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ABSTRACT. This paper investigates the three dimensional tropic climate equations with
fractional diffusion and nonlinear damping. The global exixtence and unique strong solutions
of the tropic climate equations have been build under the assumption that initial data
(u0,v0,00) € H'(R?) x H'(R?) x H'(R®) with a > 1,max(1, &£) < 8,7 < 1+ 25 and
p,q > 3.
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1. INTRODUCTION

This paper aims to address the global regularity of the following three dimensional tropical
climate model

Ou+u-Vu+ pA*u+Vr+V - (v@v) +or|ufflu=0, (z,t)eR3x(0,00),
o+ u-Vu+ APy +v - Vu+ V0 + aafv|7 v =0, (z,t) € R3 x (0, 00),
(1.1) {90 +u-VO+rAPH+V-v =0, (z,t) € R? x (0, 00),
divu = 0, (z,t) € R? x (0, 00),
uly=0 = uo, v|t=0 = vo, Oli=0 = bo, z € R,

where u = (u1(t, x,y, 2), us(t, x,y, 2), us(t, x,y, z)), v = (v1(t, x, y, 2), v2(t, x, y, 2), v3(t, x, y, 2))
denote the barotropic mode and the first baroclinic mode of the velocity field, 7 (¢, z, y, z) and
0(t,x,y, z) stand for the scalar pressure and scalar temperature. Here v ® v is the standard
tensor notation. The fractional power «, 8,7 > 0 are real constants. The damping exponents
p,q > 1 are real parameters and o1, o9 are the coefficient of the damping. This model is wide-
ly used in different fields, for example the physical phenomena in hydrodynamics, molecular
biology such as anomalous diffusion in semi-conductor growth, probability, finance and so on
(see [2], [8], [9]).

In 2004, Frierson et al. [3] derived the original tropical climate model without any dissi-
pation terms after a Galerkin truncation to the hydrostatic Boussinesq. Let us briefly review
some previous results on the tropical climate model. Li and Titi [6] established a unique
global strong solution to the two dimensional tropic climate equations with any initial data
with p = v =1,k = 01 = 09 = 0. Later, Ye [12] got the global regularity of a 2D tropical
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climate model with weak dissipation and Laplace dissipations. There is a large amount of
literature of the global regularity on the tropic climate model (see [10], [11]).

When v = 6§ = 0, the system (1.1) becomes the following Navier Stokes equation with
fractional dissipation and damping:

Ou+u- Vu+ A%+ Vr + [ulf~u =0,
(1.2) divu = 0,
Ul¢=0 = ug.

There is a rich literature on the well-posedness and decay estimates of the system (1.2) with
a =1 (see [4], [5], [14], [15] et al). Here we give some examples for the well-posedness. Cai and
Jiu [1] showed the existence of a global weak solution for p > 1 and global strong solutions
for p > % However, the uniqueness was shown for any % < p < 5. Zhang [13] proved
the Navier Stokes equation has a global strong solution under the assumption that ug €
HY(R3?)NLPT(R?) with p > 3. But the uniqueness is required another strict assumption that
3 < p < 5. Later, Zhou [16] showed that there exists a global strong solution when p > 3. In
2021, Liu, Li and Sun [7] proved the existence and unique strong solution of the incompressible
Navier Stokes equations (1.2) under the assumption that p + < a < min{3,-2 771 2} and
p > 1. Motivated by [7], [10] and [11], the purpose of thls paper is to establish the global
well-posedness of the three tropic climate model with fractional dissipation and nonlinear
damping. Our result is stated as follows.

