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Summary

This paper is concerned with stationary distribution and extinction of a
stochastic SIQR epidemic model with media coverage which is disturbed by
both white and telegraph noises. By using the stochastic Lyapunov function
method, we obtain sufficient conditions for the existence of a stationary distri-
bution of the global positive solution to the model. Then we establish sufficient
conditions for extinction of the disease. A stationary distribution means that
all the individuals can be coexistent and persistent in the long term. Finally,
numerical simulations are introduced to illustrate our theoretical results.
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1 INTRODUCTION

Recently, mathematical models have been widely used to analyze the mechanisms of infectious diseases, such as polio,
diphtheria, tuberculosis, tetanus, pertussis, measles, hepatitis B, 2019 novel coronavirus (2019-nCoV) etc [1,2,3,4,5,6,7]

and various epidemic models of population dynamics have been proposed [8,9,10,11,12,13,]. For example, Nistal et al. [11]

studied the stability and equilibrium points of multistaged SI(n)R epidemic models. Zhang et al.[13] investigated the
asymptotic behavior of global positive solution to a stochastic SIRS epidemic model incorporating media coverage
and saturated incidence rate. Ma et al.[10] considered an SIQR epidemic model with standard incidence rate and their
model can be expressed as follows 

dS
dt = Λ− β SI

N − µS,
dI
dt = β SI

N − (µ+ α+ δ + γ)I,
dQ
dt = δI − (µ+ α+ ϵ)Q,
dR
dt = γI + ϵQ− µR.

(1)

where S, I,R denote the number of susceptible, infective and removed, respectively, Q denotes the number of
quarantined, N = S + I + Q + R denotes the number of total population individuals. The parameter Λ denotes
the recruitment rate of S corresponding to births and immigration, β is the disease transmission coefficient between
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compartments S and I, µ denotes the natural death rate, γ and ϵ are the recover rates from groups I,Q to R, δ
represents the removal rate from I, α denotes the disease-caused death rate of I and Q. All parameters are assumed
to be nonnegative and µ,Λ > 0. Motivated by the system (1), liu et al.[14] developed a stochastic multigroup SIQR
epidemic model with standard incidence rates and studied the existence of a stationary distribution of the positive
solutions to the model, and established sufficient conditions for extinction of the disease.

When an infectious disease emerges and prevails in a region, one of the important prevention measures is educating
people with the correct preventive knowledge of the disease through mass media and other platforms at the first
opportunity[15]. Mass media including television, radio, newspaper, networks and so on potentially affect the behavior
of the people, which can be used to deliver preventive healthcare messages for precaution and avoidance of negative
behavior as a result of panic and to present updated information about the disease. Thus, media coverage is an urgent
issue that needs attention [16,17,18]. Cui et al.[18] developed an SIS model to consider the impact of media and eduction
on the spread of infectious disease. Liu and Li [19] proposed a drug model to discuss the impact of media coverage on
the spread and control of drug addiction. In Ref.[20] , Liu and Zhang consider a SIS epidemic model on two patches
incorporating media coverage. Recently, many mathematical models have been proposed to investigate the impact
of media coverage on the transmission dynamics of infectious disease. Especially, Tchuenche et al.[21] incorporated a
nonlinear function of the number infective individuals in their transmission term to investigate the effects of media
coverage on the transmission dynamic where β1 is the contact rate before media alert, the terms β2I/(m+I) measure
the effect of reduction of the contact rate when infectious individuals are reported in the media. The half-saturation
constant m > 0 reflects the impact of media coverage on the contact transmission. Because the coverage report cannot
prevent disease from spreading completely, we have β1 ≥ β2 > 0. Hence, we consider the effects of media coverage on
the transmission dynamic, model (1) can be modified as follows

dS
dt = Λ−

(
β1 − β2I

m+I

)
SI
N − µS.

dI
dt =

(
β1 − β2I

m+I

)
SI
N − (µ+ α+ δ + γ)I.

dQ
dt = δI − (µ+ α+ ϵ)Q.
dR
dt = γI + ϵQ− µR.

(2)

In addition, real life is full of randomness and stochasticity, epidemic models are always affected by the environ-
mental noise in an ecosystem. Therefore, numerous scholars have used stochastic differential equations to study the
dynamic behaviors of stochastic biological mathematical models[22,23,24,25,26,27,28,29]. For example, scholars obtained
thresholds of the stochastic system which determine the extinction and persistence of the epidemic in [27,28]. Based on
the discussion above, in this paper, we consider a stochastic non-autonomous SIQR model with periodic coefficients

dS(t) =
[
Λ(t)−

(
β1(t)− β2(t)I(t)

m(t)+I(t)

)
S(t)I(t)

N − µ(t)S(t)
]
dt+ σ1(t)S(t)dB1(t),

dI(t) =
[(

β1(t)− β2(t)I(t)
m(t)+I(t)

)
S(t)I(t)

N − (µ(t) + α(t) + δ(t) + γ(t))I(t)
]
dt+ σ2(t)I(t)dB2(t),

dQ(t) =
[
δ(t)I(t)− (µ(t) + α(t) + ϵ(t))Q(t)

]
dt+ σ3(t)Q(t)dB3(t),

dR(t) =
[
γ(t)I(t) + ϵ(t)Q(t)− µ(t)R(t)

]
dt+ σ4(t)R(t)dB4(t).

