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Abstract

In this paper, we introduce two simple inertial algorithms for solving the split variational
inclusion problem in Banach spaces. Under mild and standard assumptions we establish the
weak and strong convergence of the proposed methods, respectively. As theoretical realization
we study existence of solutions of the split common fixed point problem in Banach spaces.

Several numerical examples in finite and infinite dimensional spaces compare and illustrate
the performances of our schemes. Our work generalize and extend some recent relate results
in the literature and also propose a simple and applicable method for solving split variational
inclusions.
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1 Introduction
Censor et. al. [20] introduced the so-called split inverse problem (SIP) that consists of a model
in which there are two spaces X, Y and a given linear and bounded mapping A : X → Y .
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Additionally, two inverse problems are involved, that is, one inverse problem (IP1) is formulated
in the space X and another inverse problem (IP2) is formulated in the space Y . Given these data,
the problem (SIP) is formulated as follows:

Find a point x∗ ∈ X that solves the problem (IP1)
and such that

the point y∗ = Ax∗ ∈ Y solves the problem (IP2).

The first instance of the problem (SIP), known as the split convex feasibility problem (SCFP),
is introduced by Censor and Elfving [18] and in this case the inverse problems (IP1) and (IP2) are
convex feasibility problems (CFP). Split feasibilities have been studied intensively both theoreti-
cally and practically, due to its applicability to real-world problems in image reconstruction, cancer
treatment planning, computerized tomography and data compression, see, for example, Censor et
al. [19, 20], Deepho et al. [23], Ceng [15], Xu [37], Shehu et al. [38], Combettes [12] and the
references therein.

The split inverse problem reformulation is quite general and it enable to capture many differ-
ent problems by choosing appropriate inverse problems (IP1) and (IP2). One recent example is
Moudafi’s [31] split monotone variational inclusion problem (SMVIP), that is formulated as fol-
lows. Let H1 and H2 be two real Hilbert spaces, f1 : H1 → H1 and f2 : H2 → H2 two operators
and B1 : H1 → 2H1 and B2 : H2 → 2H2 two multi-valued maximal monotone mappings. In
addition let A : H1 → H2 be a (nonzero) linear and bounded operator. The SMVIP consists of
finding a point x∗ such that:

x∗ ∈ H1 such that 0 ∈ f1(x∗) +B1(x∗) (1.1)
and

y∗ = Ax∗ ∈ H2 solve 0 ∈ f2(y∗) +B2(y∗), (1.2)

An interesting special case of (1.1)-(1.2) is when f1 = f2 = 0, this reduces to the well-known
split variational inclusion problem (SVIP):

Find a point x∗ ∈ H1 such that 0 ∈ B1(x∗) (1.3)
and the point

y∗ = Ax∗ ∈ H2 solves 0 ∈ B2(y∗). (1.4)

Other special cases of (1.1)-(1.2) are the variational inequality problem (VIP) [31], the convex
feasibility problem (CFP) [18] and many constrained optimization problems as special cases, for
more related problems see [10, 25, 32] as well as for applications in signal processing and image
reconstruction, the reader can refer to [8, 15, 16] and the reference therein.

with respect to iterative algorithms for solving SIPs, we recall the equivalent fixed point refor-
mulation of (1.3)-(1.4), that is.

x∗ solves the problem (1.3)− (1.4) ⇐⇒ x∗ = JB1
λ (x∗ − γA∗(I − JB2

λ )Ax∗), (1.5)
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where for λ > 0 , γ > 0, JBλ = (I + λB)−1 denotes the resolvent of a monotone operator B.
This reformulation yielded the CQ algorithm of Byrne for [10] for solving the two-sets split

convex feasibility problem and more generally the forward-backward algorithm, which has the
following update rule.

xn+1 = JB1
λ (xn − γA∗(I − JB2

λ )Axn), (1.6)

where A∗ is the adjoint of A, the step size γ ∈ (0, 2
L

) with L = ‖A∗A‖.
Many researchers have studied and proposed various algorithmic schemes close to (1.6), see,

for example, Dong et al. [22], Sitthithakerngkiet et al. [40], Kazmi and Rizvi [29], Promluang and
Kuman [39], Suantai et al. [41], Eslamian et al. [24], Thong et al. [42]).

A recent modification of (1.6), for solving SVIPs is the method proposed by Chuang in [14]
and its iterative step is formulated as follows.

yn = JB1
βn

(xn − γnA∗(I − JB2
βn

)Axn,

D(xn, yn) = xn − yn − γn[A∗(I − JB2
βn

)Axn − A∗(I − JB2
βn

)Ayn],

xn+1 = JB1
λ (xn − αnD(x,yn)),

(1.7)

where αn = 〈xn−yn,D(xn,yn)〉
‖D(xn,yn)‖2 .

Alofi et al. [3] studied SVIPs in Banach spaces and incorporated the Halpern’s iteration idea to
propose the following iterative step.

xn+1 = βnxn + (1− βn)(αnun + (1− αn)JB1
λn

(xn − λnA∗JE(I − JB2
µ )Axn), (1.8)

where JE is the duality mapping on a Banach space, {un} is a sequence in a Hilbert space such
that un → u and the step size λn satisfies 0 < λnL < 2. Suantai et al. [41] proposed a viscosity
modification in Banach spaces.

xn+1 = αnf(xn) + βnxn + γnJ
B1
λn

(xn − λnA∗JE(I − JB2
µ )Axn), (1.9)

where 0 < λnL < 2 and f is a contraction. Other related works include [26, 39, 44, 45] and the
may references therein.

Motivated by second order time dynamical system, the heavy ball method (an implicit dis-
cretization), Alvarez [1] and Alvarez and Attouch [2] introduce an inertial term that encounter two
previous iterates when updating the next iteration. This idea is studied intensively and is shown to
have good convergence properties in the field of continues optimization. For some recent works
applied to various fields see Ochs et al. [4, 5, 7, 35, 36].

