REFERENCES
1.Du FH, Mills EA, Mao-Draayer Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun Highlights. 2017;8:12
2. Baker D, Marta M, Pryce G, Giovannoni G, Schmierer K. Memory B-cells are major targets for effective immunotherapy in relapsing multiple sclerosis. EBioMedicine. 2017a;16:41‐50.
3. Baker D, Pryce G, Amor S, Giovannoni G, Schmierer K. Learning from other autoimmunities to understand targeting of B-cells to control multiple sclerosis. Brain 2018; 141: 2824-2828.
4. Cang S, Mukhi N, Wang K, Liu D. Novel CD20 monoclonal antibodies for lymphoma therapy. J Hematol Oncol. 2012;5:64.
5. Sabatino JJ, Zamvil SS, Hauser SL B-cell therapies in multiple sclerosis. Cold Spring Harb Perspect Med. 2019; 9:a032037
6.Hauser SL, Bar-Or A, Cohen J, Comi G, Correale J, Coyle PK, Cross AH, de seze J et al. 336. Efficacy and safety of ofatumumab versus teriflunomide in relapsing multiple sclerosis: results of the phase 3 ASCLEPIOS I and II trials. Mult scler. 2019; 25 (S2):890-891
7. Fox E, Lovett-Racke AE, Gormley M, et al. A phase 2 multicenter study of ublituximab, a novel glycoengineered anti-CD20 monoclonal antibody, in patients with relapsing forms of multiple sclerosis. Mult Scler. 2020;1352458520918375 [Epub]
8. Ineichen BV, Moridi T, Granberg T, Piehl F. Rituximab treatment for multiple sclerosis. Mult Scler. 2020;26(2):137‐152.
9. Baker D, Pryce G, James LK, Marta M, Schmierer K. The ocrelizumab phase II extension trial suggests the potential to improve the risk:benefit balance in multiple sclerosis. Mult Scler Relat Disord. 2020a. in press.
10. Juto A, Fink K, Nimer F, Piehl F. Interrupting rituximab treatment in relapsing-remitting multiple sclerosis; no evidence of rebound disease activity. Mult Scler Relat Disord. 2020, 37:101468. [Epub]
11. Trouvin AP, Jacquot S, Grigioni S, Curis E, Dedreux I, Roucheux A, Boulard H, Vittecoq O, et al. Usefulness of monitoring of B-cell depletion in rituximab-treated rheumatoid arthritis patients in order to predict clinical relapse: a prospective observational study. Clin Exp Immunol; 180:11-8.
12. Kim SH, Kim W, Li XF, Jung IJ, Kim HJ. Repeated treatment with rituximab based on the assessment of peripheral circulating memory B-cells in patients with relapsing neuromyelitis optica over 2 years. Arch Neurol. 2011;68(11):1412‐1420
13. Novi G, Fabbri S, Bovis F, et al. Tailoring B-cells depleting therapy in MS according to memory B-cells monitoring: a pilot study. P971. Mult Scler. 2019; 25: (S2) 509-510.
14.Marcinnò A, Marnetto F, Valentino P, et al. Rituximab-induced hypogammaglobulinemia in patients with neuromyelitis optica spectrum disorders. Neurol Neuroimmunol Neuroinflamm. 2018;5(6):e498. Published 2018 Sep 13. doi:10.1212/NXI.0000000000000498
15. Derfuss T, Weber MS, Hughes R, Wang Q, Sauter A, Koendgen H, Hauser SL, Bar-Or A, et al. Serum immunoglobulin levels and risk of serious infections in the pivotal Phase III trials of ocrelizumab in multiple sclerosis and their open-label extensions. 65. Mult scler 2019; 25 (S2) 20-21
16. Luna G, Alping P, Burman J, Fink K, Fogdell-Hahn A, Gunnarsson M, Hillert J, Langer-Gould A, et al. Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab, and injectable therapies JAMA Neurol. 2019; 77: doi:10.1001/jamaneurol.2019.3365 [Epub]
17. Baloch S, Baloch MA, Zheng T, Pei X. The Coronavirus Disease 2019 (COVID-19) Pandemic. Tohoku J Exp Med. 2020;250(4):271‐278. doi:10.1620/tjem.250.271
18.Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30;:]. Lancet. 2020;395(10223):497‐506.
