REFERENCES
Aguirre, A., & Gallo, V. (2004). Postnatal neurogenesis and gliogenesis in the olfactory bulb from NG2-expressing progenitors of the subventricular zone. The Journal of neuroscience : the official journal of the Society for Neuroscience, 24(46), 10530–10541. doi: 10.1523/JNEUROSCI.3572-04.2004.
Aguirre, A., Rubio, M. E., & Gallo, V. (2010). Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal. Nature, 467(7313), 323–327. doi: 10.1038/nature09347.
Anderson, J. M., Hughes, J. D., Gonzalez, Rothi. L. J., Crucian, G.P., Heilman, K.M. (1999). Developmental stuttering and Parkinson’s disease: The effects of levodopa treatment. Journal of Neurology Neurosurgery and Psychiatry, 66, 776-778. doi: 10.1136/jnnp.66.6.776.
Arnett, H. A., Mason, J., Marino, M., Suzuki, K., Matsushima, G. K., Ting, J. P. (2001). TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nature Neuroscience, 4, 1116-22. doi: 10.1038/nn738.
Aron Badin, R., Spinnewyn, B., Gaillard, M.C., Jan, C., Malgorn, C., van Camp, N., et al. (2013). IRC-082451, a Novel Multitargeting Molecule, Reduces L-DOPA-Induced Dyskinesias in MPTP Parkinsonian Primates. PLoS ONE, 8, e52680. doi: 10.1371/journal.pone.0052680.
Bankston, A. N., Mandler, M. D., Feng, Y. (2013). Oligodendroglia and neurotrophic factors in neurodegeneration. Neurosci Bull, 29, 216-218. doi: 10.1007/s12264-013-1321-3.
Baracskay, K. L., Kidd, G. J., Miller, R. H., Trapp, B. D. (2007). NG2-positive cells generate A2B5-positive oligodendrocyte precursor cells. Glia, 55, 1001-10. doi: 10.1002/glia.20519.
Barriola, S., Pérez-Cerdá, F., Matute, C., Bribián, A., & López-Mascaraque, L. (2020). A Clonal NG2-Glia Cell Response in a Mouse Model of Multiple Sclerosis. Cells, 9(5), 1279. https://doi.org/10.3390/cells9051279Bedner, P., Jabs, R., Steinhäuser, C. (2020). Properties of human astrocytes and NG2 glia. Glia, 68(4):756-767. 10.1002/glia.23725.
Belachew, S., Chittajallu, R., Aguirre, A. A., Yuan, X., Kirby, M., Anderson, S., & Gallo, V. (2003). Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons. The Journal of cell biology, 161(1), 169–186. doi: 10.1083/jcb.200210110.
Bergles, D. E., Roberts, J. D. B., Somogyi, P., & Jahr, C. E. (2000). Glutamatergic synapses on oligodendrocyte precursor cells in the hippocampus. Nature, 405(6783), 187–191. https://doi.org/10.1038/ 35012083;
Boi, L., Pisanu, A., Greig, N.H., Scerba, M.T., Tweedie, D., Mulas, G., Fenu, S., Carboni, E., Spiga, S., Carta, A.R., 2019. Immunomodulatory drugs alleviate l-dopa-induced dyskinesia in a rat model of Parkinson’s disease. Movement Disorders, 34, 1818-1830. doi: 10.1002/mds.27799.
Bortolanza, M., Cavalcanti-Kiwiatkoski, R., Padovan-Neto, F. E., da-Silva, C. A., Mitkovski, M., Raisman-Vozari, R., & Del-Bel, E. (2015a). Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson’s disease. Neurobiology of disease, 73, 377–387. https://doi.org/10.1016/j.nbd.2014.10.017
Bortolanza, M., Nascimento, G.C., Raisman-Vozari, R., Del Bel, E.A. (2020). Preprint- Doxycycline, an anti-inflammatory agent, alleviates dyskinesia induced byL-DOPA in Parkinsonian Rats. June2020. doi: 10.22541.
Bortolanza, M., Padovan-Neto, F.E., Cavalcanti-Kiwiatkoski, R., Dos Santos-Pereira, M., Mitkovski, M., Raisman-Vozari, R., Del-Bel, E. (2015b). Are cyclooxygenase-2 and nitric oxide involved in the dyskinesia of parkinson’s disease induced by L-DOPA? Philosophical Transactions of the Royal Society B: Biological Sciences, 370, 20140190. doi: 10.1098/rstb.2014.0190.