1,p2J;4) < B,y < 1+ 1% and p,q > 3. Suppose that

(up,vo, 00) € HY(R?) satisfies V - ug = 0. Then the three-dimensional tropical climate model
(1.1) admits a global unique strong solution (u,v,0) satisfying for any 0 < T < oo,

(u,v,0) € L=(0,T; H'(R%)), € L*(0,T; H" "' (R?)),
we LPYY0,T; LPYY(R?)) N L*(0,T; H*T(R?)),

(1.3) v € LI, T; LI (R?) N L*(0, T; HPH(RY)),
Viu|"T € L2(0,T; LA(R%)), Vulu|"T € L2(0, T; LA(R%)),
Vio|'T € L2(0,T; L3(R%)), Vulv| T € L*(0,T; LA(R3)).

Theorem 1.1. Let o > 1, max(

Remark 1.2. In fact, our theorem is also true for a = f = v = 1, similar result was
established in [11], but the temperature equation of (1.1) lacks the damping term |6]"~10.
Moreover, we extend the results in [11] to the three dimensional tropic climate model with
fractional dissipation. When o = 1,0 = 6 = 0, the tropic climate model (1.1) becomes the
classical incompressible Navier-Stokes equations, Theorem 1.1 improves the results in [1], [13]
and [16]. We only need the initial data ug € H'(R3) and enlarge the scope of the power p of
the damping.

Remark 1.3. When a # 0,6 =~v=0and v =60 =0, Theorem 1.1 is the corresponding
theorem in [7]. But the conditions imposed on «, p satisfy max{l, Iy p+1 +32 1} < a < min{ +1+

2, %} and p > 1, which are different from the ones given in the Theorem 1.1 in [7]. The gap
appeared in Page 3 of [7] is changed as follows.
L(t) =Cllu-Vul? s < Cllul7pllVul®  spen

L2a+1 L o) (p+1)—6

2 o) A 1ta, | O a2 L Lyaita, (2
< Ollullzpsalfull 2 [ATT |, < Cllull lull72 + — 1A Ul 72
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1
Clllullfes + DlulZ + 1A,

where we have used the fact —I— <a< p+1 + 2.

2(p+1)
Remark 1.4. [t is interesting to consider the same questions of the system (1.1) with lower

diffusion 0 < «, 8,7 < 1. Unfortunately, our method doesn’t work in this case.

The rest of this paper is organized as follows. Some crucial lemmas can be found in Section
2. The proof of existence of Theorem 1.1 can be found in Section 3. The uniqueness part of
Theorem 1.1 is represented in Section 4.

2. SOME USEFUL LEMMAS

The following lemmas play a crucial role in estimating the nonlinear terms to three frac-
tional dimensional tropical climate equation.

Lemma 2.1. Let 1 < p,q,r < 00,1 <80 <1, and s, s1,52 € R. Then the following fractional
Gagliardo-Nirenberg inequality

1A%u]l poray < A ul o 1A% )7 gy,
holds if and only if
1 1
,_f:(1_0)(6—ﬂ)+9(7——) 5 < (1—0)s1+ Osa.

In addition, we also need the following Lemma.

Lemma 2.2. Let s € [0, g) Then the space H*(R?) is continuously embedded in L%(Rd).

3. THE PROOF OF THE EXISTENCE OF THEOREM 1.1

This section is devoted to the proof of Theorem 1.1. By a priori estimates and taking
limits of the Galerkin approximated solutions , we can obtain the existence of a global strong
solution. Therefore , in the sequel, we only build the a priori estimates. Throughout this
section, we always assume that y = vk =01 =09 = 1.

Step 1 L%-energy estimate Taking the L?-inner product of 1.1 with u,v and 6 respec-
tively, then summing them up to arrive at

3.1)
1d
2dt

where we have used

(V- (v®wv),u)+ (v-Vu,v) =0,(VO,v) + (V- -v,0) =

+1 +1
= (lull 2 + llol72 + 10172) + [A%ull72 + [A%0] 72 + 1A70] 72 + [l + [ollfes: =0,

Then, one has

t
+1 +1
(3.2) lullZ2 + lvlZ> + 116117 + 2/0 IA%ullF2 + ATl T2 + 170172 + [lull3s: + [lolforidr