19. Brownlee W, Bourdette D, Broadley S, Killestein J, Ciccarelli O. Treating multiple sclerosis and neuromyelitis optica spectrum disorder during the COVID-19 pandemic. Neurology. 2020; 94:949-952.
20. Baker D, Amor S, Kang AS, Schmierer K, Giovannoni G. The underpinning biology relating to multiple sclerosis disease modifying treatments during the COVID-19 pandemic Mult Scler Relat Disord. 2020b; 43:102174. doi: 10.1016/j.msard.2020.102174.
21. Xu X, Chang XN, Pan HX, Su H, Huang B, Yang M, Luo DJ, Weng MX, et al. Pathological changes of the spleen in ten patients with coronavirus disease 2019(COVID-19) by postmortem needle autopsy]. Zhonghua Bing Li Xue Za Zhi. 2020 Jun 8;49(6):576-582.
22. Henry BM, Vikse J, Benoit S, Favaloro EJ, Lippi G. Hyperinflammation and derangement of renin-angiotensin-aldosterone system in COVID-19: A novel hypothesis for clinically suspected hypercoagulopathy and microvascular immunothrombosis. Clin Chim Acta. 2020;507:167-173.
23. AminJafari A, Ghasemi S. The possible of immunotherapy for COVID-19: A systematic review. Int Immunopharmacol. 2020;83:106455. doi:10.1016/j.intimp.2020.106455
24. Thanh Le T, Andreadakis Z, Kumar A, Roman RG, Tollefsen S, Saville M, Mayhew S. The COVID-19 vaccine development landscape. Nat Rev Drug Discov. 2020;19:305‐306.
of print.
25.Randolph HE, Barreiro LB. Herd Immunity: Understanding COVID-19.Immunity. 2020 May 19;52:737-741.
26. Bar-Or A, Calabresi PA, Arnold D, Markowitz C, Shafer S, Kasper LH, Waubant E, Gazda S, et al. Rituximab in relapsing-remitting multiple sclerosis: a 72-week, open-label, phase I trial. Ann Neurol. 2008 Mar;63(3):395-400. doi: 10.1002/ana.21363.
27. Channappanavar R, Fett C, Zhao J, Meyerholz DK, Perlman S. Virus-specific memory CD8 T-cells provide substantial protection from lethal severe acute respiratory syndrome coronavirus infection. J Virol. 2014;88(19):11034‐11044.
28. Bao L, Deng W, Gao H, Xiao C, Liu J, Xue J, Lv Q Liu J, et al. Reinfection could not occur in SARS-CoV-2 infected rhesus macaques. BioRχiv 2020.03.13.990226; doi: https://doi.org/10.1101/2020.03.13.990226
29. Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, Wei Q, Yu P, et al. The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature. 2020;10.1038/s41586-020-2312-y.
30. Giovannoni G, Hawkes C, Lechner-Scott J, Levy M, Waubant E, Gold J. The COVID-19 pandemic and the use of MS disease-modifying therapies. Mult Scler Relat Disord. 2020;39:102073. doi:10.1016/j.msard.2020.102073
31.Berger JR, Brandstadter R, Bar-Or A. COVID-19 and MS disease-modifying therapies. Neurol Neuroimmunol Neuroinflamm. 2020;7(4):e761.
32. Favalli EG, Ingegnoli F, De Lucia O, Cincinelli G, Cimaz R, Caporali R. COVID-19 infection and rheumatoid arthritis: Faraway, so close! Autoimmun Rev. 2020;19:102523
33. Wang B, Wang L. Kong X, Geng J, Xiao D, Ma C, Jiang XM, Wang PH. Long term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients. J Med Virol 2020a Doi:10.1002/jmv.25946
34. Anand P, Slama MCC, Kaku M, Ong C, Cervantes-Arslanian AM, Zhou L, David WS, Guidon AC. COVID-19 in patients with myasthenia gravis. Muscle Nerve. 2020 May 11:10.1002/mus.26918. doi: 10.1002/mus.26918.
35.Dworakowska D, Grossman AB. Thyroid disease in the time of COVID-19. Endocrine. 2020 Jun 7. doi: 10.1007/s12020-020-02364-8.
