Reference:

  1. (EnvironmentalProtectionAgency), U. S. E. (2017). Updates To The Demographic And Spatial Allocation Models To Produce Integrated Climate And Land Use Scenarios (ICLUS) (Final Report, Version 2), U.S. Environmental Protection Agency, Washington, DC.
  2. (GCX), G. C. E. (2020). ICLUS v2.1 land use projections for the Fourth National Climate Assessment (SSP5), U.S. EPA (Environmental Protection Agency).
  3. Abbaspour, K. (2015). ”SWAT Calibration and Uncertainty Programs—A User Manual.” Swiss Federal Institute of Aquatic Science and Technology: Eawag, Switzerland .
  4. Abbaspour, K. C., et al. (2004). ”Estimating uncertain flow and transport parameters using a sequential uncertainty fitting procedure.” Vadose Zone Journal 3 (4): 1340-1352.
  5. Abbaspour, K. C., et al. (2015). ”A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model.” Journal of hydrology524 : 733-752.
  6. Abbaspour, K. C., et al. (2007). SWAT-CUP calibration and uncertainty programs for SWAT . MODSIM 2007 international congress on modelling and simulation, modelling and simulation society of Australia and New Zealand.
  7. Abbaspour, K. C., et al. (2007). ”Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT.”Journal of hydrology 333 (2-4): 413-430.
  8. Allen, R. G. (1986). ”A Penman for all seasons.” Journal of Irrigation and Drainage Engineering 112 (4): 348-368.
  9. Allen, R. G., et al. (1989). ”Operational estimates of reference evapotranspiration.” Agronomy journal 81 (4): 650-662.
  10. Andersson, J. C., et al. (2012). ”Improved SWAT Model Performance With Time‐Dynamic Voronoi Tessellation of Climatic Input Data in Southern Africa 1.” JAWRA Journal of the American Water Resources Association 48 (3): 480-493.
  11. Arnell, N. W. and S. N. Gosling (2013). ”The impacts of climate change on river flow regimes at the global scale.” Journal of hydrology 486 : 351-364.
  12. Arnold, J., et al. (2011). ”Soil and Water Assessment Tool input/output file documentation: Version 2009.” Texas Water Resources Institute Technical Report 365 .
  13. Arnold, J., et al. (2013). SWAT 2012 input/output documentation, Texas Water Resources Institute.
  14. Arnold, J. G. and N. Fohrer (2005). ”SWAT2000: current capabilities and research opportunities in applied watershed modelling.”Hydrological Processes: An International Journal19 (3): 563-572.
  15. Arnold, J. G., et al. (2012). ”SWAT: Model use, calibration, and validation.” Transactions of the ASABE 55 (4): 1491-1508.
  16. Arnold, J. G., et al. (1998). ”Large area hydrologic modeling and assessment part I: model development 1.” JAWRA Journal of the American Water Resources Association 34 (1): 73-89.
  17. ASABE, A. S. o. A. a. B. E. (Jun. 2017). Guidelines for Calibrating, Validating, and Evaluating Hydrologic and Water Quality (H/WQ) Models. 2950 Niles Road, St. Joseph, MI, US.
  18. Bierwagen, B. G., et al. (2010). ”National housing and impervious surface scenarios for integrated climate impact assessments.”Proceedings of the National Academy of Sciences107 (49): 20887-20892.
  19. Bureau of Reclamation, C. A. G., Climate Central, Lawrence Livermore National Laboratory, Santa Clara University, Scripps Institution of Oceanography, U.S. Army Corps of Engineers, U.S. Geological Survey (2013). Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections.
  20. Carter, L. M., et al. (2014). Southeast and the Caribbean.Climate change impacts in the United States: The third national climate assessment : 396-417.
  21. Cecílio, R. A., et al. (2019). ”Modeling the influence of forest cover on streamflows by different approaches.” Catena 178 : 49-58.
  22. Chanapathi, T., et al. (2018). ”Analysis of rainfall extremes and water yield of Krishna river basin under future climate scenarios.”Journal of Hydrology: Regional Studies 19 : 287-306.