(3)

Where Bi(t)(i = 1, 2, 3, 4) are independent Brownian motions and σi(t)(i = 1, 2, 3, 4) are the coeffi-
cients of the effects of environmental stochastic perturbations on S(t), I(t), Q(t), R(t). The parameter functions
Λ(t), β1(t), β2(t),m(t), µ(t), α(t), δ(t), γ(t), ϵ(t) and σi(t)(i = 1, 2, 3, 4) are positive and continuous periodic functions
with positive periodic T.

In the real ecological systems, the population dynamics are usually influenced by a random switching in the external
environments [30,31,32]. In paper [30], the switching between environmental regime is often memoryless and the waiting
time for the next switching follows the exponential distribution. Usually, the random switching of environmental
regimes is characterized the continuous-time Markov chain with value in a finite state space. Therefore, we propose
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the following stochastic SIQR model with regime switching

dS(t) =
[
Λ(r(t))−

(
β1(r(t))− β2(r(t))I(t)

m(r(t))+I(t)

)
S(t)I(t)

N − µ(r(t))S(t)
]
dt+ σ1(r(t))S(t)dB1(t),

dI(t) =
[(

β1(r(t))− β2(r(t))I(t)
m(r(t))+I(t)

)
S(t)I(t)

N − (µ(r(t)) + α(r(t)) + δ(r(t)) + γ(r(t)))I(t)
]
dt

+σ2(r(t))I(t)dB2(t),

dQ(t) =
[
δ(r(t))I(t)− (µ(r(t)) + α(r(t)) + ϵ(r(t)))Q(t)

]
dt+ σ3(r(t))Q(t)dB3(t),

dR(t) =
[
γ(r(t))I(t) + ϵ(r(t))Q(t)− µ(r(t))R(t)

]
dt+ σ4(r(t))R(t)dB4(t).

(4)

where r(t) is a right-continuous time Markov chain with values in finite state space M = {1, 2, · · · N}. For any
k ∈ M, the parameters Λ(k), β1(k), β2(k),m(k), µ(k), α(k), δ(k), γ(k), ϵ(k) and σi(k)(i = 1, 2, 3, 4) are all nonnegative
constants.

The rest of the paper is organized as follows. In Section 2, we introduce some needed results throughout this paper.
In Section 3, we show that there exists a unique global positive solution of system (4). In Section 4, we verify that
there is an ergodic stationary distribution of system (4). In Section 5, we establish sufficient conditions for extinction
of system (4). In Section 6, numerical simulations are given to illustrate our conclusion.

2 PRELIMINARIES

In this section, we introduce the notations and lemmas which will be used in the whole paper. Let (Ω,F ,P) is a
complete probability space with a filtration {Ft}t≥0 satisfying the usual conditions.

Let r(t) is a right-continuous time Markov chain on the probability space taking values with in a finite state space
M = {1, 2, · · · m} with generator Γ = (γij)N×N given by

p (r(t+ h) = j | r(t) = i) =

{
γijh+ o(h), if i ̸= j,

1 + γijh+ o(h), if i = j, ,

where h > 0. Hence γij > 0 is the transition rate from i to j if i ̸= j, while
∑m

j=1 γij = 0. Assume further that
the Markov chain r(t) is irreducible and has a unique stationary distribution π = (π1, π2, · · · , πm) which can be
determined by equation

πΓ = 0, (5)

subject to
m∑
i=1

πi = 1, πi > 0, ∀i ∈ M.

We assume that the Markov chain r(t) is independent of the Brownian motion B(t) = (B1(t), B2(t), B3(t), B4(t)).
For any vector g = (g(1), g(2), · · · , g(m)), define ĝ = mink∈M g(k),

ǧ = maxk∈M g(k)

Let (X(t), r(t)) is the diffusion Markov process and satisfy the following equation

dX(t) = b(X(t), r(t))dt+ σ(X(t), r(t))dB(t), X(0) = x0, r(0) = r, (6)

where b(·, ·) : Rn ×M → Rn, σ(·, ·) : Rn ×M → Rn×n and D(x, k) = σ(x, k)σT(x, k) = (dij(x, k)). For each k ∈ M,
let V (·, k) be any twice continuously differentiable function, the differential operator L of Eq.(6) is defined by

L(x, k) =

n∑
i=1

bi(x, k)
∂V (x, k)

∂xi
+

1

2

n∑
i=1

dij(x, k)
∂2V (x, k)

∂xi∂xj
+

m∑
i=1

γklV (x, l).

Lemma 1. [33] If the following conditions are satisfied
(a) γij > 0, for any i ̸= j;
(b) for each k ∈ M, D(x, k) = (dij(x, k)) is symmetric and satisfies

λ | ζ2 |≤ (D(x, k)ζ, ζ) ≤ λ−1 | ζ2 |, for all ζ ∈ Rn,

with some constant λ ∈ (0, 1] for all x ∈ Rn;
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(c) there exists a nonempty open set D with compact closure, satisfying that, for each k ∈ M, there is nonnegative
function V (·, k) : Dc → R such that V (·, k) is twice continuously differential and that for some ϱ > 0,

LV (x, k) ≤ −ϱ, (x, k) ∈ Dc ×M.