36. Salvarani C, Bajocchi G, Mancuso P, Galli E, Muratore F, Boiardi L, Catanoso M, Pipitone N et al. Susceptibility and severity of COVID-19 in patients treated with bDMARDS and tsDMARDs: a population-based study. Ann Rheum Dis. 2020 May 28:annrheumdis-2020-217903. doi: 10.1136/annrheumdis-2020-217903
37. Novi G, Mikulska M, Briano F, Toscanini F, Tazza F, Uccelli A, Inglese M. COVID-19 in a MS patient treated with ocrelizumab: does immunosuppression have a protective role? Mult Scler Relat Disord. 2020 Apr 15;42:102120. doi: 10.1016/j.msard.2020.102120
38. Louapre C, Maillart E, Roux T, et al. Patients with MS treated with immunosuppressive agents: Across the COVID-19 spectrum. Rev Neurol . 2020;176(6):523‐525.
39. Montero-Escribano P, Matías-Guiu J, Gómez-Iglesias P, Porta-Etessam J, Pytel V, Matias-Guiu JA. Anti-CD20 and COVID-19 in multiple sclerosis and related disorders: A case series of 60 patients from Madrid, Spain. Mult Scler Relat Disord. 2020 May 7;42:102185. doi: 10.1016/j.msard.2020.102185
40. Safavi F, Nourbakhsh B, Azimi AR. B-cell depleting therapies may affect susceptibility to acute respiratory illness among patients with multiple sclerosis during the early COVID-19 epidemic in Iran. Mult Scler Relat Disord. 2020 May 13;43:102195.
41. Hughes R, Pedotti R, Koendgen H. COVID-19 in persons with multiple sclerosis treated with ocrelizumab - A pharmacovigilance case series. Mult Scler Relat Disord. 2020 May 16;42:102192. doi: 10.1016/j.msard.2020.102192.
42. Suwanwongse K, Shabarek N. Benign course of COVID-19 in a multiple sclerosis patient treated with Ocrelizumab. Mult Scler Relat Disord. 2020 May 15:102201. doi: 10.1016/j.msard.2020.102201
43. Ghajarzadeh M, Mirmosayyeb O, Barzegar M, Nehzat N, Vaheb S, Shaygannejad V, Maghzi AH. Favorable outcome after COVID-19 infection in a multiple sclerosis patient initiated on ocrelizumab during the pandemic. Mult Scler Relat Disord. 2020; 43:102222. doi: 10.1016/j.msard.2020.102222. [Epub]
44. Chaudhry F, Bulka H, Rathnam AS, Said OM, Lin J, Lorigan H, Bernitsas E, Rube J, et al. COVID-19 in multiple sclerosis patients and risk factors for severe infection. doi: https://doi.org/10.1101/2020.05.27.20114827
45.Sormani MP; Italian Study Group on COVID-19 infection in multiple sclerosis. An Italian programme for COVID-19 infection in multiple sclerosis. Lancet Neurol. 2020 Jun;19(6):481-482.
46. Salter A. iWiMS MS Covid-19. 13 May 2020 (https://youtu.be/XAiBJ2sphkU);
47. Assmuth Oreja CS. iWiMS MS Covid-19. 6 May 2020 (https://youtu.be/cp0rtxq_k2Y)
48. van der Welt A, Health A. iWiMS MS Covid-19. 6 May 2020 (https://youtu.be/cp0rtxq_k2Y)
49. Louapre C, Collongues N, de Seze J, iWiMS MS Covid-19. 13 May 2020b (https://youtu.be/cp0rtxq_k2Y)
50.Meca-Lallana V, Aguirre C, del Río B, Cardeñoso L, Alarcon T, Vivancos J. COVID-19 in 7 multiple sclerosis patients in treatment with anti CD20 therapies. Mult scler Rel Disord. 2020 Doi https://doi.org/10.1016/j.msard.2020.102306
.