  23. Chen, J., et al. (2011). ”Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed.”Water Resources Research 47 (12).
  24. Chen, Y., et al. (2017). ”Modeling the effects of land use change from cotton (Gossypium hirsutum L.) to perennial bioenergy grasses on watershed hydrology and water quality under changing climate.”Agricultural Water Management 192 : 198-208.
  25. Chen, Y., et al. (2019). ”Simulating the impacts of climate change on hydrology and crop production in the Northern High Plains of Texas using an improved SWAT model.” Agricultural Water Management221 : 13-24.
  26. Cho, J., et al. (2009). ”Effect of spatial distribution of rainfall on temporal and spatial uncertainty of SWAT output.” Transactions of the ASABE 52 (5): 1545-1556.
  27. Christensen, J. H. and O. B. Christensen (2007). ”A summary of the PRUDENCE model projections of changes in European climate by the end of this century.” Climatic change 81 (1): 7-30.
  28. Cisneros, J., et al. (2014). Freshwater resources.
  29. Clarke, L., et al. (2007). ”Scenarios of greenhouse gas emissions and atmospheric concentrations.”
  30. Diffenbaugh, N. S., et al. (2013). ”Robust increases in severe thunderstorm environments in response to greenhouse forcing.”Proceedings of the National Academy of Sciences110 (41): 16361-16366.
  31. Diffenbaugh, N. S., et al. (2015). ”Anthropogenic warming has increased drought risk in California.” Proceedings of the National Academy of Sciences 112 (13): 3931-3936.
  32. Dile, Y. T. and R. Srinivasan (2014). ”Evaluation of CFSR climate data for hydrologic prediction in data‐scarce watersheds: an application in the Blue Nile River Basin.” JAWRA Journal of the American Water Resources Association 50 (5): 1226-1241.
  33. Donner, L. J., et al. (2011). ”The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3.”Journal of climate 24 (13): 3484-3519.
  34. Emanuel, K. A. (2013). ”Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century.”Proceedings of the National Academy of Sciences110 (30): 12219-12224.
  35. Ficklin, D. L. and B. L. Barnhart (2014). ”SWAT hydrologic model parameter uncertainty and its implications for hydroclimatic projections in snowmelt-dependent watersheds.” Journal of hydrology 519 : 2081-2090.
  36. Ficklin, D. L., et al. (2016). ”Assessing differences in snowmelt-dependent hydrologic projections using CMIP3 and CMIP5 climate forcing data for the western United States.” Hydrology Research 47 (2): 483-500.
  37. Field, C. B., et al. (2012). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change , Cambridge University Press.
  38. Flato, G., et al. (2014). Evaluation of climate models. Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , Cambridge University Press: 741-866.
  39. Fowler, H. J., et al. (2007). ”Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling.” International Journal of Climatology: A Journal of the Royal Meteorological Society 27 (12): 1547-1578.
  40. Fu, G., et al. (2013). ”Modelling runoff with statistically downscaled daily site, gridded and catchment rainfall series.” Journal of hydrology 492 : 254-265.
  41. Fujino, J., et al. (2006). ”Multi-gas mitigation analysis on stabilization scenarios using AIM global model.” The Energy Journal (Special Issue# 3).
  42. Fuka, D. R., et al. (2014). ”Using the Climate Forecast System Reanalysis as weather input data for watershed models.”Hydrological processes 28 (22): 5613-5623.
  43. Galván, L., et al. (2014). ”Rainfall estimation in SWAT: An alternative method to simulate orographic precipitation.”Journal of hydrology 509 : 257-265.
  44. Gao, Y., et al. (2015). ”Persistent cold air outbreaks over North America in a warming climate.” Environmental Research Letters10 (4): 044001.
  45. Gassman, P. W., et al. (2007). ”The soil and water assessment tool: historical development, applications, and future research directions.”Transactions of the ASABE 50 (4): 1211-1250.
  46. Gent, P. R., et al. (2011). ”The community climate system model version 4.” Journal of climate 24 (19): 4973-4991.
  47. Georgakakos, A., et al. (2014). Chapter 3: Water resources. Climate Change Impacts in the United States: The Third National Climate Assessment U.S. Global Change Research Program: 69–112.
