REFERENCES
Abdel-Ghany, S. E., Burkhead, J. L., Gogolin, K. A., Andrés-Colás, N.,
Bodecker, J. R., Puig, S., . . . Pilon, M. (2005a). AtCCS is a
functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS
Letters, 11, 2307-2312.
Abdel-Ghany, S. E., Muller-Moule, P., Niyogi, K. K., Pilon, M., &
Shikanai, T. (2005b). Two P-type ATPases are required for copper
delivery in Arabidopsis thaliana chloroplasts. Plant Cell, 17,
1233-1251.
Alejandro, S., Cailliatte, R., Alcon, C., Dirick, L., Domergue, F.,
Correia, D., . . . Curie, C. (2017). Intracellular distribution of
manganese by the trans-Golgi network transporter NRAMP2 is critical for
photosynthesis and cellular redox homeostasis. Plant Cell, 29,
3068-3084.
Allen, M. D., Kropat, J., Tottey, S., Del Campo, J. A., & Merchant, S.
S. (2007). Manganese deficiency in Chlamydomonas results in loss of
photosystem II and MnSOD function, sensitivity to peroxides, and
secondary phosphorus and iron deficiency. Plant Physiology, 143,
263-277.
Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide
dismutases (SODs) in controlling oxidative stress in plants. Journal of
Experimental Botany, 53, 1331-1341.
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism,
oxidative stress, and signal transduction. Annual Review of Plant
Biology, 55, 373-399.
Balzan, R., Bannister, W. H., Hunter, G., & Bannister, J. V. (1995).
Escherichia coli iron superoxide dismutase targeted to the mitochondria
of yeast cells protects the cells against oxidative stress. Proceedings
of the National Academy of Sciences of the United States of America, 92,
4219-4223.
Bashir, K., Rasheed, S., Kobayashi, T., Seki, M., & Nishizawa, N. K.
(2016). Regulating subcellular metal homeostasis: The key to crop
improvement. Frontiers in Plant Science, 1192.
Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved
assays and an assay applicable to acrylamide gels. Analytical
Biochemistry, 44, 276-287.
Bowler, C., Camp, W. V., Montagu, M. V., & Inzé, D. (1994). Superoxide
dismutase in plants. Critical Reviews in Plant Sciences, 13, 199-218.
Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter,
P., & Boeke, J. D. (1998). Designer deletion strains derived from
Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for
PCR-mediated gene disruption and other applications. Yeast, 14, 115-132.
Carroll, M. C., Girouard, J. B., Ulloa, J. L., Subramaniam, J. R., Wong,
P. C., Valentine, J. S., & Culotta, V. C. (2004). Mechanisms for
activating Cu- and Zn-containing superoxide dismutase in the absence of
the CCS Cu chaperone Proceedings of the National Academy of Sciences of
the United States of America, 101, 5964-5969.
Casareno, L. B., Waggoner, D., & Gitlin, J. D. (1998). The copper
chaperone CCS directly interacts with copper/zinc superoxide dismutase.
Journal of Biological Chemistry, 273, 23625-23628.
Catoni, E., Schwab, R., Hilpert, M., Desimone, M., Schwacke, R., Flügge,
U. I., . . . Frommer, W. B. (2003). Identification of an Arabidopsis
mitochondrial succinate-fumarate translocator. FEBS Letters, 534, 87-92.
Chen, J. R., Weng, C. N., Ho, T. Y., Cheng, I. C., & Lai, S. S. (2000).
Identification of the copper-zinc superoxide dismutase activity in
Mycoplasma hyopneumoniae. Veterinary Microbiology, 73, 301-310.
Chen, X. Z., Peng, J. B., Cohen, A., Nelson, H., Nelson, N., & Hediger,
M. A. (1999). Yeast SMF1 mediates H(+)-coupled iron uptake with
concomitant uncoupled cation currents. Journal of Biological Chemistry,
274, 35089-35094.