Bribian, A., Pérez-Cerdá, F., Matute, C., & López-Mascaraque, L. (2018). Clonal Glial Response in a Multiple Sclerosis Mouse Model. Frontiers in cellular neuroscience, 12, 375. https://doi.org/10.3389/fncel.2018.00375
Buck, K., Voehringer, P., Ferger, B. (2010). The alpha(2) adrenoceptor antagonist idazoxan alleviates L-DOPA-induced dyskinesia by reduction of striatal dopamine levels: an in vivo microdialysis study in 6-hydroxydopamine-lesioned rats. Journal of Neurochemistry, 112, 444-52. doi: 10.1111/j.1471-4159.2009.06482.x.
Butovsky, O., Jedrychowski, M. P., Moore, C. S., Cialic, R., Lanser, A. J., Gabriely, G., Koeglsperger, T., Dake, B., Wu, P. M., Doykan, C. E., Fanek, Z., Liu, L., Chen, Z., Rothstein, J. D., Ransohoff, R. M., Gygi, S. P., Antel, J. P., & Weiner, H. L. (2014). Identification of a unique TGF-β-dependent molecular and functional signature in microglia. Nature neuroscience, 17(1), 131–143. doi: 10.1038/nn.3599.
Carta, A.R., Mulas, G., Bortolanza, M., Duarte, T., Pillai, E., Fisone, G., Vozari, R.R., Del-Bel, E. (2017). l-DOPA-induced dyskinesia and neuroinflammation: do microglia and astrocytes play a role? Euroupean Journal of Neuroscience, 45, 73-91. doi: 10.1111/ejn.13482.
Cenci, M.A., Lee, C.S., Björklund, A. (1998). L-DOPA-induced dyskinesia in the rat is associated with striatal overexpression of prodynorphin- and glutamic acid decarboxylase mRNA. European Journal of Neuroscience, 10, 2694-2706. PMID: 9767399.
Cenci, M.A., Lundblad, M. (2007). Ratings of L-DOPA-induced dyskinesia in the unilateral 6-OHDA lesion model of Parkinson’s disease in rats and mice. Curr Protoc Neurosci. Chapter 9: Unit 9.25. doi: 10.1002/0471142301.ns0925s41.
Cenci, M.A., Riggare, S., Pahwa, R., Eidelberg, D., Hauser, R.A. (2020). Dyskinesia matters. Movement Disorders, 35, 392-396. doi: 10.1002/mds.27959.
Chew, L. J., King, W. C., Kennedy, A., & Gallo, V. (2005). Interferon-gamma inhibits cell cycle exit in differentiating oligodendrocyte progenitor cells. Glia, 52(2), 127–143. https://doi.org/10.1002/glia.20232.
Dauer W., Przedborski S. (2003). Parkinson’s disease: mechanisms and models. Neuron 39, 889–90910.1016/S0896-6273(03)00568-3.
Del-Bel, E., Bortolanza, M., Dos-Santos-Pereira, M., Bariotto, K., Raisman-Vozari, R. (2016). L-DOPA-induced dyskinesia in Parkinson’s disease: Are neuroinflammation and astrocytes key elements? Synapse, 70, 479-500. doi: 10.1002/syn.21941.
Dimou, L., & Götz, M. (2014). Glial cells as progenitors and stem cells: new roles in the healthy and diseased brain. Physiological reviews, 94(3), 709–737. https://doi.org/10.1152/physrev.00036.2013
Dimou, L., Simon, C., Kirchhoff, F., Takebayashi, H., & Götz, M. (2008). Progeny of Olig2-expressing progenitors in the Gray and white matter of the adult mouse cerebral cortex. Journal of Neuroscience, 28(41),10434–10442. https://doi.org/10.1523/JNEUROSCI.2831-08.2008
dos-Santos-Pereira, M., da-Silva, C.A., Guimarães, F.S., Del-Bel, E. (2016). Co-administration of cannabidiol and capsazepine reduces L-DOPA-induced dyskinesia in mice: Possible mechanism of action. Neurobiology of Disease, 94, 179-95. doi: 10.1016/j.nbd.2016.06.013.