  48. Ghoraba, S. M. (2015). ”Hydrological modeling of the Simly Dam watershed (Pakistan) using GIS and SWAT model.” Alexandria Engineering Journal 54 (3): 583-594.
  49. Green, C. and A. Van Griensven (2008). ”Autocalibration in hydrologic modeling: Using SWAT2005 in small-scale watersheds.”Environmental Modelling & Software 23 (4): 422-434.
  50. Groisman, P. Y., et al. (2005). ”Trends in intense precipitation in the climate record.” Journal of climate 18 (9): 1326-1350.
  51. Gupta, H. V., et al. (1999). ”Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration.”Journal of Hydrologic Engineering 4 (2): 135-143.
  52. Hidalgo León, H. G., et al. (2008). ”Downscaling with constructed analogues: Daily precipitation and temperature fields over the United States.”
  53. Hinson, A. S., et al. (2015). Choctawhatchee, Pea and Yellow Rivers Comprehensive Watershed Management Plan, Geological Survey of Alabama Tuscaloosa, Alabama, US.
  54. Hoyos, N., et al. (2019). ”Modeling Streamflow Response to Persistent Drought in a Coastal Tropical Mountainous Watershed, Sierra Nevada De Santa Marta, Colombia.” Water 11 (1): 94.
  55. Huang, H. j., et al. (2008). ”Effect of growing watershed imperviousness on hydrograph parameters and peak discharge.”Hydrological Processes: An International Journal22 (13): 2075-2085.
  56. Ingram, K. T., et al. (2013). Forests and climate change in the Southeast USA. Climate of the Southeast United States , Springer: 165-189.
  57. Joh, H.-K., et al. (2011). ”Assessing climate change impact on hydrological components of a small forest watershed through SWAT calibration of evapotranspiration and soil moisture.”Transactions of the ASABE 54 (5): 1773-1781.
  58. Katz, R. W., et al. (2003). Stochastic modeling of the effects of large-scale circulation on daily weather in the southeastern US.Issues in the Impacts of Climate Variability and Change on Agriculture , Springer: 189-216.
  59. Khalid, K., et al. (2016). ”Sensitivity analysis in watershed model using SUFI-2 algorithm.” Procedia Eng 162 : 441-447.
  60. Kundzewicz, Z. W., et al. (2007). ”Freshwater resources and their management.”
  61. Legates, D. R. and G. J. McCabe Jr (1999). ”Evaluating the use of “goodness‐of‐fit” measures in hydrologic and hydroclimatic model validation.” Water Resources Research 35 (1): 233-241.
  62. Li, H., et al. (2010). ”Bias correction of monthly precipitation and temperature fields from Intergovernmental Panel on Climate Change AR4 models using equidistant quantile matching.” Journal of Geophysical Research: Atmospheres 115 (D10).
  63. Mahmood, R., et al. (2010). ”Impacts of land use/land cover change on climate and future research priorities.” Bulletin of the American Meteorological Society 91 (1): 37-46.
  64. Manuel, J. (2008). Drought in the southeast: lessons for water management, National Institute of Environmental Health Sciences.
  65. Maraun, D., et al. (2010). ”Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user.” Reviews of Geophysics 48 (3).
  66. Masih, I., et al. (2011). ”Assessing the Impact of Areal Precipitation Input on Streamflow Simulations Using the SWAT Model 1.” JAWRA Journal of the American Water Resources Association 47 (1): 179-195.
  67. Masui, T., et al. (2011). ”An emission pathway for stabilization at 6 Wm− 2 radiative forcing.” Climatic change 109 (1-2): 59.
  68. McNulty, S., et al. (2013). Forests and climate change in the Southeast USA. Climate of the Southeast United States: Variability, change, impacts, and vulnerability . Washington, DC: Island Press, Springer: 165-189.
  69. Meehl, G. A., et al. (2012). ”Mechanisms contributing to the warming hole and the consequent US east–west differential of heat extremes.”Journal of climate 25 (18): 6394-6408.
  70. Meehl, G. A., et al. (2007). ”Global climate projections.”
  71. Meinshausen, M., et al. (2011). ”The RCP greenhouse gas concentrations and their extensions from 1765 to 2300.” Climatic change109 (1-2): 213.