= [luollZz + lwollZ + 16017

Step 2 H'-energy estimate
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Taking the L? inner product of 1.1 with —Awu, —Av and —A# respectively, then summing
them up to conclude

1d N
5%(!\%\\%2 + Vo2 + IVOII72) + AT w32 + AP o]|7, + [|[ATH10)3,
4(p ptl 4(g—1
(3.3) +(p)>HV| | 2 ||L2+|IWIu\ ||L2+( )3IIV| |z ||L2+|!Vv|v| z IILz

=(u-Vu,Au) + (V- (v ®v),Au) + (u - Vv, Av) + (v - Vu, Av) + (u - VO, A)
Sh+ L+ I3+ 1+ Is,

where we used

- p-1) P+l =
(lufP~tu, —Au) = (p+1)2HWU\ 2 |72+ [Vulul = |7,
- 4(¢—1) a1 a1
(0|7 v, —Av) = (q+1)2HVIUI 2|72+ [IVolo] = |70

Thanks to the Holder inequality, the Young inequality and Lemma 2.1, it yields that

I SHU'VUHL?”AUHH <l Vaul 7z + || AulZ,

/ 2|V 7T Va7 4 A,

<ljul?Vul7 Q= oot [[[Vuf? G I o=y + | AulZ.

4 2(p—3)

(3-4) —IIIUI TVl [Vl 5+ Al

S*IIIU!TVUIILQ + Ol VullZz + || AullZ,

2(a—1)

2
*HIU! z VUIILz+CIIVUI|L2+HVUIIL2 1A ull 7

<l VullZs + CIVullds + LIA 3.
We infer from Leibntz Law, the Holder inequality, the Young inequality and Lemma 2.1

I <[[[ol|VolllZa + | AulZ.

4
= [ oPITolFTVo T T o +
R3

4 2
<Nl Vol 7| ar IV0] 7 1|| o=t + [ AulZ

(3.5) 1 -1 )
< llol"= V. + ClVoll72 + [ AulZ.

2(a—1)

*Illv\ z Vv!\L2+C|!Vv\|L2+HWHL2 HAHO‘UHLQ

S§|HU\TWHL2 + Cl[Vol7z + ClVul 72 + ZHA”“UH%»



GLOBAL REGULARITY OF THREE DIMENSIONAL TROPICAL CLIMATE MODEL 5

To handle the third term I3. According to the Holder inequality and the Young inequality,
Lemma 2.1 and Lemma 2.2, one deduces

AUH

I3 < 6
528
<Cllu- VUH s 1A a1
<*HA1+B’UHL2 +Cllu- VU||2
HAH%HL2 + Cllul o ||VUH2 6(p+1)
(3.6) LB (pF1)—6
1 2(p+1)(28-1)—6 1 2(p+1H(1-p)+6
+1 1
||A olFe + ClullFonVoll, 750 AP, 70D
1 2 ( f/B(QP[;rl; 3 2
<*HA FPolfe + Cllull 7 [Vl

< I + OO+l Vel

By integration by parts, we write

Z / v;0;u, O O vjdx

i,5,k=1
Z / ;0O v dr — Z / 0;0;0,u; O vjdx
Jk 1 i,5,k=1
Z / (uj0K0;v;0kvj + ujO0KV; 0K 0;v;)dx — Z / 0;0;0,u;Ovjdx
Jk 1 ,],k 1
§2/ \uHVv[DQU\dx—i—/ (0| V|| D2ulda
R3 R3
=:J1 + Jo.