51. BarzegarM, Mirmosayyeb O, Ghajarzade M, vaheb S, Shaygannejad V, Vosoughi R. Characteristics of COVID-19 disease in multiple sclerosis patients. Mult Scler Rel Disord. Doi/https://doi.org/10.1016/j.msard.2020.102276
52. Hillert J. iWiMS MS Covid-19. 20 May 2020 (https://youtu.be/z4sRBQEv0yE);
53. Suthar MS, Zimmerman M, Kauffman R, Mantus G, Linderman S, Vanderheiden A, Nyhoff L, Davis C, et al. Rapid generation of neutralizing antibody responses in COVID-19 patients. Medrxiv doi: https://doi.org/10.1101/2020.05.03.20084442.
54. Bertoglio, F, Meier, D, Langreder, N, Steinke S, Rand U, Simonelli L, Heine PA, Ballmann R, et al. SARS-CoV-2 neutralizing human recombinant antibodies selected from pre-pandemic healthy donors binding at RBD-ACE2 interface. BioRXiv doi: https://doi.org/10.1101/2020.06.05.135921.
55. Zeng QL, Yu ZJ, Gou JJ, et al. Effect of convalescent plasma therapy on viral shedding and survival in COVID-19 patients. J Infect Dis. 2020;jiaa228. doi:10.1093/infdis/jiaa228 [Epub]
56. Ye M, Fu D, Ren Y, et al. Treatment with convalescent plasma for COVID-19 patients in Wuhan, China. J Med Virol. 2020;10.1002/jmv.25882. doi:10.1002/jmv.25882
57. Soresina A, Moratto D, Chiarini M, Paolillo C, Baresi G, Focà E, Bezzi M, Baronio B, et al.Two X-linked agammaglobulinemia patients develop pneumonia as COVID-19 manifestation but recover. Pediatr Allergy Immunol. 2020 Apr 22:10.1111/pai.13263. doi: 10.1111/pai.13263
58. Quinti I, Lougaris V, Milito C, Cinetto F, Pecoraro A, Mezzaroma I, Mastroianni CM, Turriziani O, et al. A possible role for B-cells in COVID-19? Lesson from patients with agammaglobulinemia. J Allergy Clin Immunol. 2020 Apr 22:S0091-6749(20)30557-1. doi: 10.1016/j.jaci.2020.04.013.
59. Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C et al. Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19. N Engl J Med. 2020 May 21. doi: 10.1056/NEJMoa2015432
60.Tseng YH, Yang RC, Lu TS. Two hits to the renin-angiotensin system may play a key role in severe COVID-19 [published online ahead of print, 2020 Jun 3]. Kaohsiung J Med Sci. 2020;10.1002/kjm2.12237. doi:10.1002/kjm2.12237
61. Monti S, Balduzzi S, Delvino P, Bellis E, Quadrelli VS, Montecucco C. Clinical course of COVID-19 in a series of patients with chronic arthritis treated with immunosuppressive targeted therapies. Ann Rheum Dis. 2020;79:667‐668
62. Gianfrancesco M, Hyrich KL, Al-Adely S, et al. Characteristics associated with hospitalisation for COVID-19 in people with rheumatic disease: data from the COVID-19 Global Rheumatology Alliance physician-reported registry. Ann Rheum Dis. 2020;annrheumdis-2020-217871. doi:10.1136/annrheumdis-2020-217871
63. Ocrevus® European public assessment report. 7/01/2019 update. Summary of product characteristics. https://www.ema.europa.eu/en/documents/product-information/ocrevus-epar-product-information_en.pdf. Accessed 5 January 2020.
64. Fallet B, Kyburz D, Walker UA. Mild course of Coronavirus disease 2019 and spontaneous severe acute respiratory syndrome coronavirus 2 clearance in a patient with depleted peripheral blood B-cells due to treatment with rituximab. Arthritis Rheumatol. 2020;10.1002/art.41380.
65.Xiang F, Wang X, He X, Peng Z, Yang B, Zhang J, Zhou Q, Ye H, et al. Antibody detection and dynamic characteristics in patients with COVID-19.Clin Infect Dis. 2020 Apr 19:ciaa461. doi: 10.1093/cid/ciaa461.
66. Shen L, Wang C, Zhao J, Tang X, Shen Y, Lu M, Ding Z, Huang C, et al. Delayed specific IgM antibody responses observed among COVID-19 patients with severe progression. Emerg Microbes Infect. 2020 Dec;9(1):1096-1101.