  72. Monteith, J. L. (1965). Evaporation and environment . Symposia of the society for experimental biology, Cambridge University Press (CUP) Cambridge.
  73. Moriasi, D., et al. (2012). ”Hydrologic and water quality models: Use, calibration, and validation.” Transactions of the ASABE55 (4): 1241-1247.
  74. Moriasi, D. N., et al. (2007). ”Model evaluation guidelines for systematic quantification of accuracy in watershed simulations.”Transactions of the ASABE 50 (3): 885-900.
  75. Morris, M. D. (1991). ”Factorial sampling plans for preliminary computational experiments.” Technometrics 33 (2): 161-174.
  76. Moss, R., et al. (2008). Towards New Scenarios for Analysis of Emissions . Climate Change, Impacts, and Response Strategies (IPCC Expert Meeting Report, IPCC, Geneva, 2008).
  77. Moss, R. H., et al. (2010). ”The next generation of scenarios for climate change research and assessment.” Nature463 (7282): 747-756.
  78. MRLC-Consortium, M.-R. L. C. (2019). Retrieved 11 Dec. 2019, from https://www.mrlc.gov/data.
  79. Nakicenovic, N., et al. (2000). Special report on emissions scenarios (SRES), a special report of Working Group III of the intergovernmental panel on climate change , Cambridge University Press.
  80. Nash, J. E. and J. V. Sutcliffe (1970). ”River flow forecasting through conceptual models part I—A discussion of principles.”Journal of hydrology 10 (3): 282-290.
  81. Neitsch, S. L., et al. (2011). Soil and water assessment tool theoretical documentation version 2009, Texas Water Resources Institute.
  82. NRC, N. R. C. and C. R. C. CRC (2005). Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties , National Academies Press.
  83. O’Neil, P., et al. (2006). ”Habitat and biological assessment of the Terrapin Creek watershed and development of the index of biotic integrity for the Coosa and Tallapoosa River systems.” Open-File Report 601 .
  84. Osei, M. A., et al. (2019). ”The impact of climate and land-use changes on the hydrological processes of Owabi catchment from SWAT analysis.” Journal of Hydrology: Regional Studies 25 : 100620.
  85. Ouyang, F., et al. (2015). ”Impacts of climate change under CMIP5 RCP scenarios on streamflow in the Huangnizhuang catchment.”Stochastic environmental research and risk assessment29 (7): 1781-1795.
  86. Pachauri, R. K., et al. (2014). Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change , Ipcc.
  87. Pandey, B. K., et al. (2019). ”Climate change impact assessment on blue and green water by coupling of representative CMIP5 climate models with physical based hydrological model.” Water resources management 33 (1): 141-158.
  88. Pierce, D. and D. Cayan (2016). ”Downscaling humidity with localized constructed analogs (LOCA) over the conterminous united states.”Climate dynamics 47 (1-2): 411-431.
  89. Pierce, D. W., et al. (2015). ”Improved bias correction techniques for hydrological simulations of climate change.” Journal of Hydrometeorology 16 (6): 2421-2442.
  90. Pierce, D. W., et al. (2014). ”Statistical downscaling using localized constructed analogs (LOCA).” Journal of Hydrometeorology15 (6): 2558-2585.
  91. Poloczanska, E., et al. (2018). The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate . 2018 Ocean Sciences Meeting, AGU.
  92. Price, K. (2011). ”Effects of watershed topography, soils, land use, and climate on baseflow hydrology in humid regions: A review.”Progress in physical geography 35 (4): 465-492.
  93. Qiu, J., et al. (2019). ”Quantifying effects of conservation practices on non-point source pollution in the Miyun Reservoir Watershed, China.” Environmental monitoring and assessment191 (9): 582.
  94. Riahi, K., et al. (2007). ”Scenarios of long-term socio-economic and environmental development under climate stabilization.”Technological Forecasting and Social Change 74 (7): 887-935.
  95. Riahi, K., et al. (2011). ”RCP 8.5—A scenario of comparatively high greenhouse gas emissions.” Climatic change 109 (1-2): 33.