As a relevant example of an inertial scheme for solving SVIPs in Banach spaces, Tang [46]
introduced the following algorithm.{

wn = xn + θn(xn − xn−1),

xn+1 = JB1
λn

(wn − λnA∗JE(I − JB2
µ )Awn),
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where {θn} is in (0, θ̄n) and
∑∞

n=1 εn <∞,

θn =

{
min{θ, εn max{‖xn − xn−1‖, ‖xn − xn−1‖2}−1 if xn 6= xn−1,

θ, otherwsie.
(1.10)

Based on the above, our goal in this paper is to establish two simple inertial methods for solving
SIPs in Banach spaces. The outline of the paper is organized as follows. Some basic definitions and
useful results are presented in Section 2. The two proposed methods are presented and analyzed in
Section 3. The split common fixed point problem is presented in Section 4 as application and then
in Section 5 some numerical experiments with comparisons to related methods demonstrate the
algorithms’ performances and suggested applicability. Final conclusions are reported in Section 6.

2 Preliminaries
Let E be a real Banach space and E∗ be the dual space of E. A normalized duality mapping
J : E → 2E

∗ is defined by

Jx = {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x∗‖2 = ‖x‖2}, ∀x ∈ E,

where 〈·, ·〉 denotes the generalized duality pairing between E and E∗.

Let S = {x ∈ E : ‖x‖ = 1}. The norm ‖ · ‖ of E is said to be Gateaux differentiable if, for
each x, y ∈ S, the limit

lim
t→0

‖x+ ty‖ − ‖x‖
t

exists. In the case, E is called smooth. It is well known that E is smooth if and only if J is single-
valued and, if E is uniformly smooth, then J is uniformly continuous on bounded subsets of E.
We note that, in a Hilbert space, J is the identity operator.

A Banach space E is said to be p-uniformly smooth if, for any fixed real number 1 < p ≤ 2,
there exists a constant c > 0 such that ρ(t) = ctp for all t > 0. From Chang et al. [17] and
Chidume [13], we know that, if E is a 2-uniformly smooth Banach space, then, for all x, y ∈ E,
there exists a constant c > 0 such that ‖Jx− Jy‖ ≤ c‖x− y‖.

A multi-valued mapping A : E → 2E
∗ with domain D(A) = {x ∈ E : Ax 6= ∅} is said to be

monotone if

〈x− y, x∗ − y∗〉 ≥ 0, ∀x, y ∈ D(A), x∗ ∈ Ax, y∗ ∈ Ay.

A monotone operatorA : E → 2E
∗ onE is said to be maximal if its graph is not properly contained

in the graph of any other monotone operator on E.

The following theorem is due to Browder [9] (see also Takahashi [43]).



Split Variational Inclusion Problems 5

Theorem 2.1. (Browder [9]) Let E be a uniformly convex and smooth Banach space and J be the
normalized duality mapping of E into E∗. Let A : E → 2E

∗
be a monotone operator. Then A is

maximal if and only if, for any r > 0,

R(J + rA) = E∗,

where R(J + rA) is the range of J + rA.

Let E be a uniformly convex Banach space with the Gateaux differentiable norm and A : E →
2E

∗ be a maximal monotone operator. Now, we consider the metric resolvent of A given by

QA
µ = (I + µJ−1A)−1, ∀µ > 0.

It is well known that the operatorQA
µ is firmly nonexpansive and the fixed points of the operator

QA
µ are the zero points of A (see, for example, Kohsaka and Takahashi [27, 28]). The resolvent

plays an essential role in the approximation theory for zero points of maximal monotone operators
in Banach spaces. According to the work of Aoyama et al. [6], we have the following properties:

〈QA
µx− y, J(x−QA

µx)〉 ≥ 0, ∀y ∈ A−1(0).

In particular, if E is a real Hilbert space, then

〈JAµ x− y, x− JAµ x〉 ≥ 0, ∀y ∈ A−1(0),

where JAµ = (I + µA)−1 is the general resolvent and A−1(0) = {z ∈ E : 0 ∈ Az}. For more
details on some properties of firmly nonexpansive mappings, one can see Aoyama et al. [6] and
Bauschke et al. [11].

LetH be a Hilbert space with the inner product 〈·, ·〉 and the induced norm ‖·‖. For a sequence
{xn} in H , we use the notations “xn → x” and “xn ⇀ x” to denote the strong and weak conver-
gence to a point x ∈ H of {xn}, respectively. Moreover, we use the symbol ωw(xn) to denote the
ω-weak limit set of {xn}, that is,

ωw(xn) := {x ∈ H : xnj ⇀ x for some subsequence {xnj} of {xn}}.

The identity below is useful:

‖αx+ βy + γz‖2 = α‖x‖2 + β‖y‖2 + γ‖z‖2

− αβ‖x− y‖2 − βγ‖y − z‖2 − γα‖x− z‖2 (2.1)

for all x, y, z ∈ H and α, β, γ ∈ [0, 1] such that α + β + γ = 1.

Let C be a nonempty closed convex subset of H and PC denote the metric projection from H
onto C, that is,

PCx = arg min{‖x− y‖ : y ∈ C}, ∀x ∈ H.
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The following are important characterizations of the projection PC :
(1) For any x ∈ H and y ∈ C,

PCx = z ⇐⇒ 〈x− z, y − z〉 ≤ 0, ∀y ∈ C. (2.2)

(2) PC is firmly nonexpansive, that is,

〈x− y, PCx− PCy〉 ≥ ‖PCx− PCy‖2, ∀x, y ∈ H.

The following lemmas are useful to prove the main results in this paper.