67. Yu HQ, Sun BQ, Fang ZF, Zhao JC, Liu XY, Li YM, Sun XZ, Liang HF, et al. Distinct features of SARS-CoV-2-specific IgA response in COVID-19 patients. Eur Respir J. 2020a Jun 8:2001526. doi: 10.1183/13993003.01526-2020
68. Dahlke C, Heidepriem J, Kobbe R, Santer R, Koch T,  Fathi A,  Ly ML, Schmiedel S, et al. Distinct early IgA profile may determine severity of COVID-19 symptoms: an immunological case series. MedRXiv doi: https://doi.org/10.1101/2020.04.14.20059733
69. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, et al. Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals Cell. 2020:S0092-8674(20)30610-3
70. Ng K, Faulkner N, Cornish G, Rosa A, Earl C, Wrobel A, Benton D, Roustan C, et al. Pre-existing and de novo humoral immunity to SARS-CoV-2 in humans. BioRxiv 2020. doi: https://doi.org/10.1101/2020.05.14.095414.
71. Che XY, Qiu LW, Liao ZY, Wang, Wen K, Pan YX, Hao W, Mei YB, et al. Antigenic Cross-Reactivity between Severe Acute Respiratory Syndrome-Associated Coronavirus and Human Coronaviruses 229E and OC43, The Journal of Infectious Diseases 2005; 191: 2033–2037.
72. Negro F. Is antibody-dependent enhancement playing a role in COVID-19 pathogenesis? Swiss Med Wkly. 2020;150:w20249.
73.Magro C, Mulvey JJ, Berlin D, Nuovo G, Salvatore S, Harp J, Baxter-Stoltzfus A, Laurence J. Complement associated microvascular injury and thrombosis in the pathogenesis of severe COVID-19 infection: a report of five cases. Transl Res. 2020 Apr 15:S1931-5244(20)30070-0. doi: 10.1016/j.trsl.2020.04.007. Online ahead
74. Xiao T, Wang Y, Yuan J, Ye H, Wei L, Liao X, Wang, H, Qian S, et al. Early viral clearance and antibody kinetics of COVID-19 among asymptomatic carriers. medRxiv 2020.04.28.20083139; doi: https://doi.org/10.1101/2020.04.28.20083139
75. Brochot E, Demey B, Touze A, Belouzard Sm Dubuisson J, Schmit JL, Duverlie G, Francois C, et al. Anti-Spike, anti-nucleocapsid and neutralizing antibodies in SARS-CoV-2 inpatinets and asymptomatic carriers. MedRXiv.2020. https://doi.org/10.1101/2020.05.12.20098236.
76. Liu T, Wu S, Tao H, Zeng G, Zhou F, Guo, F, Wang X Prevalence of IgG antibodies to SARS-CoV-2 in Wuhan -implications for the ability to produce long-lasting protective antibodies against SARS-CoV-2. MedRXiv. https://doi.prg//10.1101/2020.06.13.20130252.
77. Galanti M, Shaman J. Seasonal cold-inducing coronavirus can be repeatedly detected in some individuals
medRxiv doi:https://doi.org/10.1101/2020.04.27.20082032
78. Ravioli S, Ochsner H, Lindner G. Reactivation of COVID-19 pneumonia: a report of two cases
J Infect. 2020: S0163-4453(20)30279-6.
79. Wang QX, Huang KC, Qi L, Zeng XH, Zheng SL. No infectious risk of COVID-19 patients with long-term fecal 2019-nCoV nucleic acid positive. Eur Rev Med Pharmacol Sci. 2020b;24(10):5772‐5777.
80. Korean Centre for Disease Control and Prevention. Findings from investigation and analysis of re-positive cases. Notice 2020-05-19~2020-12-31. https/is.cdc.gov.kr/upload_comm/syview/doc.html?fn=159118745823700.pdf&rs=/upload_comm/docu/0030.
81.Chandrashekar A, Liu J, Martinot AJ, McMahan K, Mercado NB, Peter L, Tostanoski LH, Yu J, et al. SARS-CoV-2 infection protects against rechallenge in rhesus macaques. Science. 2020 May 20:eabc4776. doi: 10.1126/science.abc4776.
