Author contributions
X.S. conceived and designed the experiments, wrote the manuscript, and took part in some experiments; H.X. completed the map-based cloning ofels1 gene; X.H. and Q.W. did complementation test and CRISPR-cas9 of OsCASP1; X.Y. performed electron microscopy and suberin deposition analysis; Q.W., X.Y. and X.Z. did subcellular localization of OsCASP1; X.Y. and Q.W. performed histological analysis and hydroponic experiment. Q.W., X.Y., X.S., X.Z and H.X. carried out the analysis of OsCASP1 expression and RNA-seq. K.L and Y.G. performed field experiments and management. All authors commented on the manuscript.
Competing interests The authors declare no competing financial interests.

Reference

Alassimone, J., Roppolo, D., Geldner, N., & Vermeer, J. E. (2012). The endodermis–development and differentiation of the plant’s inner skin. Protoplasma, 249 (3), 433-443. doi:10.1007/s00709-011-0302-5
Andersen, T. G., Barberon, M., & Geldner, N. (2015). Suberization-the second life of an endodermal cell.Curr Opin Plant Biol, 28 , 9-15. doi:10.1016/j.pbi.2015.08.004
Barberon, M. (2017). The endodermis as a checkpoint for nutrients. New Phytol, 213 (4), 1604-1610. doi:10.1111/nph.14140
Barberon, M., & Geldner, N. (2014). Radial transport of nutrients: the plant root as a polarized epithelium.Plant Physiol, 166 (2), 528-537. doi:10.1104/pp.114.246124
Barberon, M., Vermeer, J. E., De Bellis, D., Wang, P., Naseer, S., Andersen, T. G., . . . Geldner, N. (2016). Adaptation of Root Function by Nutrient-Induced Plasticity of Endodermal Differentiation. Cell, 164 (3), 447-459. doi:10.1016/j.cell.2015.12.021
Bilgin, D. D., DeLucia, E. H., & Clough, S. J. (2009). A robust plant RNA isolation method suitable for Affymetrix GeneChip analysis and quantitative real-time RT-PCR.Nat Protoc, 4 (3), 333-340. doi:10.1038/nprot.2008.249
Bruggeman, Q., Raynaud, C., Benhamed, M., & Delarue, M. (2015). To die or not to die? Lessons from lesion mimic mutants. Front Plant Sci, 6 , 24. doi:10.3389/fpls.2015.00024
Brundrett, M. C., Enstone, D. E., & Peterson, C. (1988). A berberine-aniline blue fluorescent staining procedure for suberin,lignin and callose in plant tissue.Protoplasma, 146 , 133-142.
Brundrett, M. C., Kendrick, B., & Peterson, C. A. (1991). Efficient lipid staining in plant material with sudan red 7B or fluorol [correction of fluoral] yellow 088 in polyethylene glycol-glycerol. Biotech Histochem, 66 (3), 111-116.
Champeyroux, C., Bellati, J., Barberon, M., Rofidal, V., Maurel, C., & Santoni, V. (2019). Regulation of a plant aquaporin by a Casparian strip membrane domain protein-like.Plant Cell Environ, 42 (6), 1788-1801. doi:10.1111/pce.13537
Chen, Q., Shinozaki, D., Luo, J., Pottier, M., Have, M., Marmagne, A., . . . Masclaux-Daubresse, C. (2019). Autophagy and Nutrients Management in Plants. Cells, 8 (11). doi:10.3390/cells8111426
Chen, Z., Zheng, W., Chen, L., Li, C., Liang, T., Chen, Z., . . . Chen, S. (2019). Green Fluorescent Protein- and Discosoma sp. Red Fluorescent Protein-Tagged Organelle Marker Lines for Protein Subcellular Localization in Rice. Front Plant Sci, 10 , 1421. doi:10.3389/fpls.2019.01421
Doblas, V. G., Geldner, N., & Barberon, M. (2017). The endodermis, a tightly controlled barrier for nutrients. Curr Opin Plant Biol, 39 , 136-143. doi:10.1016/j.pbi.2017.06.010
Have, M., Marmagne, A., Chardon, F., & Masclaux-Daubresse, C. (2017). Nitrogen remobilization during leaf senescence: lessons from Arabidopsis to crops. J Exp Bot, 68 (10), 2513-2529. doi:10.1093/jxb/erw365
Himelblau, E., & Amasino, R. M. (2001). Nutrients mobilized from leaves of Arabidopsis thaliana during leaf senescence. J Plant Physiol, 158 (10), 1317-1323. doi:10.1078/0176-1617-00608
Hosmani, P. S., Kamiya, T., Danku, J., Naseer, S., Geldner, N., Guerinot, M. L., & Salt, D. E. (2013). Dirigent domain-containing protein is part of the machinery required for formation of the lignin-based Casparian strip in the root. Proc Natl Acad Sci U S A, 110 (35), 14498-14503. doi:10.1073/pnas.1308412110
Hulskamp, M., Schwab, B., Grini, P., & Schwarz, H. (2010). Transmission electron microscopy (TEM) of plant tissues. Cold Spring Harb Protoc, 2010 (7), pdb prot4958. doi:10.1101/pdb.prot4958
Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol, 35 (6), 1547-1549. doi:10.1093/molbev/msy096
Lee, Y., Rubio, M. C., Alassimone, J., & Geldner, N. (2013). A mechanism for localized lignin deposition in the endodermis. Cell, 153 (2), 402-412. doi:10.1016/j.cell.2013.02.045
Leng, Y., Ye, G., & Zeng, D. (2017). Genetic Dissection of Leaf Senescence in Rice. Int J Mol Sci, 18 (12). doi:10.3390/ijms18122686