Lemma 2.2. (Xu [47], Maingé [30]) Assume that {an} is a sequence of nonnegative real numbers
such that

an+1 ≤ (1− θn)an + δn, ∀n ≥ 0,

where {θn} is a sequence in (0, 1) and {δn} is a sequence in R such that

(i)
∑∞

n=1 θn =∞;

(ii) lim supn→∞
δn
θn
≤ 0 or

∑∞
n=1 |δn| <∞.

Then limn→∞ an = 0.

Lemma 2.3. (Opial [34]) Let H be a real Hilbert space and {xn} be a bounded sequence in H .
Assume that there exists a nonempty subset S ⊂ H satisfying the properties:

(i) limn→∞ ‖xn − z‖ exists for every z ∈ S,

(ii) ωw(xn) ⊂ S.

Then there exists x̄ ∈ S such that {xn} converges weakly to x̄.

Lemma 2.4. (Maingé [30]) Let {Γn} be a sequence of real numbers that does not decrease at the
infinity in the sense that there exists a subsequence {Γnj} of {Γn} such that Γnj < Γnj+1 for all
j ≥ 0. Also, consider the sequence of integers {σ(n)}n≥n0 defined by

σ(n) = max{k ≤ n : Γk ≤ Γk+1}.

Then {σ(n)}n≥n0 is a nondecreasing sequence verifying limn→∞ σ(n) =∞ and, for all n ≥ n0,

max{Γσ(n),Γn} ≤ Γσ(n)+1.

Lemma 2.5. (Maingé [30]) Let {ln}∞n=0 ⊂ [0,+∞) and {δn}∞n=0 be the sequences satisfying the
following conditions:

(i) ln+1 − ln ≤ θn(ln − ln−1) + δn;

(ii) Σ∞n=1δn <∞;

(iii) {θn} ⊂ [0, θ], where θ ∈ (0, 1).

Then {ln} is a converging sequence and Σ∞n=1[ln+1 − ln]+ < ∞, where [t]+ = max{t, 0} for any
t ∈ R.
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3 Main results

Throughout the rest of this paper, H is a real Hilbert space and E is a 2-uniformly convex smooth
Banach space. We rephrase the split variational inclusion problem (SVIP) as follows:

Find a point x∗ ∈ H such that 0 ∈ B1(x∗) (3.1)
and such that the point

y∗ = Ax∗ ∈ E solves 0 ∈ B2(y∗), (3.2)

where B1 : H → 2H and B2 : E → 2E
∗ are two maximal monotone operators, respectively, and

A : H → E is bounded linear operator with the adjoint operator A∗ of A.

Denote by Ω the solution set of the problem (SVIP) (3.1)–(3.1), that is,

Ω = {x∗ ∈ H : 0 ∈ B1(x∗), 0 ∈ B2(Ax∗)}

and we always assume Ω 6= ∅.

Next we present our two new methods.

Algorithm 1
Initialization: Choose the positive sequence {εn} satisfying

∑∞
n=0 εn < ∞. Select arbitrary

starting points x0, x1 ∈ H , two constants τ < 1
L

and θ ∈ [0, 1) and choose θn such that 0 < θn <
θ̄n, where θ̄n and L will be specified later on.
Iterative Step: After the n-iterate xn is constructed, for any r > 0, compute

wn = xn + θn(xn − xn−1),

yn = JB1
r (I − τA∗JE(I −QB2

µ )A)wn,

d(wn, yn) = wn − yn − τ [A∗JE(I −QB2
µ )Awn − A∗JE(I −QB2

µ )Ayn]

(3.3)

and define the (n+ 1)th iterate by

xn+1 = wn − αnd(wn, yn), (3.4)

where

αn =

{
〈wn−yn,d(wn,yn)〉
‖d(wn,yn)‖2 if d(wn, yn) 6= 0,

0 if d(wn, yn) = 0.
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Algorithm 2
Initialization: Choose the positive sequence {εn} satisfying

∑∞
n=0 εn < ∞. Select arbitrary

starting points x0, x1 ∈ H , two constants τ < 1
L

and θ ∈ [0, 1) and choose θn such that 0 < θn <
θ̄n, where θ̄n and L will be specified later on.
Iterative Step: After the n-iterate xn is constructed, for any r > 0, compute

wn = xn + θn(xn − xn−1),

yn = JB1
r (I − τA∗JE(I −QB2

µ )A)wn,

d(wn, yn) = wn − yn − τ [A∗JE(I −QB2
µ )Awn − A∗JE(I −QB2

µ )Ayn]

(3.5)

and define the (n+ 1)th iterate by

xn+1 = (1− βn − γn)wn + βn(wn − αnd(wn, yn)), (3.6)

where

αn =

{
〈wn−yn,d(wn,yn)〉
‖d(wn,yn)‖2 if d(wn, yn) 6= 0,

0 if d(wn, yn) = 0.

3.1 Convergence analysis
Now, we give some lemmas for the main results in this paper.

Lemma 3.1. (Tang [46]) Let H be a real Hilbert space, E be a strictly convex reflexive and
smooth Banach space and J be the normalized duality mapping on E. Let B1 : H → 2H and
B2 : E → 2E

∗
be maximal operators such that B−1

1 (0) 6≡ ∅ and B−1
2 (0) 6≡ ∅, respectively. Let

A : H → E be a bounded linear operator such that A 6≡ ∅ and A∗ be the adjoint operator of A.
Suppose that Ω = B−1

1 (0)
⋂
A−1(B−1

2 (0)) 6≡ ∅. Let λ, µ, r > 0 and z ∈ H . Then the following
are equivalent:

(1) z ∈ B−1
1 (0)

⋂
A−1(B−1

2 (0)).
(2) z = JB1

r (I−λA∗JE(I−QB2
µ )A)z, where JB1

r = (I+rB1)−1 andQB2
µ = (I+µJ−1B2)−1.