82. Yu J, Tostanoski LH, Peter L, Mercado NB, McMahan K, Mahrokhian SH, Nkolola JP, Liu J, et al. DNA vaccine protection against SARS-CoV-2 in rhesus macaques. Science. 2020b May 20:eabc6284. doi: 10.1126/science.abc6284.
83. Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, Wu SP, Wang BS et al. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020; S0140-6736(20)31208-3.
84.Wu LP, Wang NC, Chang YH, Tian ZY, Na DY, Zhang LY, Zheng L, Lan T, et al. Duration of antibody responses after severe acute respiratory syndrome. Emerg Infect Dis. 2007;13:1562‐1564.
85.Cioc AM, Vanderwerf SM, Peterson BA, Robu VG, Forster CL, Pambuccian SE. Rituximab-induced changes in hematolymphoid tissues found at autopsy. Am J Clin Pathol. 2008;130(4):604‐612.
86 Ramwadhdoebe TH, van Baarsen LGM, Boumans MJH, Bruijnen STG, Safy M, Berger FH, Semmelink JF, van der Laken CJ et al. Effect of rituximab treatment on T and B-cell subsets in lymph node biopsies of patients with rheumatoid arthritis. Rheumatology (Oxford). 2019;58(6):1075‐1085.
87. Stokmaier D, Winthrop K, Chognot C, Evershed J, Manfrini M, McNamara J, Bar-Or A. Effect of ocrelizumab on vaccine responses in patients with multiple sclerosis (S36.002). Neurology; 2018; 90 (15 Suppl): S36.002
88. Simonsen, O, Bentzon MW, Heron I. ELISA for the routine determination of antitoxic immunity to tetanus. J. Biol. Stand. 1986; 14:231-239.
89. Kim W, Kim SH,Huh SY, Kong SY, Choi YJ, Cheong HJ Kim HJ, Reduced antibody formation after influenza vaccination in patients with neuromyelitis optica spectrum disorder treated with rituximab. Eur J Neurol 2013; 20: 975-980.
90.Bingham CO, Looney RJ, Deodhar A, Halsey N, Greenwald M, Codding C, Trzaskoma B, Martin F, et al. Immunization responses in rheumatoid arthritis patients treated with rituximab:results from a controlled clinical trial. Arthritis Rheum. 2010; 62:64-74.
91.Nazi I, Kelton JG, Larché M, Snider DP, Heddle NM, Corowther MA, Cook RJ, Tinmouth AT et al. The effect of rituximab on vaccine responses in patients with immune thrombocytopenia. Blood. 2013;122:1946‐1953.
92. van Assen S, Holvast A, Telgt DS, et al. Patients with humoral primary immunodeficiency do not develop protective anti-influenza antibody titers after vaccination with trivalent subunit influenza vaccine. Clin Immunol. 2010;136(2):228‐235. doi:10.1016/j.clim.2010.03.430.
93. Richi P, Alonso O, Martín MD, Gonzalez-Hombrado L, Navio T, Salido M, Llorente J, Andreu-Vazquez C, et al. Evaluation of the immune response to hepatitis B vaccine in patients on biological therapy: results of the RIER cohort study. Clin Rheumatol. 2020; 10.1007/s10067-020-05042-2 [Epub].
94. Cho A, Bradley B, Kauffman R, Priyamvada L, Kovalenkov Y, Feldman R, Wrammert J. Robust memory responses against influenza vaccination in pemphigus patients previously treated with rituximab. JCI Insight. 2017;2(12):e93222.
95. Palanichamy A, Jahn S, Nickles D, Derstine M, Abounasr A, Hauser SL, Baranzini SE, Leppert D, et al. Rituximab efficiently depletes increased CD20-expressing T-cells in multiple sclerosis patients. J Immunol. 2014 193(2):580-586
96. Baker D, Herrod SS, Alvarez-Gonzalez C, Giovannoni G, Schmierer K. Interpreting lymphocyte reconstitution data from the pivotal phase 3 trials of alemtuzumab. JAMA Neurol. 2017b;74(8):961‐969.