Liang, C., Wang, Y., Zhu, Y., Tang, J., Hu, B., Liu, L., . . . Chu, C. (2014). OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. Proc Natl Acad Sci U S A, 111 (27), 10013-10018. doi:10.1073/pnas.1321568111
Nakayama, T., Shinohara, H., Tanaka, M., Baba, K., Ogawa-Ohnishi, M., & Matsubayashi, Y. (2017). A peptide hormone required for Casparian strip diffusion barrier formation in Arabidopsis roots. Science, 355 (6322), 284-286. doi:10.1126/science.aai9057
Naseer, S., Lee, Y., Lapierre, C., Franke, R., Nawrath, C., & Geldner, N. (2012). Casparian strip diffusion barrier in Arabidopsis is made of a lignin polymer without suberin. Proc Natl Acad Sci U S A, 109 (25), 10101-10106. doi:10.1073/pnas.1205726109
Pradhan Mitra, P., & Loque, D. (2014). Histochemical staining of Arabidopsis thaliana secondary cell wall elements. J Vis Exp (87). doi:10.3791/51381
Rebouillat, J., Dievart, A., Verdeil, J. L., Escoute, J., Giese, G., Breitler, J. C., . . . Perin, C. (2009). Molecular Genetics of Rice Root Development. Rice (N Y), 2 (1), 15-34. doi:10.1007/s12284-008-9016-5
Robbins II, N. E., Trontin, C., Duan, L., & Dinneny, J. R. (2014). Beyond the Barrier: Communication in the Root through the Endodermis. Plant Physiol, 166 (2), 551-559. doi:10.1104/pp.114.244871
Roppolo, D., Boeckmann, B., Pfister, A., Boutet, E., Rubio, M. C., Denervaud-Tendon, V., . . . Geldner, N. (2014). Functional and Evolutionary Analysis of the CASPARIAN STRIP MEMBRANE DOMAIN PROTEIN Family. Plant Physiol, 165 (4), 1709-1722. doi:10.1104/pp.114.239137
Roppolo, D., De Rybel, B., Denervaud Tendon, V., Pfister, A., Alassimone, J., Vermeer, J. E., . . . Geldner, N. (2011). A novel protein family mediates Casparian strip formation in the endodermis. Nature, 473 (7347), 380-383. doi:10.1038/nature10070
Schreiber, L., Franke, R., Hartmann, K. D., Ranathunge, K., & Steudle, E. (2005). The chemical composition of suberin in apoplastic barriers affects radial hydraulic conductivity differently in the roots of rice (Oryza sativa L. cv. IR64) and corn (Zea mays L. cv. Helix). J Exp Bot, 56 (415), 1427-1436. doi:10.1093/jxb/eri144
Shiono, K., Ando, M., Nishiuchi, S., Takahashi, H., Watanabe, K., Nakamura, M., . . . Kato, K. (2014). RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for hypodermal suberization of roots in rice (Oryza sativa). Plant J, 80 (1), 40-51. doi:10.1111/tpj.12614
Sonnhammer, E. L., von Heijne, G., & Krogh, A. (1998). A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol, 6 , 175-182.
Wang, P., Calvo-Polanco, M., Reyt, G., Barberon, M., Champeyroux, C., Santoni, V., . . . Salt, D. E. (2019). Surveillance of cell wall diffusion barrier integrity modulates water and solute transport in plants. Sci Rep, 9 (1), 4227. doi:10.1038/s41598-019-40588-5
Wang, Z., Yamaji, N., Huang, S., Zhang, X., Shi, M., Fu, S., . . . Xia, J. (2019). OsCASP1 is Required for Casparian Strip Formation at Endodermal Cells of Rice Roots for Selective Uptake of Mineral Elements. Plant Cell .
Woo, H. R., Kim, H. J., Lim, P. O., & Nam, H. G. (2019). Leaf Senescence: Systems and Dynamics Aspects.Annu Rev Plant Biol, 70 , 347-376. doi:10.1146/annurev-arplant-050718-095859
Xie, C., Mao, X., Huang, J., Ding, Y., Wu, J., Dong, S., . . . Wei, L. (2011). KOBAS 2.0: a web server for annotation and identification of enriched pathways and diseases.Nucleic Acids Res, 39 (Web Server issue), W316-322. doi:10.1093/nar/gkr483
Yang, J., Ding, C., Xu, B., Chen, C., Narsai, R., Whelan, J., . . . Zhang, M. (2015). A Casparian strip domain-like gene, CASPL, negatively alters growth and cold tolerance.Sci Rep, 5 , 14299. doi:10.1038/srep14299
Zhang, K., & Gan, S. S. (2012). An abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C regulatory chain for controlling dehydration in senescing Arabidopsis leaves. Plant Physiol, 158 (2), 961-969. doi:10.1104/pp.111.190876
Zhou, Y., Huang, W., Liu, L., Chen, T., Zhou, F., & Lin, Y. (2013). Identification and functional characterization of a rice NAC gene involved in the regulation of leaf senescence. BMC Plant Biol, 13 , 132. doi:10.1186/1471-2229-13-132
Figure 1. The phenotypes of the wild type andels1 mutant and characterization of els1.(A) Seedlings of wild type and els1 mutant plants. (B) The phenotypes of wild type and els1 mutant plants at the heading stage. Red arrows indicate leaves with necrosis. (C) Phenotype of the leaves. 1, 2, and 3 indicate the relative positions from top to bottom. (D) The structure of OsCASP1 and deletion region in the els1mutant. (E) Phenotypic comparison of transgenic plants with theOsCASP1 gene (T6 and T4) and segregant individuals without theOsCASP1 gene (T1 and T2). (F) The PCR result indicated transgenic plants with or without the OsCASP1 gene.