Eder, C., Schilling, T., Heinemann, U., Haas, D., Hailer, N., & Nitsch, R. (1999). Morphological, immunophenotypical and electrophysiological properties of resting microglia in vitro. The European Journal of Neuroscience, 11(12), 4251–4261. doi: 10.1046/j.1460-9568.1999.00852.x
Fahn, S., Oakes, D., Shoulson, I., Kieburtz, K., Rudolph, A., Lang, A., Olanow, C.W., Tanner, C., Marek, K. (2004). Parkinson Study Group. Levodopa and the progression of Parkinson’s disease. New England Journal of Medicine. 351, 2498-508. doi: 10.1056/NEJMoa033447.
Fiedorowicz, A., Figiel, I., Zaremba, M., Dzwonek, K., Oderfeld-Nowak, B. (2008). The ameboid phenotype of NG2 (+) cells in the region of apoptotic dentate granule neurons in trimethyltin intoxicated mice shares antigen properties with microglia/macrophages. Glia, 56, 209-22. doi: 10.1002/glia.20605.
Flaherty, A. W., & Graybiel, A. M. (1994). Input-output organization of the sensorimotor striatum in the squirrel monkey. Journal of Neuroscience, 14, 599–610. doi: 10.1523/JNEUROSCI.14-02-00599.1994.
Gibson, E. M., Purger, D., Mount, C. W., Goldstein, A. K., Lin, G. L., Wood, L. S., Inema, I., Miller, S. E., Bieri, G., Zuchero, J. B., Barres, B. A., Woo, P. J., Vogel, H., & Monje, M. (2014). Neuronal activity promotes oligodendrogenesis and adaptive myelination in the mammalian brain. Science 344(6183), 1252304. doi: 10.1126/science.1252304.
Gomes, M. Z., Del Bel, E. A. (2003). Effects of electrolytic and 6-hydroxydopamine lesions of rat nigrostriatal pathway on nitric oxide synthase and nicotinamide adenine dinucleotide phosphate diaphorase. Brain Research Bulletin, 62, 107-15. doi: 10.1016/j.brainresbull.2003.08.010.
Gomes, M. Z., Raisman-Vozari, R., Del Bel, E. A. (2008). A nitric oxide synthase inhibitor decreases 6-hydroxydopamine effects on tyrosine hydroxylase and neuronal nitric oxide synthase in the rat nigrostriatal pathway. Brain Research. 1203, 160-169. doi: 10.1016/j.brainres.2008.01.088.
Haber, S. N., Fudge, J. L., & McFarland, N. R. (2000). Striatonigrostriatal pathways in primates form an ascending spiral from the shell to the dorsolateral striatum. The Journal of Neuroscience : the official journal of the Society for Neuroscience, 20(6), 2369–2382. doi: 10.1523/JNEUROSCI.20-06-02369.2000.
Hamilton, N., Vayro, S., Wigley, R., & Butt, A. M. (2010). Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia, 58(1), 66–79. doi:10.1002/glia.20902
Hamilton, N., Vayro, S., Wigley, R., Butt, A. M. (2010). Axons and astrocytes release ATP and glutamate to evoke calcium signals in NG2-glia. Glia, 58, 66-79. doi: 10.1002/glia.20902. PMID: 19533604.
Heppner, F. L., Roth, K., Nitsch, R., & Hailer, N. P. (1998). Vitamin E induces ramification and downregulation of adhesion molecules in cultured microglial cells. Glia, 22(2), 180–188. PMID: 9537838.
Horner, P. J., Thallmair, M., & Gage, F. H. (2002). Defining the NG2-expressing cell of the adult CNS. Journal of neurocytology, 31(6-7), 469–480. https://doi.org/10.1023/a:1025739630398
Hughes, E. G., Kang, S. H., Fukaya, M., & Bergles, D. E. (2013). Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nature neuroscience, 16(6), 668–676. doi: 10.1038/nn.3390.
Ikemoto S. (2007). Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Research reviews, 56(1), 27–78. doi: 10.1016/j.brainresrev.2007.05.004.
Janelidze, S., Lindqvist, D., Francardo, V., Hall, S., Zetterberg, H., Blennow, K., Adler, C.H., Beach, T.G., Serrano, G.E., van Westen, D., Londos, E., Cenci, M.A., Hansson, O. (2015). Increased CSF biomarkers of angiogenesis in Parkinson disease. Neurology, 85, 1834-42. doi: 10.1212/WNL.0000000000002151.
Jenner, P. (2008). Molecular mechanisms of L-DOPA-induced dyskinesia. Nature Reviews Neuroscience, 9, 665-77. doi: 10.1038/nrn2471.