Then (X(t), r(t)) of system (4) is positive recurrent and ergodic. That is to say, there exists a unique stationary
distribution π(·, ·) such that for any Borel measurable function f(·, ·) : Rn ×M → R satisfies

m∑
k=1

∫
Rn

| f(x, k) | π(dx, k) < ∞,

we have

p
(

lim
t→∞

1

t

t∫
0

f(X(s), r(s))ds =

m∑
k=1

∫
Rn

| f(x, k) | π(dx, k)
)
= 1.

Lemma 2. [34]. Let M = {Mt}t ≥ 0 be a real-valued continuous local martingale vanishing t = 0. Then

lim
t→∞

⟨M,M⟩t = ∞ a.s. ⇒ lim
t→∞

Mt

⟨M,M⟩t
= 0 a.s.

and also

lim sup
t→∞

⟨M,M⟩t
t

< ∞ a.s. ⇒ lim
t→∞

Mt

t
= 0 a.s.

3 EXISTENCE AND UNIQUENESS OF THE GLOBAL POSITIVE SOLUTION

In this section, we use the Lyapunov function method to prove that the solution of system (4) is global and positive.

Theorem 1. For any initial value (S(0), I(0), Q(0), R(0), r(0)) ∈ R4
+ × M, there is a unique positive solution

(S(t), I(t), Q(t), R(t), r(t)) of system (4) on t ≥ 0 and the solution will remain in R4
+ × M with probability one,

namely, (S(t), I(t), Q(t), R(t), r(t)) ∈ R4
+ ×M for all t ≥ 0 almost surely.

Proof. Note that the coefficients of the model (4) are locally Lipschitz conditions, then for any given initial value
(S(0), I(0), Q(0), R(0), r(t)) ∈ R4

+ × M, there ia a unique positive local solution (S(t), I(t), Q(t), R(t), r(t)) on t ∈
[0, τe), where τe is the explosion time [35]. To demonstrate that this solution is global, we only need to prove that
τe = ∞ a.s.

Let k0 > 0 be sufficiently large for any initial value S(0), I(0), Q(0) and R(0) lying within the interval [1/k0, k0].
For each integer k ≥ k0, define the following stopping time

τk = inf
{
t ∈ [0, τe) : min{S(t), I(t), Q(t), R(t)} ≤ 1

k
or max{S(t), I(t), Q(t), R(t)} ≥ k

}
where we set inf ∅ = ∞ (as usual ∅ denotes the empty set). Clearly, τk is increasing as k → ∞. Let τ∞ = limk→∞ τk,
hence τ∞ ≤ τe a.s. Next, we only need to verify τ∞ = ∞ a.s. If this statement is false, then there exist two constants
T > 0 and ε ∈ (0, 1) such that P{τ∞ ≤ T} > ε. Thus there is an integer k1 ≥ k0 such that P{τk ≤ T} ≥ ε, for all
k ≥ k1.

Define a C2-function V : R4
+ ×M → R+ as follows

V (S, I.Q,R, r) = S − a− a ln
S

a
+ I − 1− ln I +Q− 1− lnQ+R− 1− lnR,

the nonnegativity of this function can be obtained from x−1−lnx ≥ 0, x > 0, and the parameter a will be determined
later.

Applying Itô’s formula yields

dV (S, I,Q,R, r) = LV dt+ (S − a)σ1(t)dB1(t) + (I − 1)σ2(t)dB2(t) + (Q− 1)σ3(t)dB3(t)

+(R− 1)σ4(t)dB4(t),
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where

LV = (1− a

S
)
[
Λ(r(t))−

(
β1(r(t))−

β2(r(t))I(t)

m(r(t)) + I(t)

)S(t)I(t)
N

− µ(r(t))S(t)
]
+

aσ2
1(r(t))

2

+(1− 1

I
)
[(

β1(r(t))−
β2(r(t))I(t)

m(r(t)) + I(t)

)S(t)I(t)
N

− (µ(r(t)) + α(r(t)) + δ(r(t))

+γ(r(t)))I(t)
]
+

σ2
2(r(t))

2

+(1− 1

Q
)
[
δ(r(t))I(t)− (µ(r(t)) + α(r(t)) + ϵ(r(t)))Q(t)

]
+

σ2
3(r(t))

2

+(1− 1

R
)
[
γ(r(t))I(t) + ϵ(r(t))Q(t)− µ(r(t))R(t)

]
+

σ2
4(r(t))

2
,

which implies that

LV ≤ Λ(r(t)) +
aI(t)

N
β1(r(t)) + aµ(r(t))− (µ(r(t)) + α(r(t)))I(t) + 3µ(r(t)) + 2α(r(t))

+ϵ(r(t)) + γ(r(t)) + δ(r(t)) +
aσ2

1(r(t))

2
+

σ2
2(r(t))

2
+

σ2
3(r(t))

2
+

σ2
4(r(t))

2

≤ Λ̌− (µ̂+ α̂− aβ̌1

N
)I + aµ̌+ 3µ̌+ 2α̌+ ϵ̌+ γ̌ + δ̌ +

aσ̌2
1 + σ̌2

2 + σ̌2
3 + σ̌2

4

2
.