  96. Riahi, K., et al. (2017). ”The shared socioeconomic pathways and their energy, land use, and greenhouse gas emissions implications: an overview.” Global Environmental Change 42 : 153-168.
  97. Ritchie, J. T. (1972). ”Model for predicting evaporation from a row crop with incomplete cover.” Water Resources Research8 (5): 1204-1213.
  98. Rose, S. and N. E. Peters (2001). ”Effects of urbanization on streamflow in the Atlanta area (Georgia, USA): a comparative hydrological approach.” Hydrological processes 15 (8): 1441-1457.
  99. Roth, V. and T. Lemann (2016). ”Comparing CFSR and conventional weather data for discharge and soil loss modelling with SWAT in small catchments in the Ethiopian Highlands.” Hydrology and Earth System Sciences 20 (2): 921-934.
  100. Saha, S., et al. (2010). ”The NCEP climate forecast system reanalysis.” Bulletin of the American Meteorological Society91 (8): 1015-1058.
  101. Saltelli, A., et al. (2004). Sensitivity analysis in practice: a guide to assessing scientific models , Wiley Online Library.
  102. Sanderson, B. M., et al. (2015). ”Addressing interdependency in a multimodel ensemble by interpolation of model properties.”Journal of climate 28 (13): 5150-5170.
  103. Sanderson, B. M., et al. (2015). ”A representative democracy to reduce interdependency in a multimodel ensemble.” Journal of climate28 (13): 5171-5194.
  104. Santhi, C., et al. (2001). ”Validation of the swat model on a large river basin with point and nonpoint sources 1.” JAWRA Journal of the American Water Resources Association 37 (5): 1169-1188.
  105. Schmidt, G. A., et al. (2006). ”Present-day atmospheric simulations using GISS ModelE: Comparison to in situ, satellite, and reanalysis data.” Journal of climate 19 (2): 153-192.
  106. Seaber, P. R., et al. (1987). ”Hydrologic unit maps.”
  107. Sleeter, B. M., et al. (2018). Land Cover and Land-Use Change.Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment . D. R. Reidmiller, C. W. Avery, D. R. Easterling et al. U.S. Global Change Research Program, Washington, DC, USA. Volume II: 202–231.
  108. Smith, S. J. and T. Wigley (2006). ”Multi-gas forcing stabilization with Minicam.” The Energy Journal (Special Issue# 3).
  109. Sobel, A. H., et al. (2016). ”Human influence on tropical cyclone intensity.” Science 353 (6296): 242-246.
  110. Sohl, T. L., et al. (2014). ”Spatially explicit modeling of 1992–2100 land cover and forest stand age for the conterminous United States.”Ecological Applications 24 (5): 1015-1036.
  111. Sohl, T. L., et al. (2016). ”Divergent projections of future land use in the United States arising from different models and scenarios.”Ecological Modelling 337 : 281-297.
  112. SoilSurvey (2019). ”National Value Added Look Up (value) Table Database for the Gridded Soil Survey Geographic (gSSURGO) Database for the United States of America and the Territories, Commonwealths, and Island Nations served by the USDA-NRCS.” Retrieved 10 July 2019 2019, from https://gdg.sc.egov.usda.gov/.
  113. SoilSurvey (2019). ”Natural Resources Conservation Service, United States Department of Agriculture.” Retrieved 21 Sep. 2019, 2019, from http://websoilsurvey.nrcs.usda.gov/.
  114. Sudheer, K., et al. (2011). ”Application of a pseudo simulator to evaluate the sensitivity of parameters in complex watershed models.”Environmental Modelling & Software 26 (2): 135-143.
  115. Sun, G. (2013). Impacts of climate change and variability on water resources in the Southeast USA. Climate of the Southeast United States , Springer: 210-236.
  116. Sunde, M. G., et al. (2017). ”Integrating downscaled CMIP5 data with a physically based hydrologic model to estimate potential climate change impacts on streamflow processes in a mixed‐use watershed.”Hydrological processes 31 (9): 1790-1803.
  117. Taylor, K. E., et al. (2011). CMIP5 data reference syntax (DRS) and controlled vocabularies . PCMDI.
  118. Taylor, K. E., et al. (2012). ”An overview of CMIP5 and the experiment design.” Bulletin of the American Meteorological Society93 (4): 485-498.