Similarly as I3. Thanks to the Holder inequality and the Young inequality, Lemma 2.1 and
Lemma 2.2, we have

J1 <
1 148,12 2
<A™ ollze + Clllul Vol s
HA”BUIILQ+CHUIILP+1HWII2 6(p1)
(3.7) LEFFD D -
2(p+1)(28—-1)— 2(p+1)(1-B)+6
HA”BUHL + CllulZp [V o 7O HAH”%HLQ ey

AL+B C % Vo2
H vl72 + Cllull 55 [Vol|72

+1
SZHAH’BUHLa + O+ [lull 7)1V ollZ:
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Similarly as Is. Thanks to the Holder inequality and the Young inequality and LemmaZ2.1,
we can verify

J2 <[Vl 2 [D%ul g2 < [[o]| Vo[l 2| Al 2
<[llolIVollZe + llAullZ,

2
<[|[vf2|Vol7T 1H a1 Vo5 1H 1+HVUIIL2 1Al 7

2(¢—3)

<|[jv] =" WH Vol s +CHVUII%Q+*HAH“UH%2

*H!vl = Vo2 + C[Voll3a + O Vull3z + *HAHQUHL

SEHIU\TV?}HB +ClIVollE> + C[Vul 72 + ZHAHQUHLz-
which along with (3.7) gives rise to

1 1
. L <5 [AY ol + AT ul e + Ol Vo) 7.
3.8
1 g—=1
+ Ml Vol|7 + C|Vo[l72 + C[|Vull 7.

Similarly as I5, one has

1+2

<*HA1+”9||L2 +Cllu- VoI

HAHWIILQ + C||7~L||Lp+1\|V9H2 6(p-+1)

(3.9) L@ (D6
1 ApDEy=6 2D+
1 1
HA 9012, + Cllu|,a VO] " |AY), D
2v(p+1)

%HAHWH% + Cllull 55 V0] 2

1 1
<SIATOI + C1 lullF )V 172

Inserting (3.4)-(3.9) into (3.3), it holds that

d

—(IVulZz + [ Vollz: + HV@Il%z) + HAQHU\\%z + AT | T2 + [[ATH6)17

19l 5 125 + 1 Vulul = |25 + 19 ]0] "5 |25 + 1Volo T |2,

<O(lullfpe + D(IVulzz + [Vol72 + IVO]72)-

Applying the Gronwall inequality and (3.2) to get

t
IVullz2 + IVollZ: + VO 72 +/ (1A |z + HABHvHiz + AT 2

(3.10)
V1l "5 1122 + [ Vulul T[22 + V)05 122 + [ Volo] ' |22)dr

< C(t, up,vo0, 6o),

which completes the proof of the existence of the strong solution .
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4. THE PROOF OF UNIQUENESS OF THEOREM 1.1

This section is devoted to establish the uniqueness of the strong solution constructed in
Theorem 1.1. Let (u1,v1,01,71) and (ug, va, 02, m2) be two solutions of the system (1.1) with
the same initial data (ug,vo,fp). Suppose that (u,v,0,7) = (u1 —ug, v1 — va, 01 — o, T — T2),
then (@, ,0,T) obeys

4.1

¢ 8,5)u +uy - Vi + A% + Va4 (Jug|P "y — JugPtug) = = - Vug — V- (1@ v + 12 @9),
0+ up - Vo + A5 + V0 + (Jur |7 oy — |va]T ) = —(vy - Vi + 5 - V) — @ - Vo,

00 +us-VO+A04+V-05=—7a-V0y,

divu = 0,

Ulg—o = O,B\tzo =0, é|t:0 =0,

Taking L2-inner product to the system (4.1) with (u,v,0), respectively, we obtain

1d, _ _ ~ o _ -
5£(HuHi2 + (190172 + 101172) + [1A%al| 72 + [[A%0]172 + |A76]|72

+ (|u1|p_1u1 — |U2‘p_lu2,U1 — 'LLQ) + (|’Ul|q_11}1 — |U2’q_1’02,’01 — UQ)
(4.2) =— (@ Vu,a) — (V- (0®v1),0) — (V- (v2®70),%) — (@ - Voy,0)
—(v-V 7

ulaqj) - (U2 Vﬂ,,ﬁ) - (ﬂvelye)
éK1+K2+K3+K4+K5+K6+K7.