Jin, X., Riew, T. R., Kim, H. L., Choi, J. H., & Lee, M. Y. (2018). Morphological characterization of NG2 glia and their association with neuroglial cells in the 3-nitropropionic acid-lesioned striatum of rat. Scientific Reports, 8(1), 5942. doi: 10.1038/s41598-018-24385-0.
Kang, S. H., Li, Y., Fukaya, M., Lorenzini, I., Cleveland, D. W., Ostrow, L. W., Rothstein, J. D., & Bergles, D. E. (2013). Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nature Neuroscience, 16(5), 571–579. doi: 10.1038/nn.3357.
Kirby, L., Jin, J., Cardona, J. G., Smith, M. D., Martin, K. A., Wang, J., Strasburger, H., Herbst, L., Alexis, M., Karnell, J., Davidson, T., Dutta, R., Goverman, J., Bergles, D., & Calabresi, P. A. (2019). Oligodendrocyte precursor cells present antigen and are cytotoxic targets in inflammatory demyelination. Nature Communications, 10(1), 3887. doi: 10.1038/s41467-019-11638-3.
Kitamura, Y., Inden, M., Minamino, H., Abe, M., Takata, K., & Taniguchi, T. (2010). The 6-hydroxydopamine-induced nigrostriatal neurodegeneration produces microglia-like NG2 glial cells in the rat substantia nigra. Glia, 58(14), 1686–1700. doi: 10.1002/glia.21040.
Krasemann, S., Madore, C., Cialic, R., Baufeld, C., Calcagno, N., El Fatimy, R., Beckers, L., O’Loughlin, E., Xu, Y., Fanek, Z., Greco, D. J., Smith, S. T., Tweet, G., Humulock, Z., Zrzavy, T., Conde-Sanroman, P., Gacias, M., Weng, Z., Chen, H., Tjon, E., … Butovsky, O. (2017). The TREM2-APOE Pathway Drives the Transcriptional Phenotype of Dysfunctional Microglia in Neurodegenerative Diseases. Immunity, 47(3), 566–581.e9. doi: 10.1016/j.immuni.2017.08.008.
Lazzarini, M., Martin, S., Mitkovski, M., Vozari, R.R., Stühmer, W., Bel Del, E. (2013). Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model. Glia, 61, 1084-100. doi: 10.1002/glia.22496.
Lerner, R.P., Francardo, V., Fujita, K., Bimpisidis, Z., Jourdain, V.A., Tang, C.C., Dewey, S.L., Chaly, T., Cenci, M.A., Eidelberg, D. (2017). Levodopa-induced abnormal involuntary movements correlate with altered permeability of the blood-brain-barrier in the basal ganglia. Scientific Reports, 7, 16005. doi: 10.1038/s41598-017-16228-1.
Lerner, T. N., Shilyansky, C., Davidson, T. J., Evans, K. E., Beier, K. T., Zalocusky, K. A., Crow, A. K., Malenka, R. C., Luo, L., Tomer, R., & Deisseroth, K. (2015). Intact-Brain Analyses Reveal Distinct Information Carried by SNc Dopamine Subcircuits. Cell, 162(3), 635–647. doi: 10.1016/j.cell.2015.07.014.
Levine J. (2016). The reactions and role of NG2 glia in spinal cord injury. Brain Research, 1638(Pt B), 199–208. doi: 10.1016/j.brainres.2015.07.026
Levine, J. M., Enquist, L. W., & Card, J. P. (1998). Reactions of oligodendrocyte precursor cells to alpha herpesvirus infection of the central nervous system. Glia, 23(4), 316–328. PMID: 9671962.
Lin, S., & Bergles, D. E. (2004). Synaptic signaling between GABAergic interneurons and oligodendrocyte precursor cells in the hippocampus. Nature Neuroscience. 7(1), 24–32. doi: 10.1038/nn1162.
Liu, Y., & Aguzzi, A. (2020). NG2 glia are required for maintaining microglia homeostatic state. Glia, 68, 345–355. doi: 10.1002/glia.23721.
Lundblad, M., Andersson, M., Winkler, C., Kirik, D., Wierup, N., Cenci, M.A. (2002). Pharmacological validation of behavioural measures of akinesia and dyskinesia in a rat model of Parkinson’s disease. European Journal of Neuroscience, 15, 120-32. doi: 10.1046/j.0953-816x.2001.01843. x.