Lemma 3.2. (Tang [46]) Let H be a real Hilbert space, E be a real 2-uniformly smooth Banach
space and JE be the normalized duality mapping on E. Let B1 : H → 2H and B2 : E → 2E

∗
be

maximal operators such that B−1
1 (0) 6≡ ∅ and B−1

2 (0) 6≡ ∅. Let A : H → E be a bounded linear
operator such that A 6≡ ∅ and A∗ be the adjoint operator of A. Assume that A−1(B−1

2 (0) 6≡ ∅. If
T = A∗JE(I−QB2

µ )A, then T is Lipschitz continuous with constant 2c‖A‖2, where c is a constant
such that

‖Jx− Jy‖ ≤ c‖x− y‖.

Lemma 3.3. Let {xn} be the sequence generated by (3.4). If yn = wn or d(wn, yn) = 0, then
xn+1 ∈ Ω.
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Proof. Denote T = A∗JE(I −QB2
µ )A. It follows from (3.3) that

‖d(wn, yn)‖ = ‖wn − yn − τ(Twn − Tyn‖)
≥ ‖wn − yn‖ − τ‖Twn − Tyn‖
≥ ‖wn − yn‖ − τ · 2c‖A‖2‖wn − yn‖
= (1− τL)‖wn − yn‖,

where L = 2c‖A‖2. In addition, we have

‖d(wn, yn)‖ = ‖wn − yn − τ(Twn − Tyn‖)
≤ ‖wn − yn‖+ τ‖Twn − Tyn‖
= (1− τL)‖wn − yn‖.

So, it follows that d(wn, yn) = 0 if and only if yn = wn. When yn = wn or d(wn, yn) = 0, from
(3.3) and (3.4), we have {

wn = JB1
r (I − τA∗JE(I −QB2

µ )A)wn,

xn+1 = wn,

which with Lemma 3.2 yields xn+1 ∈ Ω. This completes the proof.

Lemma 3.4. Let {xn} be the sequence generated by (3.4). Assume that d(wn, yn) 6= 0. If z ∈ Ω,
then we have the following:

‖xn+1 − z‖2 ≤ ‖wn − z‖2 − ‖xn+1 − wn‖2 (3.7)

and

‖wn − yn‖2 ≤ 1 + τ 2L2

(1− τL)2
‖xn+1 − wn‖2. (3.8)

Proof. First, denote T = A∗JE(I −QB2
µ )A, it follows out from (3.4) that

〈wn − yn, d(wn, yn)〉 = 〈wn − yn, wn − yn − τ(Twn − Tyn)〉
= ‖wn − yn‖2 − τ〈wn − yn, Twn − Tyn〉
≥ ‖wn − yn‖2 − τ‖wn − yn‖ · ‖Twn − Tyn‖
≥ (1− τL)‖wn − yn‖2 (3.9)

and

‖d(wn, yn)‖2 = ‖wn − yn − τ(Twn − Tyn)‖2

= ‖wn − yn‖2 + τ‖Twn − Tyn‖2 − 2τ〈wn − yn, Twn − Tyn〉
≤ (1 + τ 2L2)‖wn − yn‖2, (3.10)
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where L = 2c‖A‖2. Therefore, we have

αn =
〈wn − yn, d(wn, yn)〉
‖d(wn, yn)‖2

≥ 1− τL
1 + τ 2L2

.

Take z ∈ Ω. Then 0 ∈ B1z, 0 ∈ B2(Az), 0 ∈ Tz and

‖xn+1 − z‖2 = ‖wn − z − αnd(wn, yn)‖2

= ‖wn − z‖2 − 2αn〈wn − z, d(wn, yn)〉+ α2
n‖d(wn, yn)‖2.

From (2.2), it follows that

〈yn − z, wn − τTwn − yn)〉 ≥ 0, ∀z ∈ A−1(0). (3.11)

In addition, it follows from 0 ∈ Tz and

〈yn − z, τ(Tyn − Tz))〉 = τ〈yn − z, Tyn〉
= τ〈Ayn − Az, JE(I −QB2

µ )Ayn〉
= τ〈Ayn −QB2

µ Ayn, JE(I −QB2
µ )Ayn〉

+〈QB2
µ Ayn − Az, JE(I −QB2

µ )Ayn〉
≥ τ‖Ayn −QB2

µ Ayn‖2 ≥ 0. (3.12)

Adding (3.11) and (3.12), one has

〈yn − z, wn − yn − τ(Twn − Tyn)〉 = 〈yn − z, d(wn, yn)〉 ≥ 0

and so

〈wn − z, d(wn, yn)〉 = 〈wn − yn, d(wn, yn)〉+ 〈yn − z, d(wn, yn)〉
≥ 〈wn − yn, d(wn, yn)〉.

Thus it follows that

‖xn+1 − z‖2 = ‖wn − αnd(wn, yn)‖2

≤ ‖wn − z‖2 − 2αn〈wn − z, d(wn, yn)〉+ α2
n‖d(wn, yn)‖2

≤ ‖wn − z‖2 − 2αn〈wn − yn, d(wn, yn)〉+ α2
n‖d(wn, yn)‖2

= ‖wn − z‖2 − 2αn〈wn − yn, d(wn, yn)〉+ αn〈wn − yn, d(wn, yn)〉
= ‖wn − z‖2 − αn〈wn − yn, d(wn, yn)〉. (3.13)

In addition, we have

αn〈wn − yn, d(wn, yn)〉 = ‖αnd(wn, yn)‖2 = ‖xn+1 − wn‖2, (3.14)

which reduces from (3.13) that ‖xn+1 − z‖2 ≤ ‖wn − z‖2 − ‖xn+1 − wn‖2.
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Second, it turns out from (3.14) that

〈wn − yn, d(wn, yn)〉 =
1

αn
‖xn+1 − wn‖2

≤ 1 + τ 2l2

1− τL
‖xn+1 − wn‖2.