It is easy to prove that (which can be found in [7] and [11])

/R?)(Im\p_lm ~lua’ " uz) (ur — uz)dw > (Juallfpn = uzlf ) (luallzorr = fluzllpo+r) >0,

/R3(|v1|q_1v1 —[v2|"wa) (v1 = va)dz = (forllFass = o2l o) (Jotllparr = oallzess) > 0.

Thanks to integration by parts, the Holder inequality, the Young inequality, Lemma 2.1 and
Lemma 2.2, it yields that

K1 = (V- au,ur) + (4 Va,ur) < [Jallgs||Val g2 |lui || s
< O\ Va7 + Cllal|7s|udll7e
< C|Val3. + Cllalis

2a —1
a
2

(4.3) ) 2 o
< Cllallys (A%l 72 + Cillall s

1
A% ][ 7

1
< Cillal3s + 3 IA%al .
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Applying integration by parts, the Holder inequality, the Young inequality Lemma2.1 and
Lemma 2.2 to deduce that

Ky < o1 o |9 3| V]| 2
< C|IVal3: + [villelv] 7
< C||Vall3: + Celo)13

28—1

2a—2 1
7 00| 7,

2
< Cllallz A%l 72 + Cil[o]

L

_ 1 _ _ 1 _
< llalz + glAalZe + Cillals + g IA%z.
A similar argument to estimate Ko gives

K3 < [[o]lpsllval s I Vall 2
< |Vl Za + o117 vzl Zo

< ||Vall3. + Cil|v)35

2a-2 2 25[;1 5 %
2 a2 _ _
< llall s [|A%al|f, + Celloll 2" |A7]] .
_ 1 _ _ 1 B
(45) < @l + gIAal3 + Cllola + SIAPDIR..
Along the same line to bound K3, we obtain
Ky < lall1s[[Voll 2 llvr] s
< |IVolle + llalzsllvr 1 Zs
o) < [V0l32 + Culals
) 28-2 2a—1

2 1
<ol 1A%, + Cellal s 1Aall 7

1 1
< Clloll3: + 510 + CillallEa + gIA%al:.

Thanks to Leibnitz law, the Holder inequality, the Young inequality, Lemma 2.1 and Lemma
2.2 again, we get

K5 < |V -0ll ([0l s lluallze + 10l s [Vl 2 ua o
< 2V 2|0l s [l [ 2o
< O|[Valze + Cllolgsluallze

(4.7) < C||Voll72 + Cillv]|7s
282 2 26-1 1
<C|o|l, s A0, +Cllvl,s |A%D]],

1
< Cilollz + §|1A%H%2.
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According to integration by parts and the methods to bound K35, we can verify
K¢ =(V-vg-u,0)+ (v2-u,V-0)
< ozl s [Vl L2 |0]] 3
< C|\Val7a + o2l 7sllol 72

(4.8) < C|[Valzz + Cllolzs
a2 2 2t g L
< Cllall s [A%al[z2 + Celloll 7 1A70]]

< CllalRs + 5IA%l3 + Culels + S1A%a]3..
Similarly as (4.8), we get
Kr = (a- V8,61) < 0] 21V 211 o
< I3 + a6 e
< C|[VOl72 + Cillalls

2y—2

(4'9) 2 2a—1 1
< Cl0lls A6 + Cellull s [[Aall 7

_ T i 1, .
< Ol + gIA701%: + Cillals + glla®al.
where we used (V - 46, 0;) = 0. Inserting (4.3)-(4.9) into (4.2), it yields that
d _ _ N B _
S UIallZe + 19172 + 19172) + [A°TllZe + 1A7D] 72 + A6 7,

< Gy(llallz2 + 1olZ2 + 191Z2),

which together with the Gronwall inequality ensures ||(i,v,0)||;2 = 0. This completes the
proof of Theorem1.1.
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