Choudhury, S. B., Lee, J. W., Davidson, G., Yim, Y. I., Bose, K.,
Sharma, M. L., . . . Maroney, M. J. (1999). Examination of the nickel
site structure and reaction mechanism in Streptomyces seoulensis
superoxide dismutase. Biochemistry, 38, 3744-3752.
Chu, C. C., Lee, W. C., Guo, W. Y., Pan, S. M., Chen, L. J., Li, H. M.,
& Jinn, T. L. (2005). A copper chaperone for superoxide dismutase that
confers three types of copper/zinc superoxide dismutase activity in
Arabidopsis. Plant Physiology, 139, 425-436.
Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method
for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant
Journal, 16, 735-743.
Culotta, V. C., Klomp, L. W., Strain, J., Casareno, R. L., Krems, B., &
Gitlin, J. D. (1997). The copper chaperone for superoxide dismutase.
Journal of Biological Chemistry, 272, 23469-23472.
Culotta, V. C., Yang, M., & O’Halloran, T. V. (2006). Activation of
superoxide dismutases: putting the metal to the pedal. Biochimica et
Biophysica Acta, 1763, 747-758.
Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W.
R. (2005). Genome-wide identification and testing of superior reference
genes for transcript normalization in Arabidopsis. Plant Physiology,
139, 5-17.
Drążkiewicz, M., Skórzyńska-Polit, E., & Krupa, Z. (2007). The redox
state and activity of superoxide dismutase classes in Arabidopsis
thaliana under cadmium or copper stress. Chemosphere, 67, 188-193.
Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid
method for the preparation of plant genomic DNA for PCR analysis.
Nucleic Acids Research, 19, 1349.
Eisenhuta, M., Hoecker, N., Schmidt, S. B., Basgaran, R. M., Flachbart,
S., Jahns, P., . . . Schneider, A. (2018). The plastid envelope
CHLOROPLAST MANGANESE TRANSPORTER1 is essential for manganese
homeostasis in Arabidopsis. Molecular Plant, 11, 955-969.
Fink, R. C., & Scandalios, J. G. (2002). Molecular evolution and
structure-function relationships of the superoxide dismutase gene
families in angiosperms and their relationship to other eukaryotic and
prokaryotic superoxide dismutases. Archives of Biochemistry and
Biophysics, 399, 19-36.
Fridovich, I. (1975). Superoxide dismutases. Annual Review of
Biochemistry, 44, 147-159.
Ganini, D., Petrovich, R. M., Edwards, L. L., & Mason, R. P. (2015).
Iron incorporation into MnSOD A (bacterial Mn-dependent superoxide
dismutase) leads to the formation of a peroxidase/catalase implicated in
oxidative damage to bacteria. Biochimica et Biophysica Acta, 1850,
1795-1805.
Gietz, R. D., & Schiestl, R. H. (1991). Applications of high efficiency
lithium acetate transformation of intact yeast cells using
single-stranded nucleic acids as carrier. Yeast, 7, 253-263.
Goussias, C., Boussac, A., & Rutherford, A. W. (2002). Photosystem II
and photosynthetic oxidation of water: an overview. Philosophical
Transactions of the Royal Society B, 357, 1369-1381.
Haferkamp, I., & Schmitz-Esser, S. (2012). The plant mitochondrial
carrier family: functional and evolutionary aspects. Frontiers in Plant
Science, 3, 2.
Halliwell, B. (1994). Free radicals, antioxidants, and human disease:
curiosity, cause, or consequence? Lancet, 344, 721-724.
Hoyos, M. E., Palmieri, L., Wertin, T., Arrigoni, R., Polacco, J. C., &
Palmieri, F. (2003). Identification of a mitochondrial transporter for
basic amino acids in Arabidopsis thaliana by functional reconstitution
into liposomes and complementation in yeast. Plant Journal, 33,
1027-1035.