This completes the proof.

Theorem 3.5. Assume that

θ̄n =

{
min{θ, εn(max{‖xn − xn−1‖2, ‖xn − xn−1‖})−1} if xn 6= xn−1

θ otherwise.

Then the sequence {xn} generated by (3.4) converges weakly to a solution of the split variational
inclusion problem (3.1)–(3.2).

Proof. Take z ∈ Ω, it turns out from the recursion (3.3) that

‖wn − z‖2 = ‖(1 + θn)(xn − z)− θn(xn−1 − z)‖2

= (1 + θn)‖xn − z‖2 − θn‖xn−1 − z‖2

+θn(1 + θn)‖xn − xn−1‖2. (3.15)

Hence it follows from (3.7) that

‖xn+1 − z‖2 ≤ (1 + θn)‖xn − z‖2 − θn‖xn−1 − z‖2

+θn(1 + θn)‖xn − xn−1‖2 − ‖xn+1 − wn‖2,

that is,

‖xn+1 − z‖2 − ‖xn − z‖2 ≤ θn(‖xn − z‖2 − ‖xn−1 − z‖2) + 2θn‖xn − xn−1‖2.

According to the choice of {θn}, we have

∞∑
n=1

θn‖xn − xn−1‖2 <∞.

Also, one can show from Lemma 2.5 that the limit of {‖xn − z‖} exists and

lim
n→∞

(‖xn+1 − z‖2 − ‖xn − z‖2) = 0, lim
n→∞

‖xn+1 − wn‖ = 0, (3.16)

which in turn implies that {xn} is bounded. So, It turns out from (3.8) and (3.16) that

d(wn, yn)→ 0. (3.17)
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Next, we show that ωwn(xn) ⊂ Ω. Let x̄ ∈ ωwn(xn) be an arbitrary element. Since {xn} is
bounded, there exists a subsequence {xnk} of {xn} which converges weakly to x̄. Note that

θn‖xn − xn−1‖ ≤ θ̄n‖xn − xn−1‖ ≤ εn,

which implies that ‖wn−xn‖ = θn‖xn−xn−1‖ → 0. Therefore, there exists a subsequence {wnk}
of {wn} converges weakly to x̄. Moreover, it follows from (3.17) that ‖wn − yn‖ → 0 and

‖x̄− JB1
r (I − λA∗JE(I −QB2

µ )A)x̄‖ = lim
k→∞

inf ‖wnk − ynk‖

= lim
k→∞

inf ‖wnk − JB1
r (I − λA∗JE(I −QB2

µ )A)wnk‖
= 0,

which implies that x̄ ∈ Ω. Since the choice of x̄ is arbitrary, we conclude that ωwn(xn) ⊂ Ω.
Hence it follows from Lemma 2.3 that the result holds. This completes the proof.

Theorem 3.6. Assume that the sequences {βn}, {γn} ⊂ (0, 1) satisfy the following conditions:

βn + γn < 1, lim
n→∞

γn = 0, Σ∞n=1γn =∞, εn = o(γn)

and

θ̄n =

{
min{θ, εn(max{‖xn − xn−1‖2, ‖xn − xn−1‖})−1} if xn 6= xn−1,

θ otherwise.

Then the sequence {xn} generated by (3.6) converges strongly to a point z = PΩ(0).

Proof. Firs, we show that the sequence {xn} is bounded. Denote un = wn − αnd(wn, yn), then,
for any z ∈ Ω, it follows from (3.13) that

‖un − z‖2 ≤ ‖wn − z‖2 − αn〈wn − yn, d(wn, yn)〉
= ‖wn − z‖2 − ‖un − wn‖2. (3.18)

In addition, from (3.5), we have

‖wn − z‖ ≤ ‖xn − z‖+ θn‖xn − xn−1‖.

Thus it follows from (3.6) that

‖xn+1 − z‖ = ‖(1− βn − γn)wn + βn(wn − αnd(wn, yn))− z‖
≤ (1− βn − γn)‖wn − z‖+ βn‖un − z‖+ γn‖z‖
≤ (1− βn − γn)‖wn − z‖+ βn‖wn − z‖+ γn‖z‖
≤ (1− γn)(‖xn − z‖+ θn‖xn − xn−1‖) + γn‖z‖.
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Denote σn = θn‖zn− zn−1‖, then we have limn→∞ σn = 0 from the choice of {θn}, which implies
that {σn} is bounded. Therefore, the sequences {‖xn − z‖}, {xn}, {yn}, {un} and {wn} are
bounded.

Next, we show that ‖xn+1 − xn‖ → 0 and xn → z , where z = PΩ(0). It follows from (2.1),
(3.6) and (3.18) that

‖xn+1 − z‖2

= ‖(1− βn − γn)wn + βnun − z‖2

≤ (1− βn − γn)‖wn − z‖2 + βn‖un − z‖2 + γn‖z‖2 − (1− βn − γn)‖un − wn‖2

≤ (1− βn − γn)‖wn − z‖2 + βn[‖wn − z‖2 − ‖un − wn‖2]

+γn‖z‖2 − (1− βn − γn)‖un − wn‖2

= (1− γn)‖wn − z‖2 − βn‖un − wn‖2 + γn‖z‖2 − (1− βn − γn)‖un − wn‖2

= (1− γn)‖wn − z‖2 + γn‖z‖2 − (1− γn)‖un − wn‖2. (3.19)

Using (3.15) in (3.19), we have

‖xn+1 − z‖2

≤ (1− γn)[(1 + θn)‖xn − z‖2 − θn‖xn−1 − z‖2 + θn(1 + θn)‖xn − xn−1‖2]