Maldonado, P. P., & Angulo, M. C. (2015). Multiple Modes of Communication between Neurons and Oligodendrocyte Precursor Cells. The Neuroscientist 21(3), 266–276. doi: 10.1177/1073858414530784.
Martín-López, E., García-Marques, J., Núñez-Llaves, R., & López-Mascaraque, L. (2013). Clonal astrocytic response to cortical injury. PloS one, 8(9), e74039. doi: 10.1371/journal.pone.0074039.
Meissner, W., Ravenscroft, P., Reese, R., Harnack, D., Morgenstern, R., Kupsch, A., Klitgaard, H., Bioulac, B., Gross, C. E., Bezard, E., Boraud, T. (2006). Increased slow oscillatory activity in substantia nigra pars reticulata triggers abnormal involuntary movements in the 6-OHDA-lesioned rat in the presence of excessive extracellular striatal dopamine. Neurobiology of Disease, 22, 586-98. doi: 10.1016/j.nbd.2006.01.009.
Mulas, G., Espa, E., Fenu, S., Spiga, S., Cossu, G., Pillai, E., et al. (2016). Differential induction of dyskinesia and neuroinflammation by pulsatile versus continuous L-DOPA delivery in the 6-OHDA model of Parkinson’s disease. Experimental Neurology, 286, 83-92. doi: 10.1016/j.expneurol.2016.09.013.
Muñoz, A., Garrido-Gil, P., Dominguez-Meijide, A., Labandeira-Garcia, J.L. (2014). Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson’s disease. Involvement of vascular endothelial growth factor and interleukin-1β. Experimental Neurology, 261, 720-432. doi: 10.1016/j.expneurol.2014.08.019.
Nakano, M., Tamura, Y., Yamato, M., Kume, S., Eguchi, A., Takata, K., Watanabe, Y., & Kataoka, Y. (2017). NG2 glial cells regulate neuroimmunological responses to maintain neuronal function and survival. Scientific reports, 7, 42041. doi: 10.1038/srep42041.
Nielsen, H. M., Ek, D., Avdic, U., Orbjörn, C., Hansson, O., Netherlands Brain Bank, Veerhuis, R., Rozemuller, A. J., Brun, A., Minthon, L., & Wennström, M. (2013). NG2 cells, a new trail for Alzheimer’s disease mechanisms?. Acta neuropathologica communications, 1(1), 7. doi: 10.1186/2051-5960-1-7.
Nishiyama, A., Komitova, M., Suzuki, R., & Zhu, X. (2009). Polydendrocytes (NG2 cells): multifunctional cells with lineage plasticity. Nature reviews. Neuroscience, 10(1), 9–22. doi: 10.1038/nrn2495
Nishiyama, A., Yu, M., Drazba, J. A., & Tuohy, V. K. (1997). Normal and reactive NG2+ glial cells are distinct from resting and activated microglia. Journal of neuroscience research, 48(4), 299–312. doi: 10.1002/(sici)1097-4547(19970515)48:4<299::aid-jnr2>3.0.co;2-6.
Nishiyama, A., Yu, M., Drazba, J. A., Tuohy, V. K. (1997). Normal and reactive NG2+ glial cells are distinct from resting and activated microglia. Journal of Neuroscience Research, 48, 299-312. doi: 10.1002/(sici)1097-4547(19970515)48:4<299::aid-jnr2>3.0.co;2-6.
Obeso, J. A., Olanow, C. W., Nutt, J.G. (2000). Levodopa motor complications in Parkinson’s disease. Trends Neuroscience, 23, S2-7. doi: 10.1016/s1471-1931(00)00031-8. PMID: 11052214.
Obeso, J. A., Stamelou, M., Goetz, C. G., Poewe, W., Lang, A. E., Weintraub, D., Burn, D., Halliday, G. M., Bezard, E., Przedborski, S., Lehericy, S., Brooks, D. J., Rothwell, J. C., Hallett, M., DeLong, M. R., Marras, C., Tanner, C. M., Ross, G. W., Langston, J. W., Klein, C., … Stoessl, A. J. (2017). Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy. Movement disorders : official journal of the Movement Disorder Society, 32(9), 1264–1310. https://doi.org/10.1002/mds.27115.