  119. Teutschbein, C. and J. Seibert (2010). ”Regional climate models for hydrological impact studies at the catchment scale: a review of recent modeling strategies.” Geography Compass 4 (7): 834-860.
  120. Thomson, A. M., et al. (2011). ”RCP4. 5: a pathway for stabilization of radiative forcing by 2100.” Climatic change109 (1-2): 77.
  121. Trail, M., et al. (2013). ”Potential impact of land use change on future regional climate in the Southeastern US: reforestation and crop land conversion.” Journal of Geophysical Research: Atmospheres118 (20): 11,577-511,588.
  122. Tuo, Y., et al. (2016). ”Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy).” Science of the total environment 573 : 66-82.
  123. U.S.GeologicalSurvey (2017). ”1/3rd arc-second Digital Elevation Models (DEMs) - USGS National Map 3DEP Downloadable Data Collection: U.S. Geological Survey.”
  124. USWeatherService (2019). ”U.S. Climate Data.” Retrieved 11 Dec. 2019, 2019, from www.usclimatedata.com/.
  125. Van Vuuren, D. P., et al. (2007). ”Stabilizing greenhouse gas concentrations at low levels: an assessment of reduction strategies and costs.” Climatic change 81 (2): 119-159.
  126. Van Vuuren, D. P., et al. (2011). ”The representative concentration pathways: an overview.” Climatic change 109 (1-2): 5.
  127. Van Vuuren, D. P., et al. (2011). ”RCP2. 6: exploring the possibility to keep global mean temperature increase below 2 C.” Climatic change 109 (1-2): 95.
  128. Veettil, A. V. and A. K. Mishra (2016). ”Water security assessment using blue and green water footprint concepts.” Journal of hydrology 542 : 589-602.
  129. Villarini, G., et al. (2009). ”On the stationarity of annual flood peaks in the continental United States during the 20th century.”Water Resources Research 45 (8).
  130. Villarini, G. and J. A. Smith (2010). ”Flood peak distributions for the eastern United States.” Water Resources Research46 (6).
  131. Vose, R., et al. (2017). Temperature changes in the United States.Climate Science Special Report: Fourth National Climate Assessment . D. J. Wuebbles, D. W. Fahey, K. A. Hibbard et al., U.S. Global Change Research Program, Washington, DC, USA. Volume I: 185-206.
  132. Walsh, J., et al. (2014). Ch. 2: Our Changing Climate. Climate Change Impacts in the United States: The Third National Climate Assessment, JM Melillo, Terese (TC) Richmond, and GW Yohe, Eds., US Global Change Research Program, 19-67. doi: 10.7930/J0KW5CXT.
  133. Wang, R., et al. (2014). ”Individual and combined effects of land use/cover and climate change on Wolf Bay watershed streamflow in southern Alabama.” Hydrological processes 28 (22): 5530-5546.
  134. Wear, D. N. (2011). ”Forecasts of county-level land uses under three future scenarios: a technical document supporting the Forest Service 2010 RPA Assessment.” Gen. Tech. Rep. SRS-141. Asheville, NC: US Department of Agriculture Forest Service, Southern Research Station. 41 p. 141 : 1-41.
  135. Wilby, R. L., et al. (2000). ”Hydrological responses to dynamically and statistically downscaled climate model output.” Geophysical Research Letters 27 (8): 1199-1202.
  136. Williams, J. R. (1969). ”Flood routing with variable travel time or variable storage coefficients.” Transactions of the ASAE12 (1): 100-0103.
  137. Winchell, M., et al. (2013). ”ArcSWAT Interface for SWAT2012. User’s Guide. 464 pp.” Temple, TX: Blackland Research and Extension Center,Texas AgriLife Research, College Station .
  138. Wise, M., et al. (2009). ”Implications of limiting CO2 concentrations for land use and energy.” Science 324 (5931): 1183-1186.
  139. Yang, L., et al. (2018). ”A new generation of the United States National Land Cover Database: Requirements, research priorities, design, and implementation strategies.” ISPRS journal of photogrammetry and remote sensing 146 : 108-123.