Author contributions
X.S. conceived and designed the experiments, wrote the manuscript, and
took part in some experiments; H.X. completed the map-based cloning ofels1 gene; X.H. and Q.W. did complementation test and CRISPR-cas9
of OsCASP1; X.Y. performed electron microscopy and suberin deposition
analysis; Q.W., X.Y. and X.Z. did subcellular localization of OsCASP1;
X.Y. and Q.W. performed histological analysis and hydroponic experiment.
Q.W., X.Y., X.S., X.Z and H.X. carried out the analysis of OsCASP1
expression and RNA-seq. K.L and Y.G. performed field experiments and
management. All authors commented on the manuscript.
Competing interests The authors declare no competing financial interests.
Reference
Alassimone, J., Roppolo, D., Geldner,
N., & Vermeer, J. E. (2012). The endodermis–development and
differentiation of the plant’s inner skin. Protoplasma, 249 (3),
433-443. doi:10.1007/s00709-011-0302-5
Andersen, T. G., Barberon, M., &
Geldner, N. (2015). Suberization-the second life of an endodermal cell.Curr Opin Plant Biol, 28 , 9-15. doi:10.1016/j.pbi.2015.08.004
Barberon, M. (2017). The endodermis as
a checkpoint for nutrients. New Phytol, 213 (4), 1604-1610.
doi:10.1111/nph.14140
Barberon, M., & Geldner, N. (2014).
Radial transport of nutrients: the plant root as a polarized epithelium.Plant Physiol, 166 (2), 528-537. doi:10.1104/pp.114.246124
Barberon, M., Vermeer, J. E., De
Bellis, D., Wang, P., Naseer, S., Andersen, T. G., . . . Geldner, N.
(2016). Adaptation of Root Function by Nutrient-Induced Plasticity of
Endodermal Differentiation. Cell, 164 (3), 447-459.
doi:10.1016/j.cell.2015.12.021
Bilgin, D. D., DeLucia, E. H., &
Clough, S. J. (2009). A robust plant RNA isolation method suitable for
Affymetrix GeneChip analysis and quantitative real-time RT-PCR.Nat Protoc, 4 (3), 333-340. doi:10.1038/nprot.2008.249
Bruggeman, Q., Raynaud, C., Benhamed,
M., & Delarue, M. (2015). To die or not to die? Lessons from lesion
mimic mutants. Front Plant Sci, 6 , 24.
doi:10.3389/fpls.2015.00024
Brundrett, M. C., Enstone, D. E., &
Peterson, C. (1988). A berberine-aniline blue fluorescent staining
procedure for suberin,lignin and callose in plant tissue.Protoplasma, 146 , 133-142.
Brundrett, M. C., Kendrick, B., &
Peterson, C. A. (1991). Efficient lipid staining in plant material with
sudan red 7B or fluorol [correction of fluoral] yellow 088 in
polyethylene glycol-glycerol. Biotech Histochem, 66 (3), 111-116.
Champeyroux, C., Bellati, J.,
Barberon, M., Rofidal, V., Maurel, C., & Santoni, V. (2019). Regulation
of a plant aquaporin by a Casparian strip membrane domain protein-like.Plant Cell Environ, 42 (6), 1788-1801. doi:10.1111/pce.13537
Chen, Q., Shinozaki, D., Luo, J.,
Pottier, M., Have, M., Marmagne, A., . . . Masclaux-Daubresse, C.
(2019). Autophagy and Nutrients Management in Plants. Cells,
8 (11). doi:10.3390/cells8111426
Chen, Z., Zheng, W., Chen, L., Li,
C., Liang, T., Chen, Z., . . . Chen, S. (2019). Green Fluorescent
Protein- and Discosoma sp. Red Fluorescent Protein-Tagged Organelle
Marker Lines for Protein Subcellular Localization in Rice. Front
Plant Sci, 10 , 1421. doi:10.3389/fpls.2019.01421
Doblas, V. G., Geldner, N., &
Barberon, M. (2017). The endodermis, a tightly controlled barrier for
nutrients. Curr Opin Plant Biol, 39 , 136-143.
doi:10.1016/j.pbi.2017.06.010
Have, M., Marmagne, A., Chardon, F.,
& Masclaux-Daubresse, C. (2017). Nitrogen remobilization during leaf
senescence: lessons from Arabidopsis to crops. J Exp Bot, 68 (10),
2513-2529. doi:10.1093/jxb/erw365
Himelblau, E., & Amasino, R. M.