Choose a = N(µ̂+α̂)

β̌1
such that µ̂+ α̂− aβ̌1

N = 0, then

LV ≤ Λ̌ + aµ̌+ 3µ̌+ 2α̌+ ϵ̌+ γ̌ + δ̌ +
aσ̌2

1 + σ̌2
2 + σ̌2

3 + σ̌2
4

2
:= K,

where K is a positive constant.
The remainder of the proof follows as that in [36]. The proof is completed.

4 EXISTENCE OF ERGODIC STATIONARY DISTRIBUTION OF MODEL (4)

In this section, we investigated the existence of an ergodic stationary distribution of model (4).
Define a parameter

R1 =

∑m
k=1 πkΛ(k)(β1(k)− β2(k))

N
∑m

k=1 πk(µ(k) +
σ2
1(k)
2 )

∑m
k=1 πk(µ(k) + α(k) + δ(k) + γ(k) +

σ2
2(k)
2 )

.

Theorem 2. If R1 > 1, then for any initial value (S(0), I(0), Q(0), R(0), r(0)) ∈ R4
+ × M, the solution

(S(t), I(t), Q(t), R(t), r(t)) of model (4) admits a unique ergodic stationary distribution.

Proof. In order to proof Theorem 2, it suffices to verify conditions (a), (b), (c) in lemma 1. Assumption γij > 0 for
i ̸= j in section 2 implies that condition (a) in Lemma 1 is satisfied. On the other hand, we consider the following
bounded open subset:

D = (1/l, l)× (1/l, l)× (1/l, l)× (1/l, l) ∈ R4
+,

where l is a sufficiently large number. Then D̄ ∈ R4
+. We have D(S, I,Q,R, k) = W (S, I,Q,R, k)

WT(S, I,Q,R, k) in which W (S, I,Q,R, k) = diag(Sσ1(k), Iσ2(k), Qσ3(k), Rσ4(k)), k ∈ M. Then D(S, I,Q,R, k)

is positive semi-definite and since W (S, I,Q,R, k) is nonsingular matrix, we deduce that D(S, I,Q,R, k) is positive
definite. Hence

λmax(D(S, I,Q,R, k)) ≥ λmin(D(S, I,Q,R, k)) > 0,

and for all ζ ∈ D, we have

λmin(D(S, I,Q,R, k)) | ζ |2≤ ζT(D(S, I,Q,R, k))ζ ≤ λmax(D(S, I,Q,R, k)) | ζ |2 .

It is easy to see that λmin(D(S, I,Q,R, k)) and λmax(D(S, I,Q,R, k)) are two continuous functions of S, I,Q,R.
Therefore λ̂ = min(S,I,Q,R,k)∈D̄×M λmin(D(S, I,Q,R, k)) > 0 and λ̌ = max(S,I,Q,R,k)∈D̄×M λmax(D(S, I,Q,R, k)) >
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0, which implies that

λ | ζ2 |≤ (D(x, k)ζ, ζ) ≤ λ−1 | ζ2 |, for all ζ ∈ Rn,

where λ = min{λ̂, λ̌−1}. Condition (b) is verified.
Now we verify condition (c). Define a C2-function V : [0,+∞)× R4

+ → R:

V (S, I,Q,R, k) = M(V1(S, I) + ω(k)) + V2(S, I,Q,R) + V3(S) + V4(Q) + V5(R),

V1(S, I) = −C1 lnS − C2 ln I, V2(S, I,Q,R) =
1

θ + 1
(S + I +Q+R)θ+1,

V3(S) = − lnS, V4(Q) = − lnQ,V5(R) = − lnR,

where

C1 =

∑m
k=1 πkΛ(k)∑m

k=1 πk(µ(k) +
σ2
1(k)
2 )

, C2 =

∑m
k=1 πkΛ(k)∑m

k=1 πkΛ(k)(µ(k) + α(k) + δ(k) + γ(k) +
σ2
2(k)
2 )

,

and θ > 0 is a sufficiently small constant such that

µ̂− 1

2
θ(σ̌2

1 + σ̌2
2 + σ̌2

3 + σ̌2
4) > 0,

and M > 0 is a sufficiently large positive constant and satisfies the following condition

−Mλ+ C ≤ −2,

where

λ = 2

m∑
k=1

πkΛ(k)(R
1
2
1 − 1),

and

C = sup
(S,I,Q,R,k)∈R4

+×M

{
− 1

2
(µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4))(S

θ+1 + Iθ+1 +Qθ+1 +Rθ+1) +D

+3µ̌+ α̌+ ϵ̌+
σ̌2
1 + σ̌2

3 + σ̌2
4

2

}
,

where

D = sup
(S,I,Q,R,k)∈R4

+×M

{
Λ̌(S + I +Q+R)θ − 1

2
(µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4))(S + I +Q+R)θ+1

}
.