Huang, C. H., Kuo, W. Y., & Jinn, T. L. (2012a). Models for the
mechanism for activating copper-zinc superoxide dismutase in the absence
of the CCS Cu chaperone in Arabidopsis. Plant Signaling & Behavior, 7,
429-431.
Huang, C. H., Kuo, W. Y., Weiss, C., & Jinn, T. L. (2012b). Copper
chaperone-dependent and -independent activation of three copper-zinc
superoxide dismutase homologs localized in different cellular
compartments in Arabidopsis. Plant Physiology, 158, 737-746.
Huang, Y. C., Niu, C. Y., Yang, C. R., & Jinn, T. L. (2016). The heat
stress factor HSFA6b connects ABA signaling and ABA-mediated heat
responses. Plant Physiology, 172, 1182-1199.
Kanematsu S, Asada K. 1979. Ferric and manganese superoxide dismutases
in Euglena gracilis. Archives of Biochemistry and Biophysics 195,
535-545.
Kanematsu S, Okayasu M, Kurogi D. 2012. Occurrence of two types of
Mn-superoxide dismutase in the green alga Spirogyra: cDNA cloning and
characterization of genomic genes and recombinant proteins. Bulletin of
Minamikyushu University 42A, 1-13.
Kanematsu, S., & Asada, K. (1979). Ferric and manganese superoxide
dismutases in Euglena gracilis. Archives of Biochemistry and Biophysics,
195, 535-545.
Kanematsu, S., Okayasu, M., & Kurogi, D. (2012). Occurrence of two
types of Mn-superoxide dismutase in the green alga Spirogyra: cDNA
cloning and characterization of genomic genes and recombinant proteins.
Bulletin of Minamikyushu University, 42A, 1-13.
Kliebenstein, D. J., Monde, R. A., & Last, R. L. (1998). Superoxide
dismutase in Arabidopsis: an eclectic enzyme family with disparate
regulation and protein localization. Plant Physiology, 118, 637-650.
Krieger-Liszkay, A., & Thomine, S. (2018). Importing manganese into the
chloroplast: many membranes to cross. Molecular Plant, 11, 1109-1111.
Kunji, E. R. S. (2004). The role and structure of mitochondrial
carriers. FEBS Letters, 564, 239-244.
Kunji, E.R. S., & Crichton, P. G. (2010). Mitochondrial carriers
function as monomers. Biochimica et Biophysica Acta, 1797, 817-831.
Kuo WY, Huang CH, Jinn TL. 2013a. Chaperonin 20 might be an iron
chaperone for superoxide dismutase in activating iron superoxide
dismutase (FeSOD). Plant Signaling & Behavior, 8, e23074.
Kuo WY, Huang CH, Liu AC, Cheng CP, Li SH, Chang WC, Weiss C, Azem A,
Jinn TL. 2013b. Chaperonin 20 mediates iron superoxide dismutase (FeSOD)
activity independent of its co-chaperonin role in Arabidopsis
chloroplasts. New Phytologist, 197, 99-110.
Kuo WY, Huang CH, Shih C, Jinn TL. 2013c. Cellular extract preparation
for superoxide dismutase (SOD) activity assay. Bio-protocol 3, e811.
Kuo, W. Y., Huang, C. H., & Jinn, T. L. (2013a). Chaperonin 20 might be
an iron chaperone for superoxide dismutase in activating iron superoxide
dismutase (FeSOD). Plant Signaling & Behavior, 8, e23074.
Kuo, W. Y., Huang, C. H., Liu, A. C., Cheng, C. P., Li, S. H., Chang, W.
C., . . . Jinn, T. L. (2013b). Chaperonin 20 mediates iron superoxide
dismutase (FeSOD) activity independent of its co-chaperonin role in
Arabidopsis chloroplasts. New Phytologist, 197, 99-110.
