Reference:
- (EnvironmentalProtectionAgency), U. S. E. (2017). Updates To The
Demographic And Spatial Allocation Models To Produce Integrated
Climate And Land Use Scenarios (ICLUS) (Final Report, Version 2), U.S.
Environmental Protection Agency, Washington, DC.
- (GCX), G. C. E. (2020). ICLUS v2.1 land use projections for the Fourth
National Climate Assessment (SSP5), U.S. EPA (Environmental Protection
Agency).
- Abbaspour, K. (2015). ”SWAT Calibration and Uncertainty Programs—A
User Manual.” Swiss Federal Institute of Aquatic Science and
Technology: Eawag, Switzerland .
- Abbaspour, K. C., et al. (2004). ”Estimating uncertain flow and
transport parameters using a sequential uncertainty fitting
procedure.” Vadose Zone Journal 3 (4): 1340-1352.
- Abbaspour, K. C., et al. (2015). ”A continental-scale hydrology and
water quality model for Europe: Calibration and uncertainty of a
high-resolution large-scale SWAT model.” Journal of hydrology524 : 733-752.
- Abbaspour, K. C., et al. (2007). SWAT-CUP calibration and
uncertainty programs for SWAT . MODSIM 2007 international congress on
modelling and simulation, modelling and simulation society of
Australia and New Zealand.
- Abbaspour, K. C., et al. (2007). ”Modelling hydrology and water
quality in the pre-alpine/alpine Thur watershed using SWAT.”Journal of hydrology 333 (2-4): 413-430.
- Allen, R. G. (1986). ”A Penman for all seasons.” Journal of
Irrigation and Drainage Engineering 112 (4): 348-368.
- Allen, R. G., et al. (1989). ”Operational estimates of reference
evapotranspiration.” Agronomy journal 81 (4): 650-662.
- Andersson, J. C., et al. (2012). ”Improved SWAT Model Performance With
Time‐Dynamic Voronoi Tessellation of Climatic Input Data in Southern
Africa 1.” JAWRA Journal of the American Water Resources
Association 48 (3): 480-493.
- Arnell, N. W. and S. N. Gosling (2013). ”The impacts of climate change
on river flow regimes at the global scale.” Journal of
hydrology 486 : 351-364.
- Arnold, J., et al. (2011). ”Soil and Water Assessment Tool
input/output file documentation: Version 2009.” Texas Water
Resources Institute Technical Report 365 .
- Arnold, J., et al. (2013). SWAT 2012 input/output documentation, Texas
Water Resources Institute.
- Arnold, J. G. and N. Fohrer (2005). ”SWAT2000: current capabilities
and research opportunities in applied watershed modelling.”Hydrological Processes: An International Journal19 (3): 563-572.
- Arnold, J. G., et al. (2012). ”SWAT: Model use, calibration, and
validation.” Transactions of the ASABE 55 (4):
1491-1508.
- Arnold, J. G., et al. (1998). ”Large area hydrologic modeling and
assessment part I: model development 1.” JAWRA Journal of the
American Water Resources Association 34 (1): 73-89.
- ASABE, A. S. o. A. a. B. E. (Jun. 2017). Guidelines for Calibrating,
Validating, and Evaluating Hydrologic and Water Quality (H/WQ) Models.
2950 Niles Road, St. Joseph, MI, US.
- Bierwagen, B. G., et al. (2010). ”National housing and impervious
surface scenarios for integrated climate impact assessments.”Proceedings of the National Academy of Sciences107 (49): 20887-20892.
- Bureau of Reclamation, C. A. G., Climate Central, Lawrence Livermore
National Laboratory, Santa Clara University, Scripps Institution of
Oceanography, U.S. Army Corps of Engineers, U.S. Geological Survey
(2013). Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections.
- Carter, L. M., et al. (2014). Southeast and the Caribbean.Climate change impacts in the United States: The third national
climate assessment : 396-417.
- Cecílio, R. A., et al. (2019). ”Modeling the influence of forest cover
on streamflows by different approaches.” Catena 178 :
49-58.
- Chanapathi, T., et al. (2018). ”Analysis of rainfall extremes and
water yield of Krishna river basin under future climate scenarios.”Journal of Hydrology: Regional Studies 19 : 287-306.
- Chen, J., et al. (2011). ”Overall uncertainty study of the
hydrological impacts of climate change for a Canadian watershed.”Water Resources Research 47 (12).