Obviously, V (S, I,Q,R, k) has a minimum value point (S0, I0, Q0, R0, k). Then we can define a nonnegative C2-
function V :

V = V (S, I,Q,R, k)− V (S0, I0, Q0, R0, k).
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By the Itô’s formula, we obtain

LV1 = −C1

S

[
Λ(k)−

(
β1(k)−

β2(k)I

m(k) + I

)SI
N

− µ(k)S
]
+

C1σ
2
1(k)

2

−C2

I

[(
β1(k)−

β2(k)I

m(k) + I

)SI
N

− (µ(k) + α(k) + δ(k) + γ(k))I
]
+

C2σ
2
2(k)

2

≤ −C1Λ(k)

S
− C2S

N
(β1(k)− β2(k)) +

C1β1(k)I

N
+ C1(µ(k) +

σ2
1(k)

2
)

+C2(µ(k) + α(k) + δ(k) + γ(k) +
σ2
2(k)

2
)

≤ −2

√
C1C2Λ(k)

N
(β1(k)− β2(k)) +

C1β1(k)I

N
+ C1(µ(k) +

σ2
1(k)

2
)

+C2(µ(k) + α(k) + δ(k) + γ(k) +
σ2
2(k)

2
)

= B0(k) +
C1β1(k)I

N
,

where B0(k) = −2
√

C1C2Λ(k)
N (β1(k)− β2(k)) + C1(µ(k) +

σ2
1(k)
2 ) + C2(µ(k) + α(k) + δ(k) + γ(k) +

σ2
2(k)
2 ).

Let (ω(1), ω(2), · · · , ω(m)) be the solution of the following Poisson system:

Γω =

m∑
l=1

πlB0(l)−B0,

where B0 = (B0(1), B0(2), · · · , B0(m)). Therefore, combining the definitions of C1, C2, leads to

L(V1 + ω(t)) ≤ −2

m∑
k=1

πkΛ(k)(R
1
2
1 − 1) +

C1β1(k)I

N

≤ −λ+
C1β̌1I

N
.

Similarly, we can obtain

LV2 = (S + I +Q+R)θ
[
Λ(k)− µ(k)S − (µ(k) + α(k))(I +Q)− µ(k)R

]
+
1

2
θ(S + I +Q+R)θ−1(σ2

1(k)S
2 + σ2

2(k)I
2 + σ2

3(k)Q
2 + σ2

4(k)R
2)

≤ Λ(k)(S + I +Q+R)θ − µ(k)(S + I +Q+R)θ+1 +
1

2
θ(S + I +Q+R)θ+1

×(σ2
1(k) ∨ σ2

2(k) ∨ σ2
3(k) ∨ σ2

4(k))

= Λ(k)(S + I +Q+R)θ −
(
µ(k)− 1

2
θ(σ2

1(k) ∨ σ2
2(k) ∨ σ2

3(k) ∨ σ2
4(k))

)
×(S + I +Q+R)θ+1

≤ D − 1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1 +Qθ+1 +Rθ+1),

LV3 = − 1

S

[
Λ(k)−

(
β1(k)−

β2(k)I

m(k) + I

)SI
N

− µ(k)S
]
+

σ2
1(k)

2

≤ −Λ(k)

S
+

β1(k)I

N
+ µ(k) +

σ2
1(k)

2

≤ − Λ̂

S
+

β̌1I

N
+ µ̌+

σ̌2
1

2
,
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LV4 = − 1

Q

[
δ(k)I(t)− (µ(k) + α(k) + ϵ(k))Q(t)

]
+

σ2
3(k)

2

= −δ(k)I

Q
+ (µ(k) + α(k) + ϵ(k)) +

σ2
3(k)

2

≤ − δ̂I

Q
+ µ̌+ α̌+ ϵ̌+

σ̌2
3

2
,

and

LV5 = − 1

R

[
γ(k)I + ϵ(k)Q− µ(k)R

]
+

σ2
4(k)

2

= −γ(k)I

R
− ϵ(k)Q

R
+ µ(k) +

σ2
4(k)

2

≤ − γ̂I

R
+ µ̌+

σ̌2
4

2
.

Therefore

LV = ML(V1 + ω(k)) + LV2 + LV3 + LV4 + LV5

≤ M(−λ+
C1β̌1I

N
)− Λ̂

S
+

β̌1I

N
− δ̂I

Q
− γ̂I

R
+ 3µ̌+ α̌+ ϵ̌+

σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2

+D − 1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1 +Qθ+1 +Rθ+1),

= −Mλ+
β̌1I

N
(MC1 + 1)− Λ̂

S
− δ̂I

Q
− γ̂I

R
+ 3µ̌+ α̌+ ϵ̌+

σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2

+D − 1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1 +Qθ+1 +Rθ+1).

Define the following bounded closed set

U =
{
(S, I,Q,R, k) ∈ R4

+ ×M : ε ≤ S ≤ 1

ε
, ε ≤ I ≤ 1

ε
, ε2 ≤ Q ≤ 1

ε2
, ε2 ≤ R ≤ 1

ε2

}
,

where ε > 0 is a sufficiently small number. In the set R4
+ \ U , we can choose ε sufficiently small such that

− Λ̂

ε
+ E ≤ −1, (7)

−Mλ+
β̌1ε

N
(MC1 + 1) + C ≤ −1, (8)

− δ̂

ε
+ E ≤ −1, (9)

− γ̂

ε
+ E ≤ −1, (10)

−1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
) 1

εθ+1
+ F ≤ −1, (11)

−1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
) 1

εθ+1
+G ≤ −1, (12)

−1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
) 1

ε2(θ+1)
+H ≤ −1, (13)

−1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
) 1

ε2(θ+1)
+ J ≤ −1, (14)

where E,C, F,G,H, J are positive constants which can be found below. For the sake of convenience, we divide into
eight domains
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U1 =
{
(S, I,Q,R) ∈ R4

+ : 0 < S < ε
}
, U2 =

{
(S, I,Q,R, ) ∈ R4

+ : 0 < I < ε
}
,

U3 =
{
(S, I,Q,R) ∈ R4

+ : I > ε, 0 < Q < ε2
}
, U4 =

{
(S, I,Q,R) ∈ R4

+ : I > ε, 0 < R < ε2
}
.