+γn‖z‖2 − (1− γn)‖un − wn‖2

≤ ‖xn − z‖2 + θn(‖xn − z‖2 − ‖xn−1 − z‖2) + 2θn‖xn − xn−1‖2

+γn‖z‖2 − (1− γn)‖un − wn‖2,

which implies that

(1− γn)‖un − wn‖2 ≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + θn(‖xn − z‖2 − ‖xn−1 − z‖2)

+2θn‖xn − xn−1‖2 + γn‖z‖2 (3.20)

and

‖xn+1 − z‖2 − ‖xn − z‖2 ≤ θn(‖xn − z‖2 − ‖xn−1 − z‖2)

+2θn‖xn − xn−1‖2 + γn‖z‖2 − (1− γn)‖un − wn‖2.

Next, we consider the following two cases:
Case I. The sequence {‖xn − z‖} is nonincreasing at the infinity, that is, there exists n0 ≥ 0

such that, for each n ≥ n0, ‖xn+1−z‖ ≤ ‖xn−z‖. This particularly implies that limn→∞ ‖xn−z‖
exists and thus

lim
n→∞

(‖xn+1 − z‖2 − ‖xn − z‖2) = 0

and
∞∑
n=1

(‖xn+1 − z‖2 − ‖xn − z‖2) <∞.
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Now, due to the assumptions of the sequences {θn}, {γn}, {εn} and the boundedness of {wn} and
{un}, it follows from (3.20) that

lim
n→∞

‖un − wn‖ = 0, (3.21)

which ensures that ‖xn+1 − wn‖ ≤ βn‖un − wn‖+ γn‖wn‖ → 0, we obtain

‖xn+1 − xn‖ = ‖xn+1 − wn + wn − xn‖
≤ ‖xn+1 − wn‖+ ‖wn − xn‖
≤ ‖xn+1 − wn‖+ θn‖xn − xn−1‖ → 0.

By repeating the relevant part of the proof of Theorem 3.5, we get ωw(xn) ⊂ Ω.
Now, it is at the position to prove the strong convergence of {xn}. Indeed, set zn = (1 −

βn)wn +βnun, then xn+1 = zn−γnwn = (1−γn)zn−γnβn(wn−un). It follows from (3.18) that

‖zn − z‖2 = ‖(1− βn)wn + βnun − z‖2

≤ (1− βn)‖wn − z‖2 + βn‖un − z‖2

≤ (1− βn)‖wn − z‖2 + βn(‖wn − z‖2 − ‖un − wn‖2)

≤ ‖wn − z‖2 − βn‖un − wn‖2

Therefore, it follow from (3.15) that

‖xn+1 − z‖2

= ‖(1− γn)zn − γnz − γnβn(wn − un)‖2

≤ (1− γn)2‖zn − z‖2 − 2〈γnβn(wn − un) + γnz, xn+1 − z〉
≤ (1− γn)2‖zn − z‖2 − 2γnβn〈wn − un, xn+1 − z〉+ 2γn〈z, xn+1 − z〉
≤ (1− γn)2‖wn − z‖2 − (1− γn)2βn‖un − wn‖2

−2γnβn〈wn − un, xn+1 − z〉+ 2γn〈z, xn+1 − z〉
≤ (1− γn)2[(1 + θn)‖xn − z‖2 − θn‖xn−1 − z‖2 + θn(1 + θn)‖xn − xn−1‖2]

−(1− γn)2βn‖un − wn‖2 − 2γnβn〈wn − un, xn+1 − z〉+ 2γn〈z, xn+1 − z〉
≤ (1− γn)‖xn − z‖2 + θn(‖xn − z‖2 − ‖xn−1 − z‖2) + 2θn‖xn − xn−1‖2

−2γnβn〈wn − un, xn+1 − z〉+ 2γn〈z, xn+1 − z〉. (3.22)

Setting an = ‖xn − z‖2 and

δn = θn(‖xn − z‖2 − ‖xn−1 − z‖2) + 2θn‖xn − xn−1‖2

−2γnβn〈wn − un, xn+1 − z〉+ 2γn〈z, xn+1 − z〉,

we rewrite (3.22), equivalently, as

an+1 ≤ (1− γn)an + δn. (3.23)
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Since ωw(xn) ⊂ Ω and z = PΩ(0) which implies 〈−z, q − z〉 ≤ 0 for all q ∈ Ω, we deduce that

lim sup
n→∞

〈−z, xn+1 − z〉 = max
q∈ωw(xn)

〈−z, q − z〉 ≤ 0. (3.24)

This enables us to apply Lemma 2.2 to (3.23) to obtain that an → 0. That is, xn → z in the norm
and so the proof of Case I is complete.

Case II. The sequence {‖xn − z‖} is not nonincreasing at the infinity. In this case, we have,
by Lemma 2.4, (taking Γn := ‖xn − z‖) a subsequence {σ(n)} of positive integers such that
σ(n)→∞ as n→∞ and with the properties:

‖xσ(n) − z‖ < ‖xσ(n)+1 − z‖, max{‖xσ(n) − z‖, ‖xn − z‖} ≤ ‖xσ(n)+1 − z‖.

Observe that, if ‖xn+1 − z‖ > ‖xn − z‖ for some n ≥ 0, then it follows from (3.20) that

(1− γn)‖un − wn‖2 ≤ 2θn‖xn − xn−1‖2 + γn‖z‖2.

Now this inequality holds for infinite many n := σ(n). So replacing n with σ(n) and taking the
limit n→∞ yields (as γσ(n) → 0)

lim
n→∞

‖uσ(n) − wσ(n)‖ = 0. (3.25)

Note that we still have ‖xσ(n)+1 − xσ(n)‖ → 0. Note also that the relation (3.25) is sufficient to
guarantee that ωw(xσ(n)) ⊂ Ω.

