REFERENCES
Archer, E. (2016). rfPermute, Estimate Permutation p-Values for Random
Forest Importance Metrics. R package version 1.5.2.
Balmford, A. (1996). Extinction filters and current resilience: the
significance of past selection pressures for conservation biology.
Trends in Ecology & Evolution, 11(5), 193–196.https://doi.org/10.1016/0169-5347(96)10026-4
Battistuzzi, F. U., & Hedges, S. B. (2009). A Major Clade of
Prokaryotes with Ancient Adaptations to Life on Land. Molecular Biology
and Evolution, 26(2), 335–343.https://doi.org/10.1093/molbev/msn247
Breiman, L. (2001). Machine Learning, 45(1), 5–32.https://doi.org/10.1023/a:1010933404324
Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A., &
Rillig, M. C. (2017). Nutrient limitation of soil microbial processes in
tropical forests. Ecological Monographs, 88(1), 4–21.https://doi.org/10.1002/ecm.1279
Chamizo, S., Mugnai, G., Rossi, F., Certini, G., & De Philippis, R.
(2018). Cyanobacteria Inoculation Improves Soil Stability and Fertility
on Different Textured Soils: Gaining Insights for Applicability in Soil
Restoration. Frontiers in Environmental Science, 6, 49.https://doi.org/10.3389/fenvs.2018.00049
Chen, H., Liu, J., Wang, K., & Zhang, W. (2011). Spatial distribution
of rock fragments on steep hillslopes in karst region of northwest
Guangxi, China. CATENA, 84(1-2), 21–28.https://doi.org/10.1016/j.catena.2010.08.012
Creamer, R. E., Brennan, F., Fenton, O., Healy, M. G., Lalor, S. T. J.,
Lanigan, G. J., … Griffiths, B. S. (2010). Implications of the
proposed Soil Framework Directive on agricultural systems in Atlantic
Europe - a review. Soil Use and Management, 26(3), 198–211.https://doi.org/10.1111/j.1475-2743.2010.00288.x
Da C Jesus, E., Marsh, T. L., Tiedje, J. M., & de S Moreira, F. M.
(2009). Erratum: Changes in land use alter the structure of bacterial
communities in Western Amazon soils. The ISME Journal, 3(10),
1222–1222.https://doi.org/10.1038/ismej.2009.98
Delgado-Baquerizo, M., Trivedi, P., Trivedi, C., Eldridge, D. J., Reich,
P. B., Jeffries, T. C., & Singh, B. K. (2017a). Microbial richness and
composition independently drive soil multifunctionality. Functional
Ecology, 31(12), 2330–2343.https://doi.org/10.1111/1365-2435.12924
Delgado-Baquerizo, M., Eldridge, D. J., Ochoa, V., Gozalo, B., Singh, B.
K., & Maestre, F. T. (2017b). Soil microbial communities drive the
resistance of ecosystem multifunctionality to global change in drylands
across the globe. Ecology Letters, 20(10), 1295–1305.https://doi.org/10.1111/ele.12826
Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C.,
Gaitan, J. J., Encinar, D., … Singh, B. K. (2016). Microbial
diversity drives multifunctionality in terrestrial ecosystems. Nature
Communications, 7, 10541.https://doi.org/10.1038/ncomms10541
De Vries, F. T., Liiri, M. E., Bjørnlund, L., Bowker, M. A.,
Christensen, S., Setälä, H. M., & Bardgett, R. D. (2012). Land use
alters the resistance and resilience of soil food webs to drought.
Nature Climate Change, 2(4), 276–280.https://doi.org/10.1038/nclimate1368
De Vries, F. T., & Shade, A. (2013). Controls on soil microbial
community stability under climate change. Frontiers in Microbiology, 4.https://doi.org/10.3389/fmicb.2013.00265
Don, A., Schumacher, J., & Freibauer, A. (2011. Impact of tropical
land-use change on soil organic carbon stocks - a meta-analysis. Global
Change Biology, 17(4), 1658–1670.https://doi.org/10.1111/j.1365-2486.2010.02336.x
Durán, J., Morse, J. L., Rodríguez, A., Campbell, J. L., Christenson, L.
M., Driscoll, C. T., … Groffman, P. M. (2017). Differential
sensitivity to climate change of C and N cycling processes across soil
horizons in a northern hardwood forest. Soil Biology and Biochemistry,
107, 77–84.https://doi.org/10.1016/j.soilbio.2016.12.028
Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an
Ecological Classification of Soil Bacteria. Ecology, 88(6), 1354–1364.https://doi.org/10.1890/05-1839
Gao, J., Xue, Y., & Wu, S. (2013). Potential impacts on regional
climate due to land degradation in the Guizhou Karst Plateau of China.