(2001). Nutrients mobilized from leaves of Arabidopsis thaliana during
leaf senescence. J Plant Physiol, 158 (10), 1317-1323.
doi:10.1078/0176-1617-00608
Hosmani, P. S., Kamiya, T., Danku,
J., Naseer, S., Geldner, N., Guerinot, M. L., & Salt, D. E. (2013).
Dirigent domain-containing protein is part of the machinery required for
formation of the lignin-based Casparian strip in the root. Proc
Natl Acad Sci U S A, 110 (35), 14498-14503. doi:10.1073/pnas.1308412110
Hulskamp, M., Schwab, B., Grini, P.,
& Schwarz, H. (2010). Transmission electron microscopy (TEM) of plant
tissues. Cold Spring Harb Protoc, 2010 (7), pdb prot4958.
doi:10.1101/pdb.prot4958
Kumar, S., Stecher, G., Li, M.,
Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular Evolutionary Genetics
Analysis across Computing Platforms. Mol Biol Evol, 35 (6),
1547-1549. doi:10.1093/molbev/msy096
Lee, Y., Rubio, M. C., Alassimone,
J., & Geldner, N. (2013). A mechanism for localized lignin deposition
in the endodermis. Cell, 153 (2), 402-412.
doi:10.1016/j.cell.2013.02.045
Leng, Y., Ye, G., & Zeng, D. (2017).
Genetic Dissection of Leaf Senescence in Rice. Int J Mol Sci,
18 (12). doi:10.3390/ijms18122686
Liang, C., Wang, Y., Zhu, Y., Tang,
J., Hu, B., Liu, L., . . . Chu, C. (2014). OsNAP connects abscisic acid
and leaf senescence by fine-tuning abscisic acid biosynthesis and
directly targeting senescence-associated genes in rice. Proc Natl
Acad Sci U S A, 111 (27), 10013-10018. doi:10.1073/pnas.1321568111
Nakayama, T., Shinohara, H., Tanaka,
M., Baba, K., Ogawa-Ohnishi, M., & Matsubayashi, Y. (2017). A peptide
hormone required for Casparian strip diffusion barrier formation in
Arabidopsis roots. Science, 355 (6322), 284-286.
doi:10.1126/science.aai9057
Naseer, S., Lee, Y., Lapierre, C.,
Franke, R., Nawrath, C., & Geldner, N. (2012). Casparian strip
diffusion barrier in Arabidopsis is made of a lignin polymer without
suberin. Proc Natl Acad Sci U S A, 109 (25), 10101-10106.
doi:10.1073/pnas.1205726109
Pradhan Mitra, P., & Loque, D.
(2014). Histochemical staining of Arabidopsis thaliana secondary cell
wall elements. J Vis Exp (87). doi:10.3791/51381
Rebouillat, J., Dievart, A., Verdeil,
J. L., Escoute, J., Giese, G., Breitler, J. C., . . . Perin, C. (2009).
Molecular Genetics of Rice Root Development. Rice (N Y), 2 (1),
15-34. doi:10.1007/s12284-008-9016-5
Robbins II, N. E., Trontin, C., Duan,
L., & Dinneny, J. R. (2014). Beyond the Barrier: Communication in the
Root through the Endodermis. Plant Physiol, 166 (2), 551-559.
doi:10.1104/pp.114.244871
Roppolo, D., Boeckmann, B., Pfister,
A., Boutet, E., Rubio, M. C., Denervaud-Tendon, V., . . . Geldner, N.