Kuo, W. Y., Huang, C. H., Shih, C., & Jinn, T. L. (2013c). Cellular
extract preparation for superoxide dismutase (SOD) activity assay.
Bio-protocol, 3, e811.
Lahner, B., Gong, J., Mahmoudian, M., Smith, E. L., Abid, K. B., Rogers,
E. E., . . . Salt, D. E. (2003). Genomic scale profiling of nutrient and
trace elements in Arabidopsis thaliana. Nature Biotechnology, 21,
1215-1221.
Lanquar, V., Ramos, M. S., Lelievre, F., Barbier-Brygoo, H.,
Krieger-Liszkay, A., Kramer, U., & Thomine, S. (2010). Export of
vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal
photosynthesis and growth under manganese deficiency. Plant Physiology,
152, 1986-1999.
Lin, Y. F., Liang, H. M., Yang, S. Y., Boch, A., Clemens, S., Chen, C.
C., . . . Yeh, K. C. (2009). Arabidopsis IRT3 is a zinc-regulated and
plasma membrane localized zinc/iron transporter. New Phytologist, 182,
392-404.
Lu, Q., Tang, X., Tian, G., Wang, F., Liu, K., Nguyen, V., . . . Cui, Y.
(2010). Arabidopsis homolog of the yeast TREX-2 mRNA export complex:
components and anchoring nucleoporin. Plant Journal, 61, 259-270.
Luk, E. E., & Culotta, V. C. (2001). Manganese superoxide dismutase in
Saccharomyces cerevisiae acquires its metal co-factor through a pathway
involving the Nramp metal transporter, Smf2p. Journal of Biological
Chemistry, 276, 47556-47562.
Luk, E., Carroll, M., Baker, M., & Culotta, V. C. (2003). Manganese
activation of superoxide dismutase 2 in Saccharomyces cerevisiae
requires MTM1, a membrane of the mitochondrial carrier family.
Proceedings of the National Academy of Sciences of the United States of
America, 100, 10353-10357.
Luk, E., Yang, M., Jensen, L. T., Bourbonnais, Y., & Culotta, V. C.
(2005). Manganese activation of superoxide dismutase 2 in the
mitochondria of Saccharomyces serevisiae. Journal of Biological
Chemistry, 280, 22715-22720.
Maia, I. G., Benedetti, C. E., Leite, A., Turcinelli, S. R., Vercesi, A.
E., & Arruda, P. (1998). AtPUMP: an Arabidopsis gene encoding a plant
uncoupling mitochondrial protein. FEBS Letters, 429, 403-406.
Marschner, H. (1995). Mineral nutrition of higher plants: 2nd Edition,
Academic Press, London.
Meier, B., Barra, D., Bossa, F., Calabrese, L., & Rotilio, G. (1982).
Synthesis of either Fe- or Mn-superoxide dismutase with an apparently
identical protein moiety by an anaerobic bacterium dependent on the
metal supplied. Journal of Biological Chemistry, 257, 13977-13980.
Millar, A. H., & Heazlewood, J. L. (2003). Genomic and proteomic
analysis of mitochondrial carrier proteins in Arabidopsis. Plant
Physiology, 131, 443-453.
Miller, A. F. (2012). Superoxide dismutases: Ancient enzymes and new
insights. FEBS Letters, 586, 585-595.
Morgan, M. J., Lehmann, M., Schwarzlander, M., Baxter, C. J.,
Sienkiewicz-Porzucek, A., Williams, T. C., . . . Finkemeier, I. (2008).
Decrease in manganese superoxide dismutase leads to reduced root growth
and affects tricarboxylic acid cycle flux and mitochondrial redox
homeostasis. Plant Physiology, 147, 101-114.
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth
and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15,
473-497.
Naranuntarat, A., Jensen, L. T., Panicni, S., Penner-Hahn, J. E., &
Culotta, V. C. (2009). The interaction of mitochondrial iron with
manganese superoxide dismutase. Journal of Biological Chemistry, 284,
22633-22640.
