ACKNOWLEDGEMENTS
The authors gratefully acknowledge the support of National Natural Science Foundation of China (Grant No. 51305122) and National Basic Research Program of China (Grant No. 2012CB026003).
REFERENCES
1. Jones RL, Davies PC. Experimental characterization of dynamic tensile and fracture toughness properties. Fatigue Fract Eng Mater Struct. 1989; 12: 423-437.
2. Nam HS, Kim YJ, Kim JW, Kim JS. Energy-based numerical modeling of the strain rate effect on fracture toughness of SA508 Gr. Ia. J Strain Anal Eng Des. 2017; 52: 177-189.
3. Angamuthu K, Guha B, Achar DRG. Investigation of dynamic fracture toughness (JId ) behaviour of strength mis-matched Q & T steel weldments using instrumented Charpy impact testing. Eng Fract Mech. 1999; 64: 417-432.
4. Sreenivasan PR, Mannan SL. Dynamic J-R curves and tension-impact properties of AISI 308 stainless steel weld. Int J Fract. 2000; 101: 229-249.
5. Jiang FC, Vecchio KS. Hopkinson bar loaded fracture experimental technique: a critical review of dynamic fracture toughness tests. Appl Mech Rev. 2009; 62: 060802.
6. Roudier PH, Francois D. Dynamic fracture toughness measurements and local approach modeling of titanium alloys. Fatigue Fract Eng Mater Struct. 1996; 19: 1317-1327.
7. Chaouadi R, Puzzolante JL. Loading rate effect on ductile crack resistance of steels using precracked charpy specimens. Int J Pressure Vessels Pip. 2008; 85: 752-761.
8. Foster JT, Chen W, Luk VK. Dynamic crack initiation toughness of 4340 steel at constant loading rates. Eng Fract Mech. 2011; 78: 1264-1276.
9. Prasad NE, Kamat SV, Malakondaiah G, Kutumbarao VV. Static and dynamic fracture toughness of an Al-Li 8090 alloy plate. Fatigue Fract Eng Mater Struct. 1994; 17: 441-450.
10. Wu QG, Chen XD, Fan ZC, Nie DF, Pan JH. Engineering fracture assessment of FV520B steel impeller subjected to dynamic loading. Eng Fract Mech. 2015; 146: 210-223.
11. Galvez F, Cendon D, Carcia N, Enfedaque A, Sánchez-Gálvez V. Dynamic fracture toughness of a high strength armor steel. Eng Fail Anal. 2009; 16: 2567-2575.
12. Loya JA, Saez JF. Three-dimensional effects on the dynamic fracture determination of Al 7075-T651 using TPB specimens. Int J Solids Struct. 2008; 45: 2203-2219.
13. Cui XZ, Fan YF, Chen J. Experimental research of quasi-static and dynamic fracture toughness of 685 homogeneous steel. Journal of Experimental Mechanics 2012; 27: 326-334.
14. Wu QG, Chen XD, Fan ZC, Nie DF. Experimental and numerical study on dynamic fracture behavior of AISI 1045 steel for compressor crankshaft. Fatigue Fract Eng Mater Struct. 2017; 40: 245-253.
15. Lorentzon M, Eriksson K. Influence of intermediate loading rates and temperature on the fracture toughness of ordinary carbon-manganese structural steels. Fatigue Fract Eng Mater Struct. 1998; 21: 805-817.
16. Xu ZJ, Li YL. Dynamic fracture toughness of high strength metals under impact loading: increase or decrease. Acta Mech Sin. 2011; 27: 559-566.
17. Li YL, Guo WG, Jia DX, Liu YY, Luo JR, Du J, Chen YZ. Experimental measurement of dynamic fracture initiation toughness of 40Cr steel. Explosion and Shock Waves. 1996; 16: 21-30.
18. GB/T 21143-2007. Metallic Materials-Unified Method of Test for Determination of Quasistatic Fracture Toughness. Standards Press of China, Beijing.
19. GB/T 229-2007. Metallic Materials-Charpy Pendulum Impact Test Method. Standards Press of China, Beijing.
20. Magudeeswaran G, Balasubramanian V. Dynamic fracture toughness behavior of armor-grade Q & T steel weldments: effect of weld metal composition and microstructure. Met Mater Int. 2009; 15: 1017-1026.
21. Zehnder AT. Fracture Mechanics. Lecture Notes in Applied and Computational Mechanics 2012, Vol. 62, Springer, Netherlands.
22. R6. Assessment of the integrity of structures containing defects, procedure R6-revision 4. Gloucester: Nuclear Electric Ltd; 2001.