- Chen, Y., et al. (2017). ”Modeling the effects of land use change from
cotton (Gossypium hirsutum L.) to perennial bioenergy grasses on
watershed hydrology and water quality under changing climate.”Agricultural Water Management 192 : 198-208.
- Chen, Y., et al. (2019). ”Simulating the impacts of climate change on
hydrology and crop production in the Northern High Plains of Texas
using an improved SWAT model.” Agricultural Water Management221 : 13-24.
- Cho, J., et al. (2009). ”Effect of spatial distribution of rainfall on
temporal and spatial uncertainty of SWAT output.” Transactions
of the ASABE 52 (5): 1545-1556.
- Christensen, J. H. and O. B. Christensen (2007). ”A summary of the
PRUDENCE model projections of changes in European climate by the end
of this century.” Climatic change 81 (1): 7-30.
- Cisneros, J., et al. (2014). Freshwater resources.
- Clarke, L., et al. (2007). ”Scenarios of greenhouse gas emissions and
atmospheric concentrations.”
- Diffenbaugh, N. S., et al. (2013). ”Robust increases in severe
thunderstorm environments in response to greenhouse forcing.”Proceedings of the National Academy of Sciences110 (41): 16361-16366.
- Diffenbaugh, N. S., et al. (2015). ”Anthropogenic warming has
increased drought risk in California.” Proceedings of the
National Academy of Sciences 112 (13): 3931-3936.
- Dile, Y. T. and R. Srinivasan (2014). ”Evaluation of CFSR climate data
for hydrologic prediction in data‐scarce watersheds: an application in
the Blue Nile River Basin.” JAWRA Journal of the American Water
Resources Association 50 (5): 1226-1241.
- Donner, L. J., et al. (2011). ”The dynamical core, physical
parameterizations, and basic simulation characteristics of the
atmospheric component AM3 of the GFDL global coupled model CM3.”Journal of climate 24 (13): 3484-3519.
- Emanuel, K. A. (2013). ”Downscaling CMIP5 climate models shows
increased tropical cyclone activity over the 21st century.”Proceedings of the National Academy of Sciences110 (30): 12219-12224.
- Ficklin, D. L. and B. L. Barnhart (2014). ”SWAT hydrologic model
parameter uncertainty and its implications for hydroclimatic
projections in snowmelt-dependent watersheds.” Journal of
hydrology 519 : 2081-2090.
- Ficklin, D. L., et al. (2016). ”Assessing differences in
snowmelt-dependent hydrologic projections using CMIP3 and CMIP5
climate forcing data for the western United States.” Hydrology
Research 47 (2): 483-500.
- Field, C. B., et al. (2012). Managing the risks of extreme
events and disasters to advance climate change adaptation: special
report of the intergovernmental panel on climate change , Cambridge
University Press.
- Flato, G., et al. (2014). Evaluation of climate models. Climate
change 2013: the physical science basis. Contribution of Working Group
I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change , Cambridge University Press: 741-866.
- Fowler, H. J., et al. (2007). ”Linking climate change modelling to
impacts studies: recent advances in downscaling techniques for
hydrological modelling.” International Journal of Climatology: A
Journal of the Royal Meteorological Society 27 (12):
1547-1578.
- Fu, G., et al. (2013). ”Modelling runoff with statistically downscaled
daily site, gridded and catchment rainfall series.” Journal of
hydrology 492 : 254-265.
- Fujino, J., et al. (2006). ”Multi-gas mitigation analysis on
stabilization scenarios using AIM global model.” The Energy
Journal (Special Issue# 3).
- Fuka, D. R., et al. (2014). ”Using the Climate Forecast System
Reanalysis as weather input data for watershed models.”Hydrological processes 28 (22): 5613-5623.
- Galván, L., et al. (2014). ”Rainfall estimation in SWAT: An
alternative method to simulate orographic precipitation.”Journal of hydrology 509 : 257-265.
- Gao, Y., et al. (2015). ”Persistent cold air outbreaks over North
America in a warming climate.” Environmental Research Letters10 (4): 044001.
- Gassman, P. W., et al. (2007). ”The soil and water assessment tool:
historical development, applications, and future research directions.”Transactions of the ASABE 50 (4): 1211-1250.