Environmental Research Letters, 8(4), 044037.https://doi.org/10.1088/1748-9326/8/4/044037
Gómez-Acata, E. S., Valencia-Becerril, I., Valenzuela-Encinas, C.,
Velásquez-Rodríguez, A. S., Navarro-Noya, Y. E., Montoya-Ciriaco, N.,
… Dendooven, L. (2016). Deforestation and Cultivation with Maize
(Zea maysL.) has a Profound Effect on the Bacterial Community Structure
in Soil. Land Degradation & Development, 27(4), 1122–1130.https://doi.org/10.1002/ldr.2328
Griffiths, B. S., & Philippot, L. (2013). Insights into the resistance
and resilience of the soil microbial community. FEMS Microbiology
Reviews, 37(2), 112–129.https://doi.org/10.1111/j.1574-6976.2012.00343.x
Guillaume, T., Damris, M., & Kuzyakov, Y. (2015). Losses of soil carbon
by converting tropical forest to plantations: erosion and decomposition
estimated byδ13C. Global Change Biology, 21(9), 3548–3560.https://doi.org/10.1111/gcb.12907
Hu, N., Li, H., Tang, Z., Li, Z., Li, G., Jiang, Y., … Lou, Y.
(2016). Community size, activity and C:N stoichiometry of soil
microorganisms following reforestation in a Karst region. European
Journal of Soil Biology, 73, 77–83.https://doi.org/10.1016/j.ejsobi.2016.01.007
Huang, Q.-H., & Cai, Y.-L.
(2006). Spatial pattern of Karst rock desertification in the Middle of
Guizhou Province, Southwestern China. Environmental Geology, 52(7),
1325–1330.https://doi.org/10.1007/s00254-006-0572-y
Jiang, J., Wang, Y.-P., Yu, M., Cao, N., & Yan, J. (2018). Soil organic
matter is important for acid buffering and reducing aluminum leaching
from acidic forest soils. Chemical Geology.http://doi.org/10.1016/j.chemgeo.2018.10.009
Jing, X., Sanders, N. J., Shi, Y., Chu, H., Classen, A. T., Zhao, K.,
… He, J.-S. (2015). The links between ecosystem
multifunctionality and above- and belowground biodiversity are mediated
by climate. Nature Communications, 6(1).http://doi.org/10.1038/ncomms9159
Kemmitt, S., Wright, D., Goulding, K., & Jones, D. (2006). pH
regulation of carbon and nitrogen dynamics in two agricultural soils.
Soil Biology and Biochemistry, 38(5), 898–911.http://doi.org/10.1016/j.soilbio.2005.08.006
Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008).
The influence of soil properties on the structure of bacterial and
fungal communities across land-use types. Soil Biology and Biochemistry,
40(9), 2407–2415.http://doi.org/10.1016/j.soilbio.2008.05.021
Lefcheck, J. S., Byrnes, J. E. K., Isbell, F., Gamfeldt, L., Griffin, J.
N., Eisenhauer, N., … Duffy, J. E. (2015). Biodiversity enhances
ecosystem multifunctionality across trophic levels and habitats. Nature
Communications, 6(1).http://doi.org/10.1038/ncomms7936
Li, D., Zhang, X., Green, S. M., Dungait, J. A. J., Wen, X., Tang, Y.,
… Quine, T. A. (2018). Nitrogen functional gene activity in soil
profiles under progressive vegetative recovery after abandonment of
agriculture at the Puding Karst Critical Zone Observatory, SW China.
Soil Biology and Biochemistry, 125, 93–102.http://doi.org/10.1016/j.soilbio.2018.07.004
Li, J., Delgado-Baquerizo, M., Wang, J.-T., Hu, H.-W., Cai, Z.-J., Zhu,
Y.-N., & Singh, B. K. (2019). Fungal richness contributes to
multifunctionality in boreal forest soil. Soil Biology and Biochemistry,
136, 107526.http://doi.org/10.1016/j.soilbio.2019.107526
Liang, L. L., Grantz, D. A., & Jenerette, G. D. (2016). Multivariate
regulation of soil CO2 and N2 O pulse emissions from agricultural soils.
Global Change Biology, 22(3), 1286–1298.http://doi.org/10.1111/gcb.13130
Luo, Gongwen et al. (2018), Data from: Deciphering the associations
between soil microbial diversity and ecosystem multifunctionality driven
by long-term fertilization management, Dryad, Dataset,https://doi.org/10.5061/dryad.jj110
Luo, G., Wang, T., Li, K., Li, L., Zhang, J., Guo, S., … Shen, Q.
(2019). Historical-nitrogen deposition and straw addition facilitate the
resistance of soil multifunctionality to drying-wetting cycles. Applied
and Environmental Microbiology.http://doi.org/10.1128/aem.02251-18
Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J.,
Ochoa, V., Gozalo, B., … Singh, B. K. (2015). Increasing aridity
reduces soil microbial diversity and abundance in global drylands.
