Journal of Animal Ecology , 67 (4), 518–536. https://doi.org/10.1046/j.1365-2656.1998.00215.x
Parravicini, V., Azzurro, E., Kulbicki, M., & Belmaker, J. (2015). Niche shift can impair the ability to predict invasion risk in the marine realm: an illustration using Mediterranean fish invaders.Ecology Letters , 18 (3), 246–253. https://doi.org/10.1111/ele.12401
Peterson, A. T. (2006). Uses and requirements of ecological niche models and related distributional models. Biodiversity Informatics ,3 , 59–72. https://doi.org/10.17161/bi.v3i0.29
Peterson, A. T., Papeş, M., & Soberón, J. (2008). Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecological Modelling , 213 (1), 63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008
Peterson, A. T., & Raghavan, R. K. (2017). The geographic distribution of Ixodes scapularis (Acari: Ixodidae) revisited: The importance of assumptions about error balance. Journal of Medical Entomology ,54 (4), 1080–1084. https://doi.org/10.1093/jme/tjx095
Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martínez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011).Ecological niches and geographic distributions (MPB-49) (Vol. 49). Princeton University Press.
Petitpierre, B., Kueffer, C., Broennimann, O., Randin, C., Daehler, C., & Guisan, A. (2012). Climatic Niche Shifts Are Rare Among Terrestrial Plant Invaders. Science , 335 (6074), 1344–1348. https://doi.org/10.1126/science.1215933
Pulliam, H. R. (1988). Sources, sinks, and population regulation.The American Naturalist , 132 (5), 652–661. https://doi.org/10.1086/284880
Qiao, H., Escobar, L. E., & Peterson, A. T. (2017). Accessible areas in ecological niche comparisons of invasive species: Recognized but still overlooked. Scientific Reports , 7 (1), 1213. https://doi.org/10.1038/s41598-017-01313-2
Qiao, H., Peterson, A. T., Campbell, L. P., Soberón, J., Ji, L., & Escobar, L. E. (2016). NicheA: creating virtual species and ecological niches in multivariate environmental scenarios. Ecography ,39 (8), 805–813. https://doi.org/10.1111/ecog.01961
Qiao, H., Soberón, J., & Peterson, A. T. (2015). No silver bullets in correlative ecological niche modelling: insights from testing among many potential algorithms for niche estimation. Methods in Ecology and Evolution , 6 (10), 1126–1136. https://doi.org/10.1111/2041-210X.12397
R Core Team. (2013). R: A language and environment for statistical computing .
Ralph, C. J., & Wolfe, J. D. (2018). Factors affecting the distribution and abundance of autumn vagrant New World warblers in northwestern California and southern Oregon. PeerJ , 6 , e5881. https://doi.org/10.7717/peerj.5881
Rosenblad, K. C., Perret, D. L., & Sax, D. F. (2019). Niche syndromes reveal climate-driven extinction threat to island endemic conifers.Nature Climate Change , 9 (8), 627–631. https://doi.org/10.1038/s41558-019-0530-9
Roy, P. B., & Sah, R. (2013). Causes of Temporal Variation in the Arrival of Asian Open Bill Stork Population: A Case Study of Kulik Wildlife Sanctuary, West Bengal, India. International Research Journal of Environmental Science , 2 (4), 39–43.
Sawangproh, W., Round, P. D., & Poonswad, P. (2012). Asian openbill stork Anastomus oscitans as a predator of the invasive alien gastropod Pomacea canaliculata in Thailand .
Sax, D. F., Early, R., & Bellemare, J. (2013). Niche syndromes, species extinction risks, and management under climate change. Trends in Ecology & Evolution , 28 (9), 517–523. https://doi.org/10.1016/j.tree.2013.05.010
Sharma, A. (2007). Asian Openbill-Storks Anastomus oscitans of Raiganj Bird Sanctuary, Uttar Dinajpur district, West Bengal.Indian Birds , 3 (3), 94–96.
Stiels, D., GAIßER, B., Schidelko, K., Engler, J. O., & Ro, D. (2014).Niche shift in four nonnative estrildid finches and implications for species distribution models . 16.
Strubbe, D., Jackson, H., & Groombridge, J. (2015). Invasion success of a global avian invader is explained by within‐taxon niche structure and association with humans in the native range. Diversity and Distributions , 11. https://doi.org/10.1111/ddi.12325
Taylor, C. M., & Hastings, A. (2005). Allee effects in biological invasions. Ecology Letters , 8 (8), 895–908. https://doi.org/10.1111/j.1461-0248.2005.00787.x
Thuiller, W., Lafourcade, B., Engler, R., & Araújo, M. B. (2009). BIOMOD–a platform for ensemble forecasting of species distributions.Ecography , 32 (3), 369–373. https://doi.org/10.1111/j.1600-0587.2008.05742.x
Tingley, R., Vallinoto, M., Sequeira, F., & Kearney, M. R. (2014). Realized niche shift during a global biological invasion.Proceedings of the National Academy of Sciences , 111 (28), 10233–10238. https://doi.org/10.1073/pnas.1405766111
Travis, J. M. J., & Dytham, C. (2002). Dispersal evolution during invasions. Evolutionary Ecology Research , 4 , 1119–1129.
Vilà, M., Basnou, C., Pyšek, P., Josefsson, M., Genovesi, P., Gollasch, S., Nentwig, W., Olenin, S., Roques, A., Roy, D., Hulme, P. E., & partners, D. (2010). How well do we understand the impacts of alien species on ecosystem services? A pan-European, cross-taxa assessment.Frontiers in Ecology and the Environment , 8 (3), 135–144. https://doi.org/10.1890/080083
Villaverde, T., González-Moreno, P., Rodríguez-Sánchez, F., & Escudero, M. (2017). Niche shifts after long-distance dispersal events in bipolar sedges (Carex , Cyperaceae). American Journal of Botany ,104 (11), 1765–1774. https://doi.org/10.3732/ajb.1700171
Wang, Y. (2007). Asian openbill found in Yunnan. Newsletter of China Ornithological Society , 16 (1), 21.
Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution: International Journal of Organic Evolution ,62 (11), 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x
Willcox, D., Visal, S., & Mahood, S. P. (2016). The conservation status of otters in Prek Toal core area, Tonle Sap Lake, Cambodia. IUCN Otter Specialist Group Bulletin , 33 (1), 18–31.
Yang, J., Yang, X., Lei, Y., Liu, H., & Liu, Q. (2019). Thailand Banded Asian Openbill (Anastomus oscitans ) Recovered in Honghe, Yunnan.Chinese Journal of Zoology , 54 (2), 16. https://doi.org/10.13859/j.cjz.201902021
Zainul-Abidin, M. K., Mohd-Taib, F. R., & Md-Nor, S. (2017). Distribution and habitat selection of the Asian Openbill (Anastomus oscitans ) in Peninsular Malaysia. Malayan Nature Journal , 69 (3), 169–181.
Zheng, G. (2017). Checklist on the classification and distribution of the birds of China (third). Science Press.
Zhu, G., Gariepy, T. D., Haye, T., & Bu, W. (2017). Patterns of niche filling and expansion across the invaded ranges of Halyomorpha halys in North America and Europe. Journal of Pest Science ,90 (4), 1045–1057. https://doi.org/10.1007/s10340-016-0786-z
Zhu, G.-P., & Peterson, A. T. (2017). Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Biological Invasions ,19 (9), 2519–2532. https://doi.org/10.1007/s10530-017-1460-y