REFERENCES
Abdel-Ghany, S. E., Burkhead, J. L., Gogolin, K. A., Andrés-Colás, N., Bodecker, J. R., Puig, S., . . . Pilon, M. (2005a). AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Letters, 11, 2307-2312.
Abdel-Ghany, S. E., Muller-Moule, P., Niyogi, K. K., Pilon, M., & Shikanai, T. (2005b). Two P-type ATPases are required for copper delivery in Arabidopsis thaliana chloroplasts. Plant Cell, 17, 1233-1251.
Alejandro, S., Cailliatte, R., Alcon, C., Dirick, L., Domergue, F., Correia, D., . . . Curie, C. (2017). Intracellular distribution of manganese by the trans-Golgi network transporter NRAMP2 is critical for photosynthesis and cellular redox homeostasis. Plant Cell, 29, 3068-3084.
Allen, M. D., Kropat, J., Tottey, S., Del Campo, J. A., & Merchant, S. S. (2007). Manganese deficiency in Chlamydomonas results in loss of photosystem II and MnSOD function, sensitivity to peroxides, and secondary phosphorus and iron deficiency. Plant Physiology, 143, 263-277.
Alscher, R. G., Erturk, N., & Heath, L. S. (2002). Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. Journal of Experimental Botany, 53, 1331-1341.
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology, 55, 373-399.
Balzan, R., Bannister, W. H., Hunter, G., & Bannister, J. V. (1995). Escherichia coli iron superoxide dismutase targeted to the mitochondria of yeast cells protects the cells against oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 92, 4219-4223.
Bashir, K., Rasheed, S., Kobayashi, T., Seki, M., & Nishizawa, N. K. (2016). Regulating subcellular metal homeostasis: The key to crop improvement. Frontiers in Plant Science, 1192.
Beauchamp, C., & Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Analytical Biochemistry, 44, 276-287.
Bowler, C., Camp, W. V., Montagu, M. V., & Inzé, D. (1994). Superoxide dismutase in plants. Critical Reviews in Plant Sciences, 13, 199-218.
Brachmann, C. B., Davies, A., Cost, G. J., Caputo, E., Li, J., Hieter, P., & Boeke, J. D. (1998). Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast, 14, 115-132.
Carroll, M. C., Girouard, J. B., Ulloa, J. L., Subramaniam, J. R., Wong, P. C., Valentine, J. S., & Culotta, V. C. (2004). Mechanisms for activating Cu- and Zn-containing superoxide dismutase in the absence of the CCS Cu chaperone Proceedings of the National Academy of Sciences of the United States of America, 101, 5964-5969.
Casareno, L. B., Waggoner, D., & Gitlin, J. D. (1998). The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase. Journal of Biological Chemistry, 273, 23625-23628.
Catoni, E., Schwab, R., Hilpert, M., Desimone, M., Schwacke, R., Flügge, U. I., . . . Frommer, W. B. (2003). Identification of an Arabidopsis mitochondrial succinate-fumarate translocator. FEBS Letters, 534, 87-92.
Chen, J. R., Weng, C. N., Ho, T. Y., Cheng, I. C., & Lai, S. S. (2000). Identification of the copper-zinc superoxide dismutase activity in Mycoplasma hyopneumoniae. Veterinary Microbiology, 73, 301-310.
Chen, X. Z., Peng, J. B., Cohen, A., Nelson, H., Nelson, N., & Hediger, M. A. (1999). Yeast SMF1 mediates H(+)-coupled iron uptake with concomitant uncoupled cation currents. Journal of Biological Chemistry, 274, 35089-35094.
Choudhury, S. B., Lee, J. W., Davidson, G., Yim, Y. I., Bose, K., Sharma, M. L., . . . Maroney, M. J. (1999). Examination of the nickel site structure and reaction mechanism in Streptomyces seoulensis superoxide dismutase. Biochemistry, 38, 3744-3752.
Chu, C. C., Lee, W. C., Guo, W. Y., Pan, S. M., Chen, L. J., Li, H. M., & Jinn, T. L. (2005). A copper chaperone for superoxide dismutase that confers three types of copper/zinc superoxide dismutase activity in Arabidopsis. Plant Physiology, 139, 425-436.
Clough, S. J., & Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant Journal, 16, 735-743.