U5 =
{
(S, I,Q,R) ∈ R4

+ : S >
1

ε

}
, U6 =

{
(S, I,Q,R) ∈ R4

+ : I >
1

ε

}
,

U7 =
{
(S, I,Q,R) ∈ R4

+ : Q >
1

ε2

}
, U8 =

{
(S, I,Q,R) ∈ R4

+ : R >
1

ε2

}
,

Next we will prove that LV (S, I,Q,R, k) ≤ −1 on R4
+ \ U , which is equivalent to proving it on the above eight

domains.
Case 1. If (S, I,Q,R, k) ∈ U1, one can see that

LV ≤ β̌1I

N
(MC1 + 1)− Λ̂

S
+ 3µ̌+ α̌+ ϵ̌+

σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2
+D

−1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1 +Qθ+1 +Rθ+1)

≤ − Λ̂

ε
+ E

(15)

where

E = sup
(S,I,Q,R)∈R4

+

{ β̌1I

N
(MC1 + 1) + 3µ̌+ α̌+ ϵ̌+

σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2
+D

−1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1 +Qθ+1 +Rθ+1)

}
.

By (7), we have LV ≤ −1 for all (S, I,Q,R) ∈ U1.
Case 2. If (S, I,Q,R) ∈ U2, one can obtain that

LV (S, I,Q,R) ≤ −Mλ+
β̌1I

N
(MC1 + 1) + 3µ̌+ α̌+ ϵ̌+

σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2
+D

−1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1 +Qθ+1 +Rθ+1)

≤ −Mλ+
β̌1I

N
(MC1 + 1) + C

≤ −Mλ+
β̌1ε

N
(MC1 + 1) + C, (16)

where

C = sup
(S,I,Q,R)∈R4

+

{
− 1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1 +Qθ+1 +Rθ+1)

+3µ̌+ α̌+ ϵ̌+
σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2
+D

}
.

Accordingly to (8), we have LV ≤ −1 for all (S, I,Q,R) ∈ U2.
Case 3. If (S, I,Q,R) ∈ U3, we have

LV (S, I,Q,R) ≤ β̌1I

N
(MC1 + 1)− δ̂I

Q
+ 3µ̌+ α̌+ ϵ̌+

σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2
+D

−1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1 +Qθ+1 +Rθ+1)

≤ − δ̂I

Q
+ E. (17)



10 AUTHOR ONE et al

In view of (9), we have LV ≤ −1 for all (S, I,Q,R) ∈ U3.
Case 4. If (S, I,Q,R) ∈ U4, one can derive that

LV (S, I,Q,R) ≤ −γlI

R
+

βu
1 I

N
(MC1 + 1) + 3µu +

σ2u
1

2
+ αu + ϵu +

σ2u
3

2
+

σ2u
4

2

+D − 1

2

(
µl − 1

2
θ(σ2

1 ∨ σ2
2 ∨ σ2

3 ∨ σ2
4)

u
)
(Sθ+1 + Iθ+1 +Qθ+1 +Rθ+1)

≤ −γlI

R
+ E

≤ −γl

ε
+ E. (18)

By (10), we have LV ≤ −1 for all (S, I,Q,R) ∈ U4.
Case 5. If (S, I,Q,R) ∈ U5, it follows that

LV (S, I,Q,R) ≤ −1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1 +Qθ+1 +Rθ+1)

+
β̌1I

N
(MC1 + 1) + 3µ̌+ α̌+ ϵ̌+

σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2
+D

≤ −1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
Sθ+1 + F

≤ −1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
) 1

εθ+1
+ F, (19)

where

F = sup
(S,I,Q,R)∈R4

+

{
− 1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Iθ+1 +Qθ+1) +

β̌1I

N
(MC1 + 1) + 3µ̌

+α̌+ ϵ̌+
σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2
+D − 1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
Sθ+1

}
.

Together with (11), we have LV ≤ −1 for all (S, I,Q,R) ∈ U5.
Case 6. If (S, I,Q,R) ∈ U6, we obtain

LV (S, I,Q,R) ≤ −1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1 +Qθ+1 +Rθ+1)

+
β̌1I

N
(MC1 + 1) + 3µ̌+ α̌+ ϵ̌+

σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2
+D

≤ −1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
Iθ+1 +G

≤ −1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
) 1

εθ+1
+G, (20)

where

G = sup
(S,I,Q,R)∈R4

+

{
− 1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 +Rθ+1) +

β̌1I

N
(MC1 + 1) + 3µ̌

+α̌+ ϵ̌+
σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2
+D − 1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
Iθ+1

}
.