Next, we prove xσ(n) → z. As a matter of fact, observe that (3.22) holds for each n ≥ 0. So,
replacing n with σ(n) in (3.22) and using the relation ‖xσ(n) − z‖2 < ‖xσ(n)+1 − z‖2, we obtain

‖xσ(n) − z‖2

≤
2θσ(n)

γσ(n)

‖xσ(n) − xσ(n)−1‖2 + 2βσ(n)〈uσ(n) − wσ(n), xσ(n)+1 − z〉+ 2〈z, xσ(n)+1 − z〉

≤
2θσ(n)

γσ(n)

‖xσ(n) − xσ(n)−1‖2 +M‖uσ(n) − wσ(n)‖+ 2〈z, xσ(n)+1 − z〉, (3.26)

where M is a constant such that M ≥ 2‖xn − z‖ for all n ≥ 0. Now, since ‖uσ(n) − wσ(n)‖ → 0
and ‖xσ(n)+1 − xσ(n)‖ → 0, we have

lim sup
n→∞

〈−z, xσ(n)+1 − z〉 = lim sup
n→∞

〈−z, xσ(n) − z〉

= max
q∈ωw(xσ(n))

〈−z, q − z〉 ≤ 0

by virtue of the facts z = PΩ(0) and ω(xσ(n)) ⊂ Ω. Consequently, (3.26) assures that xσ(n) → z,
which further implies that

‖xn − z‖ ≤ ‖xσ(n)+1 − z‖ ≤ ‖xσ(n)+1 − xσ(n)‖+ ‖xσ(n) − z‖ → 0.

That is, xn → z in the norm and the proof of Case II is complete. This completes the proof.
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4 Application
The split common fixed point problem (SCFPP), which was introduced by Censor and Segal [21] in
Euclidean spaces and extended by Moudafi [31] to Hilbert spaces, is formulated as finding a point
x∗ such that.

x∗ ∈ Fix(U1) and Ax∗ ∈ Fix(U2), (4.1)

where U1 : H → 2H and U2 : E → 2E
∗ are two mappings such that Fix(U1) 6= ∅ and Fix(U2) 6=

∅, respectively, and A : H → E is a (nonzero) bounded linear operator. Assume that the set of
solutions of the problem (SCFPP) (4.1), denoted by Ω, is nonempty.

Recall that a mapping T : E → 2E
∗ is said to be κ-strictly pseudo-contractive for some

κ ∈ [0, 1) if

〈Tx− Ty, j(x− y)〉 ≤ ‖x− y‖2 − κ‖x− y − (Tx− Ty)‖2, ∀x, y ∈ H.

Equivalently, I − T is κ-inverse strongly monotone.
It is clear that the problem (SCFPP) (4.1) can be reduced to the problem SVIP (3.1)–(3.1) with

B1 = I − U1 and B2 = I − U2. Consequently, we may apply Theorems 3.5 and 3.6 to get the
following results.

Theorem 4.1. Consider the problem (SCFPP) (4.1) where we assume that B1 = I − U1 and
B2 = I − U2 with U1 : H → 2H and U2 : E → 2E

∗
being α- and β-strictly pseudo-contractive

mappings, respectively. Assume that the sequences {εn}, {θn} and {αn} are same as in Theorem
3.5. Then the algorithm {xn} defined by

wn = xn + θn(xn − xn−1),

yn = JB1
r (I − τA∗JE(I −QB2

µ )A)wn,

d(wn, yn) = wn − yn − τ [A∗JE(I −QB2
µ )Awn − A∗JE(I −QB2

µ )Ayn],

xn+1 = wn − αnd(wn, yn)

converges weakly to a solution of the problem (SCFPP) (4.1).

Theorem 4.2. Consider the problem (SCFPP) (4.1) where we assume that B1 = I − U1 and
B2 = I − U2 with U1 : H → 2H and U2 : E → 2E

∗
being α- and β-strictly pseudo-contractive

mappings, respectively. Assume that the sequences {εn}, {θn}, {αn}, {βn} and {γn} are same as
in Theorem 3.6. Then the algorithm {xn} defined by

wn = xn + θn(xn − xn−1),

yn = JB1
r (I − τA∗JE(I −QB2

µ )A)wn,

d(wn, yn) = wn − yn − τ [A∗JE(I −QB2
µ )Awn − A∗JE(I −QB2

µ )Ayn],

xn+1 = (1− βn − γn)wn + βn(wn − αnd(wn, yn)),

converges strongly to a solution of the problem (SCFPP) (4.1).
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5 Numerical examples

In this section, we present numerical examples to illustrate and compare the applicability, efficiency
and stability of our inertial algorithms. All the codes are written in MATLAB R2016b and are
preformed on an LG dual core personal computer.

Example 5.1. Suppose that E = H = L2[0, 1] with norm ‖x‖ := (
∫ 1

0
|x(t)|2dt) 1

2 . Define the
mappings A,B1 and B2 by Ax(t) := x(t), B1x(t) := x(t)

2
and B2x(t) := 2x(t)

3
for all x ∈ L2[0, 1].

In this example, we set the parameters of Algorithm 1 by εn = 1
(n+1)2

for all n ∈ N .

If θ < εn(max{‖xn − xn−1‖, ‖xn − xn−1‖2)}−1), then θn = θ
2
. Otherwise, we take

θn =
1

(n+ 2)2
max{‖xn − xn−1‖, ‖xn − xn−1‖2)}−1.

At the same time, we set the parameters βn = n−1
n+1

, γn = 1
n+1

in Algorithm 2.

We set the stopping criterion ‖xn+1 − xn‖ ≤ 10−6 and test the performances of the algorithm
for the following starting points.