Ohlin, K. E., Francardo, V., Lindgren, H.S., Sillivan, S. E., O’Sullivan, S. S., Luksik, A. S., Vassoler, F. M., Lees, A. J., Konradi, C., Cenci, M. A. (2011). Vascular endothelial growth factor is upregulated by L-dopa in the parkinsonian brain: implications for the development of dyskinesia. Brain. 134(Pt 8): 2339-57. doi: 10.1093/brain/awr165.
Ohlin, K. E., Sebastianutto, I., Adkins, C. E., Lundblad, C., Lockman, P. R., Cenci, M. A. (2012). Impact of L-DOPA treatment on regional cerebral blood flow and metabolism in the basal ganglia in a rat model of Parkinson’s disease. Neuroimage, 61, 228-39. doi: 10.1016/j.neuroimage.2012.02.066.
Okada, S., Hara, M., Kobayakawa, K., Matsumoto, Y., Nakashima, Y. (2018). Astrocyte reactivity and astrogliosis after spinal cord injury. Neuroscience Research, 126, 39-43. doi: 10.1016/j.neures.2017.10.004.
Olanow, C. W., Agid, Y., Mizuno, Y., Albanese, A., Bonuccelli, U., Damier, P., De Yebenes, J., Gershanik, O., Guttman, M., Grandas, F., Hallett, M., Hornykiewicz, O., Jenner, P., Katzenschlager, R., Langston, W.J., LeWitt, P., Melamed, E., Mena, M. A., Michel, P. P., Mytilineou, C., Obeso, J. A., Poewe, W., Quinn, N., Raisman-Vozari, R., Rajput, A. H., Rascol, O., Sampaio, C., Stocchi, F. (2004). Levodopa in the treatment of Parkinson’s disease: current controversies. Movement Disorders, 19, 997-1005. doi: 10.1002/mds.20243.
Padovan-Neto, F. E., Cavalcanti-Kiwiatkoviski, R., Carolino, R. O. G., Anselmo-Franci, J., Del Bel, E. (2015). Effects of prolonged neuronal nitric oxide synthase inhibition on the development and expression of l-DOPA-induced dyskinesia in 6-OHDA-lesioned rats. Neuropharmacology, 89, 87-97. doi: 10.1016/j.neuropharm.2014.08.019 0028-3908.
Padovan-Neto, F.E., Echeverry, M.B., Tumas, V., Del-Bel, E.A. (2009). Nitric oxide synthase inhibition attenuates l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neuroscience, 159, 927-35. doi: 10.1016/j.neuroscience.2009.01.034.
Paxinos, G., Watson, C. (2004). The Rat Brain in Stereotaxic Coordinates - The New Coronal Set. Elsevier.
Peters A. (2004). A fourth type of neuroglial cell in the adult central nervous system. Journal of neurocytology, 33(3), 345–357. doi: 10.1023/B:NEUR.0000044195.64009.27.
Picconi, B., Bagetta, V., Ghiglieri, V., Paillè, V., Di Filippo, M., Pendolino, V., Tozzi, A., Giampà, C., Fusco, F.R., Sgobio, C., Calabresi, P. (2011). Inhibition of phosphodiesterases rescues striatal long-term depression and reduces levodopa-induced dyskinesia. Brain, 134, 375-87. doi: 10.1093/brain/awq342.
Picconi, B., Centonze, D., Håkansson, K., Bernardi, G. (2003). Greengard P, Fisone G, Cenci MA, Calabresi P. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nature Neuroscience, 6, 501-6. doi: 10.1038/nn1040.
Ramírez-García, G., Palafox-Sánchez, V., Limón, I.D. (2015). Nitrosative and cognitive effects of chronic L-DOPA administration in rats with intra-nigral 6-OHDA lesion. Neuroscience. 290, 492-508. doi: 10.1016/j.neuroscience.2015.01.047.
Richardson, W. D., Young, K. M., Tripathi, R. B., McKenzie, I. (2011). NG2-glia as multipotent neural stem cells: fact or fantasy? Neuron, 70, 661-73. doi: 10.1016/j.neuron.2011.05.013.
Robelet, S., Melon, C., Guillet, B., Salin, P., Kerkerian-Le, G. L. (2004). Chronic L-DOPA treatment increases extracellular glutamate levels and GLT1 expression in the basal ganglia in a rat model of Parkinson’s disease. European Journal of Neuroscience, 20,1255-66. doi: 10.1111/j.1460-9568.2004.03591.x.