By virtue of (12), we have LV ≤ −1 for all (S, I,Q,R) ∈ U6.
Case 7. If (S, I,Q,R) ∈ U7, we can deduce that

LV (S, I,Q,R) ≤ −1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
Qθ+1 +

β̌1I

N
(MC1 + 1) + 3µ̌

−1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1) + α̌+ ϵ̌+D

−1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
Qθ+1 +

σ̌1
2

2
+

σ̌3
2

2
+

σ̌4
2

2

≤ −1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
) 1

ε2(θ+1)
+H, (21)
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where

H = sup
(S,I,Q,R)∈R4

+

{
− 1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1) +

β̌1I

N
(MC1 + 1) + 3µ̌

+α̌+ ϵ̌+
σ̌2
1

2
+

σ̌2
3

2
+

σ̌2
4

2
+D − 1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
Qθ+1

}
.

It follows from (13), we have LV ≤ −1 for all (S, I,Q,R) ∈ U7.
Case 8. If (S, I,Q,R) ∈ U8, one can obtain that

LV (S, I,Q,R) ≤ −1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
Rθ+1 +

β̌1I

N
(MC1 + 1) + 3µ̌

−1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1) + α̌+ ϵ̌+D

−1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
Rθ+1 +

σ̌1
2

2
+

σ̌3
2

2
+

σ̌4
2

2

≤ −1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
Rθ+1 + J

≤ −1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
) 1

ε2(θ+1)
+ J, (22)

where

J = sup
(S,I,Q,R)∈R4

+

{ β̌1I

N
(MC1 + 1) + 3µ̌− 1

2

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
(Sθ+1 + Iθ+1)

+α̌+ ϵ̌+D − 1

4

(
µ̂− 1

2
θ(σ̌2

1 ∨ σ̌2
2 ∨ σ̌2

3 ∨ σ̌2
4)
)
Rθ+1 +

σ̌1
2

2
+

σ̌3
2

2
+

σ̌4
2

2

}
.

By (14), we can conclude that LV ≤ −1 for all (S, I,Q,R) ∈ U8.
Therefore, we have proof that for a sufficiently small ε > 0,

LV (S, I,Q,R) ≤ −1, (S, I,Q,R) ∈ R4
+ \ U.

Hence, (c) in Lemma 1 holds. This completes the proof of Theorem 2.

5 EXTINCTION OF MODEL (4)

In this section, we investigate the conditions for the extinction of model (4).
Define a parameter

R2 =
Λ̌β̌1

Nµ̂
∑m

k=1 πk(µ(k) + α(k) + δ(k) + γ(k) +
σ2
2(k)
2 )

.

Theorem 3. Let(S(t), I(t), Q(t), R(t), r(t)) be a solution of model (4) with initial value
(S(0), I(0), Q(0), R(0), r(0)) ∈ R4

+ × M. If R2 < 1, then the disease I goes to extinction exponentially with
probability one, i.e.,

lim
t→∞

I(t) = 0 a.s.

and also

lim
t→∞

⟨S⟩t ≤
Λ̌

µ̂
, lim

t→∞
Q(t) = lim

t→∞
R(t) = 0. a.s.

Proof. From model (4), we have

S(t)− S(0)

t
= ⟨Λ⟩t − ⟨(β1 −

β2I

m+ I
)
SI

N
⟩t − ⟨µS⟩t +

∫ t

0
σ1(s)S(s)dB1(s)

t
,

and

I(t)− I(0)

t
= ⟨(β1 −

β2I

m+ I
)
SI

N
⟩t − ⟨(µ+ α+ δ + γ)I⟩t +

∫ t

0
σ2(s)I(s)dB2(s)

t
.
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Then

I(t)− I(0)

t
+

S(t)− S(0)

t
= ⟨Λ⟩t − ⟨µS⟩t − ⟨(µ+ α+ δ + γ)I⟩t +

∫ t

0
σ1(s)S(s)dB1(s)

t

+

∫ t

0
σ2(s)I(s)dB2(s)

t

≤ Λ̌− µ̂⟨S⟩t − (µ̂+ α̂+ δ̂ + γ̂)⟨I⟩t +
σ̌1

∫ t

0
S(s)dB1(s)

t

+
σ̌2

∫ t

0
I(s)dB2(s)

t
.

It is easy to obtain

⟨S⟩t ≤ Λ̌

µ̂
− µ̂+ α̂+ δ̂ + γ̂

µ̂
⟨I⟩t +H(t), (23)

where

H(t) =

σ̌1

∫ t
0
S(s)dB1(s)

t

µ̂
+

σ̌2

∫ t
0
I(s)dB2(s)

t

µ̂
−

I(t)−I(0)
t + S(t)−S(0)

t

µ̂
.

According to Lemma 2, we have

lim
t→∞

H(t) = 0 a.s. (24)

By the Itô’s formula, we obtain

d ln I(t) =
{1

I

[
(β1(t)−

β2(t)I(t)

m(t) + I(t)

)S(t)I(t)
N

− (µ(t) + α(t) + δ(t) + γ(t))I(t)
]

−σ2
2(t)

2

}
dt+ σ2(t)dB2(t)

≤
(β1(t)S

N
− (µ(t) + α(t) + δ(t) + γ(t))− σ2

2(t)

2

)
dt+ σ2(t)dB2(t). (25)

Integrating (25) from 0 to t and dividing t on both sides, we get

ln I(t)− ln I(0)

t
≤ ⟨β1(t)S⟩t

N
− ⟨µ+ α+ δ + γ +

σ2
2

2
⟩t +

∫ t

0
σ2(s)dB2(s)

t

≤ β̌1⟨S⟩t
N

− ⟨µ+ α+ δ + γ +
σ2
2

2
⟩t +

∫ t

0
σ2(s)dB2(s)

t
.