Culotta, V. C., Klomp, L. W., Strain, J., Casareno, R. L., Krems, B., & Gitlin, J. D. (1997). The copper chaperone for superoxide dismutase. Journal of Biological Chemistry, 272, 23469-23472.
Culotta, V. C., Yang, M., & O’Halloran, T. V. (2006). Activation of superoxide dismutases: putting the metal to the pedal. Biochimica et Biophysica Acta, 1763, 747-758.
Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K., & Scheible, W. R. (2005). Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiology, 139, 5-17.
Drążkiewicz, M., Skórzyńska-Polit, E., & Krupa, Z. (2007). The redox state and activity of superoxide dismutase classes in Arabidopsis thaliana under cadmium or copper stress. Chemosphere, 67, 188-193.
Edwards, K., Johnstone, C., & Thompson, C. (1991). A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Research, 19, 1349.
Eisenhuta, M., Hoecker, N., Schmidt, S. B., Basgaran, R. M., Flachbart, S., Jahns, P., . . . Schneider, A. (2018). The plastid envelope CHLOROPLAST MANGANESE TRANSPORTER1 is essential for manganese homeostasis in Arabidopsis. Molecular Plant, 11, 955-969.
Fink, R. C., & Scandalios, J. G. (2002). Molecular evolution and structure-function relationships of the superoxide dismutase gene families in angiosperms and their relationship to other eukaryotic and prokaryotic superoxide dismutases. Archives of Biochemistry and Biophysics, 399, 19-36.
Fridovich, I. (1975). Superoxide dismutases. Annual Review of Biochemistry, 44, 147-159.
Ganini, D., Petrovich, R. M., Edwards, L. L., & Mason, R. P. (2015). Iron incorporation into MnSOD A (bacterial Mn-dependent superoxide dismutase) leads to the formation of a peroxidase/catalase implicated in oxidative damage to bacteria. Biochimica et Biophysica Acta, 1850, 1795-1805.
Gietz, R. D., & Schiestl, R. H. (1991). Applications of high efficiency lithium acetate transformation of intact yeast cells using single-stranded nucleic acids as carrier. Yeast, 7, 253-263.
Goussias, C., Boussac, A., & Rutherford, A. W. (2002). Photosystem II and photosynthetic oxidation of water: an overview. Philosophical Transactions of the Royal Society B, 357, 1369-1381.
Haferkamp, I., & Schmitz-Esser, S. (2012). The plant mitochondrial carrier family: functional and evolutionary aspects. Frontiers in Plant Science, 3, 2.
Halliwell, B. (1994). Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet, 344, 721-724.
Hoyos, M. E., Palmieri, L., Wertin, T., Arrigoni, R., Polacco, J. C., & Palmieri, F. (2003). Identification of a mitochondrial transporter for basic amino acids in Arabidopsis thaliana by functional reconstitution into liposomes and complementation in yeast. Plant Journal, 33, 1027-1035.
Huang, C. H., Kuo, W. Y., & Jinn, T. L. (2012a). Models for the mechanism for activating copper-zinc superoxide dismutase in the absence of the CCS Cu chaperone in Arabidopsis. Plant Signaling & Behavior, 7, 429-431.
Huang, C. H., Kuo, W. Y., Weiss, C., & Jinn, T. L. (2012b). Copper chaperone-dependent and -independent activation of three copper-zinc superoxide dismutase homologs localized in different cellular compartments in Arabidopsis. Plant Physiology, 158, 737-746.
Huang, Y. C., Niu, C. Y., Yang, C. R., & Jinn, T. L. (2016). The heat stress factor HSFA6b connects ABA signaling and ABA-mediated heat responses. Plant Physiology, 172, 1182-1199.
Kanematsu S, Asada K. 1979. Ferric and manganese superoxide dismutases in Euglena gracilis. Archives of Biochemistry and Biophysics 195, 535-545.
Kanematsu S, Okayasu M, Kurogi D. 2012. Occurrence of two types of Mn-superoxide dismutase in the green alga Spirogyra: cDNA cloning and characterization of genomic genes and recombinant proteins. Bulletin of Minamikyushu University 42A, 1-13.
Kanematsu, S., & Asada, K. (1979). Ferric and manganese superoxide dismutases in Euglena gracilis. Archives of Biochemistry and Biophysics, 195, 535-545.