Schilling, T., & Eder, C. (2015). Microglial K(+) channel expression in young adult and aged mice. Glia, 63(4), 664–672. doi: 10.1002/glia.22776
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature methods, 9(7), 671–675. doi: 10.1038/nmeth.2089.
Smith, Y., Raju, D. V., Pare, J. F., Sidibe, M. (2004). The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neuroscience, 27, 520-7. doi: 10.1016/j.tins.2004.07.004.
Spinnewyn, B., Charnet, C., Cornet, S., Roubert, V., Chabrier, P. E., Auguet, M. (2010). An improved model to investigate the efficacy of antidyskinetic agents in hemiparkinsonian rats. Fundamental & Clinical Pharmacology, 25, 608-18. doi: 10.1111/j.1472-8206.2010.00883.x.
Steiner, B., Winter, C., Hosman, K., Siebert, E., Kempermann, G., Petrus, D. S., & Kupsch, A. (2006). Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Experimental Neurology, 199(2), 291–300. doi: 10.1016/j.expneurol.2005.11.004
Sypecka, J., & Sarnowska, A. (2014). The neuroprotective effect exerted by oligodendroglial progenitors on ischemically impaired hippocampal cells. Molecular Neurobiology, 49(2), 685–701. doi: 10.1007/s12035-013-8549-9
Teema, A. M., Zaitone, S. A., Moustafa, Y. M. (2016). Ibuprofen or piroxicam protects nigral neurons and delays the development of l-dopa induced dyskinesia in rats with experimental Parkinsonism: Influence on angiogenesis. Neuropharmacology, 107, 432-450. doi: 10.1016/j.neuropharm.2016.03.034.
Vaillancourt, D. E., & Lehericy, S. (2018). Illuminating basal ganglia and beyond in Parkinson’s disease. Movement Disorders 33(9), 1373–1375. doi: 10.1002/mds.27483
Valny, M., Honsa, P., Waloschkova, E., et al. (2018). A single-cell analysis reveals multiple roles of oligodendroglial lineage cells during post-ischemic regeneration. Glia, 66(5), 1068-1081. doi: 10.1002/glia.23301.
Wang, C., Zhang, C. J., Martin, B. N., Bulek, K., Kang, Z., Zhao, J., Bian, G., Carman, J. A., Gao, J., Dongre, A., Xue, H., Miller, S. D., Qian, Y., Hambardzumyan, D., Hamilton, T., Ransohoff, R. M., & Li, X. (2017). IL-17 induced NOTCH1 activation in oligodendrocyte progenitor cells enhances proliferation and inflammatory gene expression. Nature Communications, 8, 15508. doi: 10.1038/ncomms15508
Wennström M, Hellsten J, Tingström A. (2004). Electroconvulsive seizures induce proliferation of NG2-expressing glial cells in adult rat amygdala. Biological Psychiatry, 55, 464-71. doi: 10.1016/j.biopsych.2003.11.011.
Winkler, C., Kirik, D., Björklund, A., & Cenci, M. A. (2002). L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of parkinson’s disease: relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease, 10(2), 165–186. doi: 10.1006/nbdi.2002.0499
Winkler, C., Kirik, D., Björklund, A., Cenci, M.A. (2002). L-DOPA-induced dyskinesia in the intrastriatal 6-hydroxydopamine model of Parkinson’s disease: Relation to motor and cellular parameters of nigrostriatal function. Neurobiology of Disease, 10, 165-86. doi: 10.1006/nbdi.2002.0499.
Xu, G., Wang, W., & Zhou, M. (2014). Spatial organization of NG2 glial cells and astrocytes in rat hippocampal CA1 region. Hippocampus, 24(4), 383–395. doi: 10.1002/hipo.22232
Zhang, S. Z., Wang, Q. Q., Yang, Q. Q., Gu, H. Y., Yin, Y. Q., Li, Y. D., Hou, J. C., Chen, R., Sun, Q. Q., Sun, Y. F., Hu, G., & Zhou, J. W. (2019). NG2 glia regulate brain innate immunity via TGF-β2/TGFBR2 axis. BMC medicine, 17(1), 204. doi: 10.1186/s12916-019-1439-x.
Zhu, X., Hill, R. A., Dietrich, D., Komitova, M., Suzuki, R., & Nishiyama, A. (2011). Age-dependent fate and lineage restriction of single NG2 cells. Development (Cambridge, England), 138(4), 745–753. doi: 10.1242/dev.047951.