- Gent, P. R., et al. (2011). ”The community climate system model
version 4.” Journal of climate 24 (19): 4973-4991.
- Georgakakos, A., et al. (2014). Chapter 3: Water resources. Climate
Change Impacts in the United States: The Third National Climate
Assessment U.S. Global Change Research Program: 69–112.
- Ghoraba, S. M. (2015). ”Hydrological modeling of the Simly Dam
watershed (Pakistan) using GIS and SWAT model.” Alexandria
Engineering Journal 54 (3): 583-594.
- Green, C. and A. Van Griensven (2008). ”Autocalibration in hydrologic
modeling: Using SWAT2005 in small-scale watersheds.”Environmental Modelling & Software 23 (4): 422-434.
- Groisman, P. Y., et al. (2005). ”Trends in intense precipitation in
the climate record.” Journal of climate 18 (9):
1326-1350.
- Gupta, H. V., et al. (1999). ”Status of automatic calibration for
hydrologic models: Comparison with multilevel expert calibration.”Journal of Hydrologic Engineering 4 (2): 135-143.
- Hidalgo León, H. G., et al. (2008). ”Downscaling with constructed
analogues: Daily precipitation and temperature fields over the United
States.”
- Hinson, A. S., et al. (2015). Choctawhatchee, Pea and Yellow Rivers
Comprehensive Watershed Management Plan, Geological Survey of Alabama
Tuscaloosa, Alabama, US.
- Hoyos, N., et al. (2019). ”Modeling Streamflow Response to Persistent
Drought in a Coastal Tropical Mountainous Watershed, Sierra Nevada De
Santa Marta, Colombia.” Water 11 (1): 94.
- Huang, H. j., et al. (2008). ”Effect of growing watershed
imperviousness on hydrograph parameters and peak discharge.”Hydrological Processes: An International Journal22 (13): 2075-2085.
- Ingram, K. T., et al. (2013). Forests and climate change in the
Southeast USA. Climate of the Southeast United States ,
Springer: 165-189.
- Joh, H.-K., et al. (2011). ”Assessing climate change impact on
hydrological components of a small forest watershed through SWAT
calibration of evapotranspiration and soil moisture.”Transactions of the ASABE 54 (5): 1773-1781.
- Katz, R. W., et al. (2003). Stochastic modeling of the effects of
large-scale circulation on daily weather in the southeastern US.Issues in the Impacts of Climate Variability and Change on
Agriculture , Springer: 189-216.
- Khalid, K., et al. (2016). ”Sensitivity analysis in watershed model
using SUFI-2 algorithm.” Procedia Eng 162 : 441-447.
- Kundzewicz, Z. W., et al. (2007). ”Freshwater resources and their
management.”
- Legates, D. R. and G. J. McCabe Jr (1999). ”Evaluating the use of
“goodness‐of‐fit” measures in hydrologic and hydroclimatic model
validation.” Water Resources Research 35 (1): 233-241.
- Li, H., et al. (2010). ”Bias correction of monthly precipitation and
temperature fields from Intergovernmental Panel on Climate Change AR4
models using equidistant quantile matching.” Journal of
Geophysical Research: Atmospheres 115 (D10).
- Mahmood, R., et al. (2010). ”Impacts of land use/land cover change on
climate and future research priorities.” Bulletin of the
American Meteorological Society 91 (1): 37-46.
- Manuel, J. (2008). Drought in the southeast: lessons for water
management, National Institute of Environmental Health Sciences.
- Maraun, D., et al. (2010). ”Precipitation downscaling under climate
change: Recent developments to bridge the gap between dynamical models
and the end user.” Reviews of Geophysics 48 (3).
- Masih, I., et al. (2011). ”Assessing the Impact of Areal Precipitation
Input on Streamflow Simulations Using the SWAT Model 1.” JAWRA
Journal of the American Water Resources Association 47 (1):
179-195.
- Masui, T., et al. (2011). ”An emission pathway for stabilization at 6
Wm− 2 radiative forcing.” Climatic change 109 (1-2):
59.
- McNulty, S., et al. (2013). Forests and climate change in the
Southeast USA. Climate of the Southeast United States:
Variability, change, impacts, and vulnerability . Washington, DC:
Island Press, Springer: 165-189.
- Meehl, G. A., et al. (2012). ”Mechanisms contributing to the warming
hole and the consequent US east–west differential of heat extremes.”Journal of climate 25 (18): 6394-6408.