Kanematsu, S., Okayasu, M., & Kurogi, D. (2012). Occurrence of two types of Mn-superoxide dismutase in the green alga Spirogyra: cDNA cloning and characterization of genomic genes and recombinant proteins. Bulletin of Minamikyushu University, 42A, 1-13.
Kliebenstein, D. J., Monde, R. A., & Last, R. L. (1998). Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiology, 118, 637-650.
Krieger-Liszkay, A., & Thomine, S. (2018). Importing manganese into the chloroplast: many membranes to cross. Molecular Plant, 11, 1109-1111.
Kunji, E. R. S. (2004). The role and structure of mitochondrial carriers. FEBS Letters, 564, 239-244.
Kunji, E.R. S., & Crichton, P. G. (2010). Mitochondrial carriers function as monomers. Biochimica et Biophysica Acta, 1797, 817-831.
Kuo WY, Huang CH, Jinn TL. 2013a. Chaperonin 20 might be an iron chaperone for superoxide dismutase in activating iron superoxide dismutase (FeSOD). Plant Signaling & Behavior, 8, e23074.
Kuo WY, Huang CH, Liu AC, Cheng CP, Li SH, Chang WC, Weiss C, Azem A, Jinn TL. 2013b. Chaperonin 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytologist, 197, 99-110.
Kuo WY, Huang CH, Shih C, Jinn TL. 2013c. Cellular extract preparation for superoxide dismutase (SOD) activity assay. Bio-protocol 3, e811.
Kuo, W. Y., Huang, C. H., & Jinn, T. L. (2013a). Chaperonin 20 might be an iron chaperone for superoxide dismutase in activating iron superoxide dismutase (FeSOD). Plant Signaling & Behavior, 8, e23074.
Kuo, W. Y., Huang, C. H., Liu, A. C., Cheng, C. P., Li, S. H., Chang, W. C., . . . Jinn, T. L. (2013b). Chaperonin 20 mediates iron superoxide dismutase (FeSOD) activity independent of its co-chaperonin role in Arabidopsis chloroplasts. New Phytologist, 197, 99-110.
Kuo, W. Y., Huang, C. H., Shih, C., & Jinn, T. L. (2013c). Cellular extract preparation for superoxide dismutase (SOD) activity assay. Bio-protocol, 3, e811.
Lahner, B., Gong, J., Mahmoudian, M., Smith, E. L., Abid, K. B., Rogers, E. E., . . . Salt, D. E. (2003). Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nature Biotechnology, 21, 1215-1221.
Lanquar, V., Ramos, M. S., Lelievre, F., Barbier-Brygoo, H., Krieger-Liszkay, A., Kramer, U., & Thomine, S. (2010). Export of vacuolar manganese by AtNRAMP3 and AtNRAMP4 is required for optimal photosynthesis and growth under manganese deficiency. Plant Physiology, 152, 1986-1999.
Lin, Y. F., Liang, H. M., Yang, S. Y., Boch, A., Clemens, S., Chen, C. C., . . . Yeh, K. C. (2009). Arabidopsis IRT3 is a zinc-regulated and plasma membrane localized zinc/iron transporter. New Phytologist, 182, 392-404.
Lu, Q., Tang, X., Tian, G., Wang, F., Liu, K., Nguyen, V., . . . Cui, Y. (2010). Arabidopsis homolog of the yeast TREX-2 mRNA export complex: components and anchoring nucleoporin. Plant Journal, 61, 259-270.
Luk, E. E., & Culotta, V. C. (2001). Manganese superoxide dismutase in Saccharomyces cerevisiae acquires its metal co-factor through a pathway involving the Nramp metal transporter, Smf2p. Journal of Biological Chemistry, 276, 47556-47562.
Luk, E., Carroll, M., Baker, M., & Culotta, V. C. (2003). Manganese activation of superoxide dismutase 2 in Saccharomyces cerevisiae requires MTM1, a membrane of the mitochondrial carrier family. Proceedings of the National Academy of Sciences of the United States of America, 100, 10353-10357.
Luk, E., Yang, M., Jensen, L. T., Bourbonnais, Y., & Culotta, V. C. (2005). Manganese activation of superoxide dismutase 2 in the mitochondria of Saccharomyces serevisiae. Journal of Biological Chemistry, 280, 22715-22720.