Together with (23), we have

ln I(t)

t
≤ β̌1

N

[ Λ̌
µ̂
− µ̂+ α̂+ δ̂ + γ̂

µ̂
⟨I⟩t +H(t)

]
− ⟨µ+ α+ δ + γ +

σ2
2

2
⟩t

+

∫ t

0
σ2(s)dB2(s)

t
+

ln I(0)

t

≤ β̌1Λ̌

Nµ̂
+

β̌1H(t)

N
− ⟨µ+ α+ δ + γ +

σ2
2

2
⟩t +

∫ t

0
σ2(s)dB2(s)

t
+

ln I(0)

t
. (26)

As ergodic properties of ξ(t), we have

lim sup
t→∞

1

t

1∫
0

µ(r(s))ds =

N∑
k=1

πkµ(k).
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Taking the limit superior of both of (26) and using Lemma 2, which together with (24), we can obtain

lim sup
t→+∞

ln I(t)

t
≤ β̌1Λ̌

Nµ̂
− ⟨µ+ α+ δ + γ +

σ2
2

2
⟩T

= ⟨µ+ α+ δ + γ +
σ2
2

2
⟩T

( β̌1Λ̌

Nµ̂⟨µ+ α+ δ + γ +
σ2
2

2 ⟩T
− 1

)
= ⟨µ+ α+ δ + γ +

σ2
2

2
⟩T(R2 − 1)

< 0,

which implies lim
t→∞

I(t) = 0.
From (23), it is easy to get that

lim
t→∞

⟨S⟩t ≤
Λ̌

µ̂
.

From the third and fourth equations of model (4), it is easy to obtain that

lim
t→∞

Q(t) = 0, lim
t→∞

R(t) = 0.

This completes the proof.

6 NUMERICAL SIMULATIONS

In this section, we give two examples to support the theoretical prediction.

Example 6.1. In model (4), let r(t) is a right-continuous Markov chain taking values k = 1, 2 and the generator Γ

of the Markov chain is (
−0.06 0.06

0.04 −0.04

)
.

By solving the linear equation (5), we obtain the unique stationary distribution

π = (π1, π2) = (0.4, 0.6).

Choose the parameters values in model (4) as follows

Λ(1) = 0.8, β1(1) = 0.6, β2(1) = 0.2,m(1) = 1, N = 1, µ(1) = 0.2, α(1) = 0.25,

δ(1) = 0.2, γ(1) = 0.15, ε(1) = 0.2, σ1(1) = σ2(1) = σ3(1) = σ4(1) = 0.05.

and

Λ(2) = 1, β1(2) = 0.7, β2(2) = 0.1,m(1) = 1, N = 1, µ(2) = 0.3, α(2) = 0.3,

δ(2) = 0.3, γ(2) = 0.25, ε(2) = 0.3, σ1(2) = σ2(2) = σ3(2) = σ4(2) = 0.1.

Note that R1 ≈ 1.828 > 1 holds, that is to say, the condition of Theorem 2 holds. Therefore, the stochastic model
(4) has an ergodic stationary distribution. That means that the stochastic SIQR model (4) with regime switching
has a unique stationary distribution and it has the ergodic property (see Figure 1).
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FIGURE 1 (a) is Markov chain, (b) is a stationary distribution of the stochastic model (4), (c) is the probability
function of S(t), (d) is the probability function of I(t), (e) the probability function of Q(t). The initial value is
(S(0), I(0), Q(0), R(0)) = (0.7, 0.5, 0.4, 0.2)

Example 6.2. In model (4), let r(t) is a right-continuous Markov chain taking values k = 1, 2 and the generator Γ

of the Markov chain is (
−0.06 0.06

0.04 −0.04

)
.

By solving the linear equation (5), we obtain the unique stationary distribution

π = (π1, π2) = (0.4, 0.6).

Choose the parameters values in model (4) as follows

Λ(1) = 0.8, β1(1) = 0.25, β2(1) = 0.15,m(1) = 1, N = 1, µ(1) = 0.25, α(1) = 0.3,

δ(1) = 0.3, γ(1) = 0.2, ε(1) = 0.2, σ1(1) = σ2(1) = σ3(1) = σ4(1) = 0.15.

and

Λ(2) = 1, β1(2) = 0.3, β2(2) = 0.2,m(1) = 1, N = 1, µ(2) = 0.3, α(2) = 0.35,

δ(2) = 0.4, γ(2) = 0.4, ε(2) = 0.4, σ1(2) = σ2(2) = σ3(2) = σ4(2) = 0.2.

Note that R2 ≈ 0.916 < 1 holds, the condition of Theorem 3 is satisfied. Therefore, we obtain that the disease I(t)

will tend to zero exponentially with probability one (see Figure 2).
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FIGURE 2 (a) is Markov chain, (b) is a stationary distribution of the stochastic model (4), (c) is the probability
function of S(t) ,(d) is the probability function of I(t) , (e) the probability function of Q(t). The initial value is
(S(0), I(0), Q(0), R(0)) = (0.7, 0.5, 0.4, 0.2)
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