- Meehl, G. A., et al. (2007). ”Global climate projections.”
- Meinshausen, M., et al. (2011). ”The RCP greenhouse gas concentrations
and their extensions from 1765 to 2300.” Climatic change109 (1-2): 213.
- Monteith, J. L. (1965). Evaporation and environment . Symposia
of the society for experimental biology, Cambridge University Press
(CUP) Cambridge.
- Moriasi, D., et al. (2012). ”Hydrologic and water quality models: Use,
calibration, and validation.” Transactions of the ASABE55 (4): 1241-1247.
- Moriasi, D. N., et al. (2007). ”Model evaluation guidelines for
systematic quantification of accuracy in watershed simulations.”Transactions of the ASABE 50 (3): 885-900.
- Morris, M. D. (1991). ”Factorial sampling plans for preliminary
computational experiments.” Technometrics 33 (2):
161-174.
- Moss, R., et al. (2008). Towards New Scenarios for Analysis of
Emissions . Climate Change, Impacts, and Response Strategies (IPCC
Expert Meeting Report, IPCC, Geneva, 2008).
- Moss, R. H., et al. (2010). ”The next generation of scenarios for
climate change research and assessment.” Nature463 (7282): 747-756.
- MRLC-Consortium, M.-R. L. C. (2019). Retrieved 11 Dec. 2019, from
https://www.mrlc.gov/data.
- Nakicenovic, N., et al. (2000). Special report on emissions
scenarios (SRES), a special report of Working Group III of the
intergovernmental panel on climate change , Cambridge University
Press.
- Nash, J. E. and J. V. Sutcliffe (1970). ”River flow forecasting
through conceptual models part I—A discussion of principles.”Journal of hydrology 10 (3): 282-290.
- Neitsch, S. L., et al. (2011). Soil and water assessment tool
theoretical documentation version 2009, Texas Water Resources
Institute.
- NRC, N. R. C. and C. R. C. CRC (2005). Radiative Forcing of
Climate Change: Expanding the Concept and Addressing Uncertainties ,
National Academies Press.
- O’Neil, P., et al. (2006). ”Habitat and biological assessment of the
Terrapin Creek watershed and development of the index of biotic
integrity for the Coosa and Tallapoosa River systems.” Open-File
Report 601 .
- Osei, M. A., et al. (2019). ”The impact of climate and land-use
changes on the hydrological processes of Owabi catchment from SWAT
analysis.” Journal of Hydrology: Regional Studies 25 :
100620.
- Ouyang, F., et al. (2015). ”Impacts of climate change under CMIP5 RCP
scenarios on streamflow in the Huangnizhuang catchment.”Stochastic environmental research and risk assessment29 (7): 1781-1795.
- Pachauri, R. K., et al. (2014). Climate change 2014: synthesis
report. Contribution of Working Groups I, II and III to the fifth
assessment report of the Intergovernmental Panel on Climate Change ,
Ipcc.
- Pandey, B. K., et al. (2019). ”Climate change impact assessment on
blue and green water by coupling of representative CMIP5 climate
models with physical based hydrological model.” Water resources
management 33 (1): 141-158.
- Pierce, D. and D. Cayan (2016). ”Downscaling humidity with localized
constructed analogs (LOCA) over the conterminous united states.”Climate dynamics 47 (1-2): 411-431.
- Pierce, D. W., et al. (2015). ”Improved bias correction techniques for
hydrological simulations of climate change.” Journal of
Hydrometeorology 16 (6): 2421-2442.
- Pierce, D. W., et al. (2014). ”Statistical downscaling using localized
constructed analogs (LOCA).” Journal of Hydrometeorology15 (6): 2558-2585.
- Poloczanska, E., et al. (2018). The IPCC Special Report on the
Ocean and Cryosphere in a Changing Climate . 2018 Ocean Sciences
Meeting, AGU.
- Price, K. (2011). ”Effects of watershed topography, soils, land use,
and climate on baseflow hydrology in humid regions: A review.”Progress in physical geography 35 (4): 465-492.
- Qiu, J., et al. (2019). ”Quantifying effects of conservation practices
on non-point source pollution in the Miyun Reservoir Watershed,
China.” Environmental monitoring and assessment191 (9): 582.
- Riahi, K., et al. (2007). ”Scenarios of long-term socio-economic and
environmental development under climate stabilization.”Technological Forecasting and Social Change 74 (7):
887-935.