Case I: x0(t) = sin(−3t)+cos(−10t)
600

, x1(t) = sin(−3t)+cos(−10t)
1200

;

Case II: x0(t) = t2−e−t
100

, x1(t) = sin(−3t)+cos(−10t)
600

;

Case III: x0(t) = t2−e−t
100

, x1(t) = t2

100
;

The numerical results presented in Figures 1–3.
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Figure 1: Our algorithms performances for Case I
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Figure 2: Our algorithms performances for Case II
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Figure 3: Our algorithms performances for Case III

Example 5.2. Let H1 = H2 = R3. Define the operators A,B1 and B2 as follows:

A =

 6 3 1
8 7 5
3 6 2

 , B1 =

 1/3 0 0
0 1/2 0
0 0 1

 , B2 =

 4 0 0
0 5 0
0 0 6

 .

The parameters εn, θn are chosen as in the previous example.
First, we take the initial point x0 = (10, 0,−10), x1 = (−10, 5, 10). The behavior of Algo-

rithms 1 and 2 is reported in Figure 4. Next, we present several experiments to compare Algorithms
1 and 2 with the viscosity method of Suantai et al. [41] and the Halpern-type method of Alofi et
al. [3]. Since ‖A‖ = 14.87, we choose the step size τ = 0.001 for all algorithms. All results and
comparisons are reported in Table 1 for the stopping rule ‖xn+1 − xn‖ ≤ DOL.
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Figure 4: Our algorithms performances

Table 1: Comparison of Algorithms 1 and 2 with Suantai et al. [41] and Alofi et al. [3]

DOL Method Step size Iter. (n) CPU time (s) ‖z−xn‖
‖x0−xn+1‖

10−6 Algo. 1 0.001 54 5.49 2.4258 ∗ 10−7

Algo. 2 0.001 41 4.658 2.7943 ∗ 10−7

Suantai et al. 0.001 85 0.15577 1.9452 ∗ 10−7

Alofi et al. 0.001 87 0.15677 1.9582 ∗ 10−7

10−8 Algo. 1 0.001 66 5.53 2.3993 ∗ 10−9

Algo. 2 0.001 52 5.2097 2.7529 ∗ 10−9

Suantai et al. 0.001 114 0.916747 1.9458 ∗ 10−9

Alofi et al. 0.001 116 0.168193 2.01508 ∗ 10−9

Example 5.3. In this example we consider a problem from the field of compressed sensing, that
is, recovery of a sparse and noisy signal from a limited number of sampling. Let u0 ∈ Rn be K-
sparse signal, K � n. The sampling matrix A ∈ Rm×n (m < n) is stimulated from the standard
Gaussian distribution and vector b = Ax + ε, where ε is additive noise. When ε = 0, there is no
noise in the observed data. Our task is to recover signal u0 from data b. For further explanations,
one can consult for example Nguyen and Shin [33]. In general, one can solve recover a sparse and
noisy signal problem from LASSO problem, see Tibshirani [42].

min
x∈Rn

1

2
‖Ax− b‖2

subject to ‖x‖1 < t,
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where t > 0 is a given constant. Hence, with respect to the SVIP (3.1)-(3.2), we consider

B1(x) =

{
{u : sup‖y‖1≤t〈y − x, u〉} if x ∈ Rn,

∅ otherwise

and

B2(y) =

{
Rm if y = b,

∅ otherwise.

Therefore, B−1
1 (0) = {x : ‖x‖ ≤ t} and B−1

2 (0) = b. We test Algorithm 2 and compare it with
the methods of Sitthithakerngkiet et al. [40] and Kazmi et al. [29]. For the experiment setting
we choose the following parameters: A ∈ Rm×n is generated randomly with m = 27, n = 28,
u0 ∈ Rn contains K-spikes with amplitude ±1 distributed in the whole domain randomly. In
addition, for simplicity, we take the viscosity function h(x) = x

2
, S = I, αi = 1

i+1
in Kazmi et al.

[29], Si = I, αi = 10−3

i=1
, βi = 0.5− 1

10i+2
in Sitthithakerngkiet et al. [40] and βi = 2i−1

2i+1
, γi = 1

2i+1

in our Algorithm 2. In addition, we take t = K in all the algorithms and the stopping criterion
‖xn+1−xn‖ ≤ DOL withDOL = 10−4 andDOL = 10−6, respectively. All the numerical results
are presented in Figures 5-6 and Table 2.
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2‖Ax− b‖2



Split Variational Inclusion Problems 21

0 50 100 150 200 250 300
-1

-0.5

0

0.5

1
True

Algorithm 2

0 50 100 150 200 250 300
-1

-0.5

0

0.5

1
True

Sitthithakerngkiet

0 50 100 150 200 250 300
-1

-0.5

0

0.5

1

True

Kazimi and Riviz

Figure 6: Comparison of Algorithms 2, Sitthithakerngkiet et al. [40], Kazmi et al. [29]

Table 2: Comparison of Algorithms 2, Sitthithakerngkiet et al. [40], Kazmi et al. [29]

K,m,n DOL Method stepsize Iter(n)

K = 40,m = 27, n = 28 10−4 Algorithm 2 0.001 178

10−4 Sitthithakerngkiet 0.001 88

10−4 Kazmi et al. 0.001 9816

K = 50,m = 27, n = 28 10−6 Algorithm 2 0.001 1881

10−6 Sitthithakerngkiet 0.001 15005

10−6 Kazmi et al. 0.001 335065
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6 Conclusion

In this paper, we provide two simple inertial algorithms for solving split variational inclusions in
Banach spaces. Weak and strong convergence theorems are established under standard assump-
tions. Our work extend and generalizes some related works in the literature as well as demonstrates
good numerical behaviour.
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