Maia, I. G., Benedetti, C. E., Leite, A., Turcinelli, S. R., Vercesi, A. E., & Arruda, P. (1998). AtPUMP: an Arabidopsis gene encoding a plant uncoupling mitochondrial protein. FEBS Letters, 429, 403-406.
Marschner, H. (1995). Mineral nutrition of higher plants: 2nd Edition, Academic Press, London.
Meier, B., Barra, D., Bossa, F., Calabrese, L., & Rotilio, G. (1982). Synthesis of either Fe- or Mn-superoxide dismutase with an apparently identical protein moiety by an anaerobic bacterium dependent on the metal supplied. Journal of Biological Chemistry, 257, 13977-13980.
Millar, A. H., & Heazlewood, J. L. (2003). Genomic and proteomic analysis of mitochondrial carrier proteins in Arabidopsis. Plant Physiology, 131, 443-453.
Miller, A. F. (2012). Superoxide dismutases: Ancient enzymes and new insights. FEBS Letters, 586, 585-595.
Morgan, M. J., Lehmann, M., Schwarzlander, M., Baxter, C. J., Sienkiewicz-Porzucek, A., Williams, T. C., . . . Finkemeier, I. (2008). Decrease in manganese superoxide dismutase leads to reduced root growth and affects tricarboxylic acid cycle flux and mitochondrial redox homeostasis. Plant Physiology, 147, 101-114.
Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15, 473-497.
Naranuntarat, A., Jensen, L. T., Panicni, S., Penner-Hahn, J. E., & Culotta, V. C. (2009). The interaction of mitochondrial iron with manganese superoxide dismutase. Journal of Biological Chemistry, 284, 22633-22640.
Nickelsen, J., & Rengstl, B. (2013). Photosystem II assembly: From cyanobacteria to plants. Annual Review of Plant Biology, 64, 609-635.
Okada, S., Kanematsu, S., & Asada, K. (1979). Intracellular distribution of manganese and ferric superoxide dismutases in blue-green algae. FEBS Letters, 103, 106-110.
Palmieri, F., Pierri, C. L., Grassi, A. D., Nunes-Nesi, A., & Fernie, A. R. (2011). Evolution, structure and function of mitochondrial carriers: a review with new sights. Plant Journal, 66, 161-181.
Picault, N., Hodges, M., Palmieri, L., & Palmieri, F. (2004). The growing family of mitochondrial carriers in Arabidopsis. Trends in Plant Science, 9, 138-146.
Pilon, M., Ravet, K., & Tapken, W. (2011). The biogenesis and physiological function of chloroplast superoxide dismutases. Biochimica et Biophysica Acta, 1807, 989-998.
Portnoy, M. E., Liu, X. F., & Culotta, V. C. (2000). Saccharomyces cerevisiae expresses three functionally distinct homologues of the Nramp family of metal transporters. Molecular and Cellular Biology, 20, 7893-7902.
Pugh, S. Y., & Fridovich, I. (1985). Induction of superoxide dismutases in Escherichia coli B by metal chelators. Journal of Bacteriology, 162, 196-202.
Rae, T. D., Torres, A. S., Pufahl, R. A., & O’Halloran, T. V. (2001). Mechanism of Cu,Zn-superoxide dismutase activation by the human metallochaperone hCCS. Journal of Biological Chemistry, 276, 5166-5176.
Regelsberger, G., Atzenhofer, W., Ruker, F., Peschek, G. A., Jakopitsch, C., Paumann, M., . . . Obinger, C. (2002). Biochemical characterization of a membrane-bound manganese-containing superoxide dismutase from the cyanobacterium Anabaena PCC 7120. Journal of Biological Chemistry, 277, 43615-43622.
Robinson, A. J., & Kunji, E. R. S. (2006). Mitochondrial carriers in the cytoplasmic state have a common substrate binding site. Proceedings of the National Academy of Sciences of the United States of America, 103, 2617-2622.
Rodríguez-Celma, J., Tsai, Y. H., Wen, T. N., Wu, Y. C., Curie, C., & Schmidt, W. (2016). Systems-wide analysis of manganese deficiency-induced changes in gene activity of Arabidopsis roots. Scientific Reports, 6, 35846.
Rostami, G. H., & Ahangar, A. G. (2013). The effect of cow manure application on the Distribution Fractions of Fe, Mn and Zn in agricultural soils. IOSR Journal of Agriculture and Veterinary Science, 6, 60-66.