- Riahi, K., et al. (2011). ”RCP 8.5—A scenario of comparatively high
greenhouse gas emissions.” Climatic change 109 (1-2):
33.
- Riahi, K., et al. (2017). ”The shared socioeconomic pathways and their
energy, land use, and greenhouse gas emissions implications: an
overview.” Global Environmental Change 42 : 153-168.
- Ritchie, J. T. (1972). ”Model for predicting evaporation from a row
crop with incomplete cover.” Water Resources Research8 (5): 1204-1213.
- Rose, S. and N. E. Peters (2001). ”Effects of urbanization on
streamflow in the Atlanta area (Georgia, USA): a comparative
hydrological approach.” Hydrological processes 15 (8):
1441-1457.
- Roth, V. and T. Lemann (2016). ”Comparing CFSR and conventional
weather data for discharge and soil loss modelling with SWAT in small
catchments in the Ethiopian Highlands.” Hydrology and Earth
System Sciences 20 (2): 921-934.
- Saha, S., et al. (2010). ”The NCEP climate forecast system
reanalysis.” Bulletin of the American Meteorological Society91 (8): 1015-1058.
- Saltelli, A., et al. (2004). Sensitivity analysis in practice: a
guide to assessing scientific models , Wiley Online Library.
- Sanderson, B. M., et al. (2015). ”Addressing interdependency in a
multimodel ensemble by interpolation of model properties.”Journal of climate 28 (13): 5150-5170.
- Sanderson, B. M., et al. (2015). ”A representative democracy to reduce
interdependency in a multimodel ensemble.” Journal of climate28 (13): 5171-5194.
- Santhi, C., et al. (2001). ”Validation of the swat model on a large
river basin with point and nonpoint sources 1.” JAWRA Journal of
the American Water Resources Association 37 (5): 1169-1188.
- Schmidt, G. A., et al. (2006). ”Present-day atmospheric simulations
using GISS ModelE: Comparison to in situ, satellite, and reanalysis
data.” Journal of climate 19 (2): 153-192.
- Seaber, P. R., et al. (1987). ”Hydrologic unit maps.”
- Sleeter, B. M., et al. (2018). Land Cover and Land-Use Change.Impacts, Risks, and Adaptation in the United States: Fourth
National Climate Assessment . D. R. Reidmiller, C. W. Avery, D. R.
Easterling et al. U.S. Global Change Research Program, Washington, DC,
USA. Volume II: 202–231.
- Smith, S. J. and T. Wigley (2006). ”Multi-gas forcing stabilization
with Minicam.” The Energy Journal (Special Issue# 3).
- Sobel, A. H., et al. (2016). ”Human influence on tropical cyclone
intensity.” Science 353 (6296): 242-246.
- Sohl, T. L., et al. (2014). ”Spatially explicit modeling of 1992–2100
land cover and forest stand age for the conterminous United States.”Ecological Applications 24 (5): 1015-1036.
- Sohl, T. L., et al. (2016). ”Divergent projections of future land use
in the United States arising from different models and scenarios.”Ecological Modelling 337 : 281-297.
- SoilSurvey (2019). ”National Value Added Look Up (value) Table
Database for the Gridded Soil Survey Geographic (gSSURGO) Database for
the United States of America and the Territories, Commonwealths, and
Island Nations served by the USDA-NRCS.” Retrieved 10 July 2019 2019,
from https://gdg.sc.egov.usda.gov/.
- SoilSurvey (2019). ”Natural Resources Conservation Service, United
States Department of Agriculture.” Retrieved 21 Sep. 2019, 2019, from
http://websoilsurvey.nrcs.usda.gov/.
- Sudheer, K., et al. (2011). ”Application of a pseudo simulator to
evaluate the sensitivity of parameters in complex watershed models.”Environmental Modelling & Software 26 (2): 135-143.
- Sun, G. (2013). Impacts of climate change and variability on water
resources in the Southeast USA. Climate of the Southeast United
States , Springer: 210-236.
- Sunde, M. G., et al. (2017). ”Integrating downscaled CMIP5 data with a
physically based hydrologic model to estimate potential climate change
impacts on streamflow processes in a mixed‐use watershed.”Hydrological processes 31 (9): 1790-1803.