Nickelsen, J., & Rengstl, B. (2013). Photosystem II assembly: From
cyanobacteria to plants. Annual Review of Plant Biology, 64, 609-635.
Okada, S., Kanematsu, S., & Asada, K. (1979). Intracellular
distribution of manganese and ferric superoxide dismutases in blue-green
algae. FEBS Letters, 103, 106-110.
Palmieri, F., Pierri, C. L., Grassi, A. D., Nunes-Nesi, A., & Fernie,
A. R. (2011). Evolution, structure and function of mitochondrial
carriers: a review with new sights. Plant Journal, 66, 161-181.
Picault, N., Hodges, M., Palmieri, L., & Palmieri, F. (2004). The
growing family of mitochondrial carriers in Arabidopsis. Trends in Plant
Science, 9, 138-146.
Pilon, M., Ravet, K., & Tapken, W. (2011). The biogenesis and
physiological function of chloroplast superoxide dismutases. Biochimica
et Biophysica Acta, 1807, 989-998.
Portnoy, M. E., Liu, X. F., & Culotta, V. C. (2000). Saccharomyces
cerevisiae expresses three functionally distinct homologues of the Nramp
family of metal transporters. Molecular and Cellular Biology, 20,
7893-7902.
Pugh, S. Y., & Fridovich, I. (1985). Induction of superoxide dismutases
in Escherichia coli B by metal chelators. Journal of Bacteriology, 162,
196-202.
Rae, T. D., Torres, A. S., Pufahl, R. A., & O’Halloran, T. V. (2001).
Mechanism of Cu,Zn-superoxide dismutase activation by the human
metallochaperone hCCS. Journal of Biological Chemistry, 276, 5166-5176.
Regelsberger, G., Atzenhofer, W., Ruker, F., Peschek, G. A., Jakopitsch,
C., Paumann, M., . . . Obinger, C. (2002). Biochemical characterization
of a membrane-bound manganese-containing superoxide dismutase from the
cyanobacterium Anabaena PCC 7120. Journal of Biological Chemistry, 277,
43615-43622.
Robinson, A. J., & Kunji, E. R. S. (2006). Mitochondrial carriers in
the cytoplasmic state have a common substrate binding site. Proceedings
of the National Academy of Sciences of the United States of America,
103, 2617-2622.
Rodríguez-Celma, J., Tsai, Y. H., Wen, T. N., Wu, Y. C., Curie, C., &
Schmidt, W. (2016). Systems-wide analysis of manganese
deficiency-induced changes in gene activity of Arabidopsis roots.
Scientific Reports, 6, 35846.
Rostami, G. H., & Ahangar, A. G. (2013). The effect of cow manure
application on the Distribution Fractions of Fe, Mn and Zn in
agricultural soils. IOSR Journal of Agriculture and Veterinary Science,
6, 60-66.
Schneider, A., Steinberger, I., Herdean, A., Gandini, C., Eisenhut, M.,
Kurz, S., . . . Leister, D. (2016). The evolutionarily conserved protein
PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese
uptake at the thylakoid membrane in Arabidopsis. Plant Cell, 892-910.
Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D.
(2006). Highly specific gene silencing by artificial microRNAs in
Arabidopsis. Plant Cell, 18, 1121-1133.
Sevilla, F., López-Gorgé, J., & del Río, L. A. (1982). Characterization
of a manganese superoxide dismutase from the higher plant Pisum sativum.
Plant Physiology, 70, 1321-1326.
Slooten, L., Capiau, K., Camp, W. V., Montagu, M. V., Sybesma, C., &
lnzé, D. (1995). Factors affecting the enhancement of oxidative stress
tolerance in transgenic tobacco overexpressing manganese superoxide
dismutase in the chloroplasts. Plant Physiology, 107, 737-750.