Schneider, A., Steinberger, I., Herdean, A., Gandini, C., Eisenhut, M., Kurz, S., . . . Leister, D. (2016). The evolutionarily conserved protein PHOTOSYNTHESIS AFFECTED MUTANT71 is required for efficient manganese uptake at the thylakoid membrane in Arabidopsis. Plant Cell, 892-910.
Schwab, R., Ossowski, S., Riester, M., Warthmann, N., & Weigel, D. (2006). Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell, 18, 1121-1133.
Sevilla, F., López-Gorgé, J., & del Río, L. A. (1982). Characterization of a manganese superoxide dismutase from the higher plant Pisum sativum. Plant Physiology, 70, 1321-1326.
Slooten, L., Capiau, K., Camp, W. V., Montagu, M. V., Sybesma, C., & lnzé, D. (1995). Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiology, 107, 737-750.
Socha, A. L., & Guerinot, M. L. (2014). Mn-euvering manganese: the role of transporter gene family members in manganese uptake and mobilization in plants. Frontiers in Plant Science, 5, 106.
Su, Z., Chai, M. F., Lu, P. L., An, R., Chen, J., & Wang, X. C. (2007). AtMTM1, a novel mitochondrial protein, may be involved in activation of the manganese-containing superoxide dismutase in Arabidopsis. Planta, 226, 1031-1039.
Van Camp, W., Willekens, H., Bowler, C., Van Montagu, M., Inzé, D., Langebartels, C., & Sandermann, H. (1994). Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Biotechnology, 12, 165-168.
Vance, C. K., & Miller, A. F. (2001). Novel insights into the basis for Escherichia coli superoxide dismutase’s metal ion specificity from Mn-substituted FeSOD and Its very high E(m). Biochemistry, 40, 13079-13087.
Walter, M., Chaban, C., Schütze, K., Batistic, O., Weckermann, K., Näke, C., . . . Kudla, J. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant Journal, 40, 428-438.
Wang Y, Ying Y, Chen J, Wang X. 2004. Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Science 167, 671-677.
Wang, C., Xu, W., Jin, H., Zhang, T., Lai, J., Zhou, X., . . . Yang, C. (2016). A putative chloroplast-localized Ca(2+)/H(+) antiporter CCHA1 is involved in calcium and pH homeostasis and required for PSII function in Arabidopsis. Molecular Plant, 9, 1183-1196.
Wang, Y., Ying, Y., Chen, J., & Wang, X. (2004). Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Science, 167, 671-677.
Watanabe, A., Nakazono, M., Tsutsumi, N., & Hirai, A. (1999). AtUCP2: a novel isoform of the mitochondrial uncoupling protein of Arabidopsis thaliana. Plant and Cell Physiology, 40, 1160-1166.
Weigel, D., & Glazebrook, J. (2002). Arabidopsis: A Laboratory Manual: Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Wintjens, R., Noël, C., May, A. C. W., Gerbod, D., Dufernez, F., Capron, M., . . . Rooman, M. (2004). Specificity and phenetic relationships of iron- and manganese-containing superoxide dismutases on the basis of structure and sequence comparisons. Journal of Biological Chemistry, 279, 9248-9254.
Witholt, R., Gwiazda, R. H., & Smith, D. R. (2000). The neurobehavioral effects of sub-chronic manganese exposure in the presence and absence of pre-Parkinsonism. Neurotoxicology and Teratology, 22, 851-861.
Yang, M., Cobine, P. A., Molik, S., Naranuntarat, A., Lill, R., Winge, D. R., & Culotta, V. C. (2006). The effects of mitochondrial iron homeostasis on cofactor specificity of superoxide dismutase 2. EMBO Journal, 25, 1775-1783.
Yang, T. J., Perry, P. J., Ciani, S., Pandian, S., & Schmidt, W. (2008). Manganese deficiency alters the patterning and development of root hairs in Arabidopsis. Journal of Experimental Botany, 59, 3453-3464.
Yoo, S. D., Cho, Y. H., & Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nature Protocols, 2, 1565-1572.
Zhang, B., Zhang, C., Liu, C., Jing, Y., Wang, Y., Jin, L., . . . Luan, S. (2018). Inner envelope CHLOROPLAST MANGANESE TRANSPORTER 1 supports manganese homeostasis and phototrophic growth in Arabidopsis. Molecular Plant, 11, 943-954.