- Taylor, K. E., et al. (2011). CMIP5 data reference syntax (DRS)
and controlled vocabularies . PCMDI.
- Taylor, K. E., et al. (2012). ”An overview of CMIP5 and the experiment
design.” Bulletin of the American Meteorological Society93 (4): 485-498.
- Teutschbein, C. and J. Seibert (2010). ”Regional climate models for
hydrological impact studies at the catchment scale: a review of recent
modeling strategies.” Geography Compass 4 (7): 834-860.
- Thomson, A. M., et al. (2011). ”RCP4. 5: a pathway for stabilization
of radiative forcing by 2100.” Climatic change109 (1-2): 77.
- Trail, M., et al. (2013). ”Potential impact of land use change on
future regional climate in the Southeastern US: reforestation and crop
land conversion.” Journal of Geophysical Research: Atmospheres118 (20): 11,577-511,588.
- Tuo, Y., et al. (2016). ”Evaluation of precipitation input for SWAT
modeling in Alpine catchment: A case study in the Adige river basin
(Italy).” Science of the total environment 573 : 66-82.
- U.S.GeologicalSurvey (2017). ”1/3rd arc-second Digital Elevation
Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection:
U.S. Geological Survey.”
- USWeatherService (2019). ”U.S. Climate Data.” Retrieved 11 Dec. 2019,
2019, from
www.usclimatedata.com/.
- Van Vuuren, D. P., et al. (2007). ”Stabilizing greenhouse gas
concentrations at low levels: an assessment of reduction strategies
and costs.” Climatic change 81 (2): 119-159.
- Van Vuuren, D. P., et al. (2011). ”The representative concentration
pathways: an overview.” Climatic change 109 (1-2): 5.
- Van Vuuren, D. P., et al. (2011). ”RCP2. 6: exploring the possibility
to keep global mean temperature increase below 2 C.” Climatic
change 109 (1-2): 95.
- Veettil, A. V. and A. K. Mishra (2016). ”Water security assessment
using blue and green water footprint concepts.” Journal of
hydrology 542 : 589-602.
- Villarini, G., et al. (2009). ”On the stationarity of annual flood
peaks in the continental United States during the 20th century.”Water Resources Research 45 (8).
- Villarini, G. and J. A. Smith (2010). ”Flood peak distributions for
the eastern United States.” Water Resources Research46 (6).
- Vose, R., et al. (2017). Temperature changes in the United States.Climate Science Special Report: Fourth National Climate
Assessment . D. J. Wuebbles, D. W. Fahey, K. A. Hibbard et al., U.S.
Global Change Research Program, Washington, DC, USA. Volume
I: 185-206.
- Walsh, J., et al. (2014). Ch. 2: Our Changing Climate. Climate Change
Impacts in the United States: The Third National Climate Assessment,
JM Melillo, Terese (TC) Richmond, and GW Yohe, Eds., US Global Change
Research Program, 19-67. doi: 10.7930/J0KW5CXT.
- Wang, R., et al. (2014). ”Individual and combined effects of land
use/cover and climate change on Wolf Bay watershed streamflow in
southern Alabama.” Hydrological processes 28 (22):
5530-5546.
- Wear, D. N. (2011). ”Forecasts of county-level land uses under three
future scenarios: a technical document supporting the Forest Service
2010 RPA Assessment.” Gen. Tech. Rep. SRS-141. Asheville, NC: US
Department of Agriculture Forest Service, Southern Research Station.
41 p. 141 : 1-41.
- Wilby, R. L., et al. (2000). ”Hydrological responses to dynamically
and statistically downscaled climate model output.” Geophysical
Research Letters 27 (8): 1199-1202.
- Williams, J. R. (1969). ”Flood routing with variable travel time or
variable storage coefficients.” Transactions of the ASAE12 (1): 100-0103.
- Winchell, M., et al. (2013). ”ArcSWAT Interface for SWAT2012. User’s
Guide. 464 pp.” Temple, TX: Blackland Research and Extension
Center,Texas AgriLife Research, College Station .
- Wise, M., et al. (2009). ”Implications of limiting CO2 concentrations
for land use and energy.” Science 324 (5931):
1183-1186.
- Yang, L., et al. (2018). ”A new generation of the United States
National Land Cover Database: Requirements, research priorities,
design, and implementation strategies.” ISPRS journal of
photogrammetry and remote sensing 146 : 108-123.