Socha, A. L., & Guerinot, M. L. (2014). Mn-euvering manganese: the role
of transporter gene family members in manganese uptake and mobilization
in plants. Frontiers in Plant Science, 5, 106.
Su, Z., Chai, M. F., Lu, P. L., An, R., Chen, J., & Wang, X. C. (2007).
AtMTM1, a novel mitochondrial protein, may be involved in activation of
the manganese-containing superoxide dismutase in Arabidopsis. Planta,
226, 1031-1039.
Van Camp, W., Willekens, H., Bowler, C., Van Montagu, M., Inzé, D.,
Langebartels, C., & Sandermann, H. (1994). Elevated levels of
superoxide dismutase protect transgenic plants against ozone damage.
Biotechnology, 12, 165-168.
Vance, C. K., & Miller, A. F. (2001). Novel insights into the basis for
Escherichia coli superoxide dismutase’s metal ion specificity from
Mn-substituted FeSOD and Its very high E(m). Biochemistry, 40,
13079-13087.
Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke,
C., . . . Kudla, J. (2004). Visualization of protein interactions in
living plant cells using bimolecular fluorescence complementation. Plant
Journal, 40, 428-438.
Wang Y, Ying Y, Chen J, Wang X. 2004. Transgenic Arabidopsis
overexpressing Mn-SOD enhanced salt-tolerance. Plant Science 167,
671-677.
Wang, C., Xu, W., Jin, H., Zhang, T., Lai, J., Zhou, X., . . . Yang, C.
(2016). A putative chloroplast-localized Ca(2+)/H(+) antiporter CCHA1 is
involved in calcium and pH homeostasis and required for PSII function in
Arabidopsis. Molecular Plant, 9, 1183-1196.
Wang, Y., Ying, Y., Chen, J., & Wang, X. (2004). Transgenic Arabidopsis
overexpressing Mn-SOD enhanced salt-tolerance. Plant Science, 167,
671-677.
Watanabe, A., Nakazono, M., Tsutsumi, N., & Hirai, A. (1999). AtUCP2: a
novel isoform of the mitochondrial uncoupling protein of Arabidopsis
thaliana. Plant and Cell Physiology, 40, 1160-1166.
Weigel, D., & Glazebrook, J. (2002). Arabidopsis: A Laboratory Manual:
Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Wintjens, R., Noël, C., May, A. C. W., Gerbod, D., Dufernez, F., Capron,
M., . . . Rooman, M. (2004). Specificity and phenetic relationships of
iron- and manganese-containing superoxide dismutases on the basis of
structure and sequence comparisons. Journal of Biological Chemistry,
279, 9248-9254.
Witholt, R., Gwiazda, R. H., & Smith, D. R. (2000). The neurobehavioral
effects of sub-chronic manganese exposure in the presence and absence of
pre-Parkinsonism. Neurotoxicology and Teratology, 22, 851-861.
Yang, M., Cobine, P. A., Molik, S., Naranuntarat, A., Lill, R., Winge,
D. R., & Culotta, V. C. (2006). The effects of mitochondrial iron
homeostasis on cofactor specificity of superoxide dismutase 2. EMBO
Journal, 25, 1775-1783.
Yang, T. J., Perry, P. J., Ciani, S., Pandian, S., & Schmidt, W.
(2008). Manganese deficiency alters the patterning and development of
root hairs in Arabidopsis. Journal of Experimental Botany, 59,
3453-3464.
Yoo, S. D., Cho, Y. H., & Sheen, J. (2007). Arabidopsis mesophyll
protoplasts: a versatile cell system for transient gene expression
analysis. Nature Protocols, 2, 1565-1572.
Zhang, B., Zhang, C., Liu, C., Jing, Y., Wang, Y., Jin, L., . . . Luan,
S. (2018). Inner envelope CHLOROPLAST MANGANESE TRANSPORTER 1 supports
manganese homeostasis and phototrophic growth in Arabidopsis. Molecular
Plant, 11, 943-954.