97. Ziemssen T, Bar-Or A, Arnold DL, Comi G, Hartung HP, Hauser SL, Lublin K, Slemaj K et al. P 2 Effect of ocrelizumab on humoral immunity markers in the phase iii, double-blind, double-dummy, IFN β -1a–controlled OPERA I and OPERA II studies . Clin Neurophysiol2017;128:e326–7.
98. Roll P, Palanichamy A, Kneitz C, Dorner T, Tony HP. Regeneration of B-cell subsets after transient B-cell depletion using anti-CD20 antibodies in rheumatoid arthritis. Arthritis Rheum. 2006;54(8):2377‐2386.
Sabatino JJ, Zamvil SS, Hauser SL. B-Cell Therapies in Multiple Sclerosis. Cold Spring Harb Perspect Med. 2019; 9(2):a032037.
99. Akgün K, Blankenburg J, Marggraf M, Haase R, Ziemssen T. Event-Driven Immunoprofiling predicts return of disease activity in alemtuzumab-treated multiple sclerosis. Front Immunol. 2020 Jan 31;11:56. doi: 10.3389/fimmu.2020.00056
100. Bar-Or A, Grove RA, Austin DJ, Tolson JM, VanMeter SA, Lewis EW, Derosier FJ, Lopez MC, et al. Subcutaneous ofatumumab in patients with relapsing-remitting multiple sclerosis: The MIRROR study.Neurology. 2018 May 15;90(20):e1805-e1814.
101. WA21493 Clinical study report 2016. WA21493-Phase II, multicenter, randomized parallel-group, partially blinded, placebo, Avonex® controlled dose finding study to evaluate the efficacy as measured by brain MRI lesions and safety of 2 dose regimens of ocrelizumab in patients with RRMS. Report No. 1062910. March 2016.
102. Signoriello E, Bonavita S, Di Pietro A, et al. BMI influences CD20 kinetics in multiple sclerosis patients treated with ocrelizumab [published online ahead of print, 2020 May 17]. Mult Scler Relat Disord. 2020;43:102186.
103. Kletzl H, Gibiansky E, Petry C, Francois Mercier F, Guenther A, Wang Q, Model F, Kappos L, et al. Pharmacokinetics, pharmacodynamics and exposure-response analyses of ocrelizumab in patients with multiple sclerosis. Neurol, 2019; 92 (15 Supplement) N4.001.
104. Comi G, Cook S, Giovannoni G, Rieckmann P, Sørensen PS, Vermersch P, Galazka A, Nolting A et al. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Mult Scler Relat Disord. 2019;29:168‐174.
105. Hermann R, Karlsson MO, Novakovic AM, Terranova N, Fluck M, Munafo A. The clinical pharmacology of cladribine tablets for the treatment of relapsing multiple sclerosis. Clin Pharmokinet. 2019; 58:283-297.
106. Baker D, Pryce G, Herrod SS, Schmierer K. Potential mechanisms of action related to the efficacy and safety of cladribine. Mult Scler Relat Disord. 2019 30:176-186.
107. Li Z, Richards S, Surks HK, Jacobs A, Panzara MA. Clinical pharmacology of alemtuzumab, an anti-CD52 immunomodulator, in multiple sclerosis. Clin Exp Immunol. 2018;194(3):295‐314.
108. McCarthy CL, Tuohy O, Compston DA, Kumararatne DS, Coles AJ, Jones JL. Immune competence after alemtuzumab treatment of multiple sclerosis. Neurology. 2013;81(10):872‐876.
109. Gingele S, Jacobus TL, Konen FF, Hümmert MW, Sühs KW, Schwenkenbecher P, Ahlbrecht J, Möhn N, et al.. Ocrelizumab depletes CD20⁺ T Cells in multiple sclerosis patients. Cells. 2018; 8:12.
110. Parrino J, McNeil SA, Lawrence SJ, et al. Safety and immunogenicity of inactivated varicella-zoster virus vaccine in adults with hematologic malignancies receiving treatment with anti-CD20 monoclonal antibodies. Vaccine. 2017;35(14):1764‐1769.
111.Ng OW, Chia A, Tan AT, et al. Memory T-cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. 2016;34:2008‐2014
Table 1 . Infection with SARS-CoV2 in people treated with CD20-depleting antibodies in MS