(2014). Functional and Evolutionary Analysis of the CASPARIAN STRIP
MEMBRANE DOMAIN PROTEIN Family. Plant Physiol, 165 (4), 1709-1722.
doi:10.1104/pp.114.239137
Roppolo, D., De Rybel, B., Denervaud
Tendon, V., Pfister, A., Alassimone, J., Vermeer, J. E., . . . Geldner,
N. (2011). A novel protein family mediates Casparian strip formation in
the endodermis. Nature, 473 (7347), 380-383.
doi:10.1038/nature10070
Schreiber, L., Franke, R., Hartmann,
K. D., Ranathunge, K., & Steudle, E. (2005). The chemical composition
of suberin in apoplastic barriers affects radial hydraulic conductivity
differently in the roots of rice (Oryza sativa L. cv. IR64) and corn
(Zea mays L. cv. Helix). J Exp Bot, 56 (415), 1427-1436.
doi:10.1093/jxb/eri144
Shiono, K., Ando, M., Nishiuchi, S.,
Takahashi, H., Watanabe, K., Nakamura, M., . . . Kato, K. (2014).
RCN1/OsABCG5, an ATP-binding cassette (ABC) transporter, is required for
hypodermal suberization of roots in rice (Oryza sativa). Plant J,
80 (1), 40-51. doi:10.1111/tpj.12614
Sonnhammer, E. L., von Heijne, G., &
Krogh, A. (1998). A hidden Markov model for predicting transmembrane
helices in protein sequences. Proc Int Conf Intell Syst Mol Biol,
6 , 175-182.
Wang, P., Calvo-Polanco, M., Reyt,
G., Barberon, M., Champeyroux, C., Santoni, V., . . . Salt, D. E.
(2019). Surveillance of cell wall diffusion barrier integrity modulates
water and solute transport in plants. Sci Rep, 9 (1), 4227.
doi:10.1038/s41598-019-40588-5
Wang, Z., Yamaji, N., Huang, S.,
Zhang, X., Shi, M., Fu, S., . . . Xia, J. (2019). OsCASP1 is Required
for Casparian Strip Formation at Endodermal Cells of Rice Roots for
Selective Uptake of Mineral Elements. Plant Cell .
Woo, H. R., Kim, H. J., Lim, P. O.,
& Nam, H. G. (2019). Leaf Senescence: Systems and Dynamics Aspects.Annu Rev Plant Biol, 70 , 347-376.
doi:10.1146/annurev-arplant-050718-095859
Xie, C., Mao, X., Huang, J., Ding,
Y., Wu, J., Dong, S., . . . Wei, L. (2011). KOBAS 2.0: a web server for
annotation and identification of enriched pathways and diseases.Nucleic Acids Res, 39 (Web Server issue), W316-322.
doi:10.1093/nar/gkr483
Yang, J., Ding, C., Xu, B., Chen, C.,
Narsai, R., Whelan, J., . . . Zhang, M. (2015). A Casparian strip
domain-like gene, CASPL, negatively alters growth and cold tolerance.Sci Rep, 5 , 14299. doi:10.1038/srep14299
Zhang, K., & Gan, S. S. (2012). An
abscisic acid-AtNAP transcription factor-SAG113 protein phosphatase 2C
regulatory chain for controlling dehydration in senescing Arabidopsis
leaves. Plant Physiol, 158 (2), 961-969. doi:10.1104/pp.111.190876
Zhou, Y., Huang, W., Liu, L., Chen,
T., Zhou, F., & Lin, Y. (2013). Identification and functional
characterization of a rice NAC gene involved in the regulation of leaf
senescence. BMC Plant Biol, 13 , 132. doi:10.1186/1471-2229-13-132
Figure 1. The phenotypes of the wild type andels1 mutant and characterization of els1.(A) Seedlings of wild type and els1 mutant plants. (B) The
phenotypes of wild type and els1 mutant plants at the heading
stage. Red arrows indicate leaves with necrosis. (C) Phenotype of the
leaves. 1, 2, and 3 indicate the relative positions from top to bottom.
(D) The structure of OsCASP1 and deletion region in the els1mutant. (E) Phenotypic comparison of transgenic plants with theOsCASP1 gene (T6 and T4) and segregant individuals without theOsCASP1 gene (T1 and T2). (F) The PCR result indicated transgenic
plants with or without the OsCASP1 gene.