Proceedings of the National Academy of Sciences, 201516684.http://doi.org/10.1073/pnas.1516684112
Maestre, F. T., Quero, J. L., Gotelli, N. J., Escudero, A., Ochoa, V.,
Delgado-Baquerizo, M., … Escolar, C. (2012). Plant Species
Richness and Ecosystem Multifunctionality in Global Drylands. Science,
335(6065), 214–218.http://doi.org/10.1126/science.1215442
Maranguit, D., Guillaume, T., & Kuzyakov, Y. (2017). Land-use change
affects phosphorus fractions in highly weathered tropical soils. CATENA,
149(1), 385–393.http://doi.org/10.1016/j.catena.2016.10.010
McKinney, M. L., & Lockwood, J. L. (1999). Biotic homogenization: a few
winners replacing many losers in the next mass extinction. Trends in
Ecology & Evolution, 14(11), 450–453.http://doi.org/10.1016/s0169-5347(99)01679-1
Meng, M., Lin, J., Guo, X., Liu, X., Wu, J., Zhao, Y., & Zhang, J.
(2019). Impacts of forest conversion on soil bacterial community
composition and diversity in subtropical forests. CATENA, 175(4),
167–173.http://doi.org/10.1016/j.catena.2018.12.017
Naeem, S., & Li, S. (1997). Biodiversity enhances ecosystem
reliability. Nature, 390(6659), 507–509.http://doi.org/10.1038/37348
Navarrete, A. A., Venturini, A.
M., Meyer, K. M., Klein, A. M., Tiedje, J. M., Bohannan, B. J. M.,
… Rodrigues, J. L. M. (2015). Differential Response of
Acidobacteria Subgroups to Forest-to-Pasture Conversion and Their
Biogeographic Patterns in the Western Brazilian Amazon. Frontiers in
Microbiology, 6.http://doi.org/10.3389/fmicb.2015.01443
Navarrete, A. A., Soares, T., Rossetto, R., van Veen, J. A., Tsai, S.
M., & Kuramae, E. E. (2015b). Verrucomicrobial community structure and
abundance as indicators for changes in chemical factors linked to soil
fertility. Antonie van Leeuwenhoek, 108(3), 741–752.http://doi.org/10.1007/s10482-015-0530-3
Navarrete, A. A., Tsai, S. M.,
Mendes, L. W., Faust, K., de Hollander, M., Cassman, N. A., …
Kuramae, E. E. (2015). Soil microbiome responses to the short-term
effects of Amazonian deforestation. Molecular Ecology, 24(10),
2433–2448.http://doi.org/10.1111/mec.13172
Newbold, T., Hudson, L. N., Contu, S., Hill, S. L. L., Beck, J., Liu,
Y., … Purvis, A. (2018). Widespread winners and narrow-ranged
losers: Land use homogenizes biodiversity in local assemblages
worldwide. PLOS Biology, 16(12), e2006841.http://doi.org/10.1371/journal.pbio.2006841
Orwin, K. H., & Wardle, D. A. (2004). New indices for quantifying the
resistance and resilience of soil biota to exogenous disturbances. Soil
Biology and Biochemistry, 36(11), 1907–1912.http://doi.org/10.1016/j.soilbio.2004.04.036
Pan, Y., Cassman, N., de Hollander, M., Mendes, L. W., Korevaar, H.,
Geerts, R. H. E. M., … Kuramae, E. E. (2014). Impact of long-term
N, P, K, and NPK fertilization on the composition and potential
functions of the bacterial community in grassland soil. FEMS
Microbiology Ecology, 90(1), 195–205.http://doi.org/10.1111/1574-6941.12384
Perakis, S. S., Sinkhorn, E. R., Catricala, C. E., Bullen, T. D.,
Fitzpatrick, J. A., Hynicka, J. D., & Cromack, K. (2013). Forest
calcium depletion and biotic retention along a soil nitrogen gradient.
Ecological Applications, 23(8), 1947–1961.http://doi.org/10.1890/12-2204.1
Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature,
307(5949), 321–326.http://doi.org/10.1038/307321a0
Ramirez, K. S., Leff, J. W., Barberan, A., Bates, S. T., Betley, J.,
Crowther, T. W., … Fierer, N. (2014). Biogeographic patterns in
below-ground diversity in New York City’s Central Park are similar to
those observed globally. Proceedings of the Royal Society B: Biological
Sciences, 281(1795), 20141988–20141988.http://doi.org/10.1098/rspb.2014.1988
Sala, O. E. (2000). Global Biodiversity Scenarios for the Year 2100.
Science, 287(5459), 1770–1774.http://doi.org/10.1126/science.287.5459.1770
Schermelleh-Engel, K., Moosbrugger, H. & Muller, H. (2003). Evaluating
the fit of structural equation models, tests of significance descriptive
goodness-of-fit measures. Methods Psychol. Res. Online,8,23–74.
Shange, R. S., Ankumah, R. O., Ibekwe, A. M., Zabawa, R., & Dowd, S. E.
(2012). Distinct Soil Bacterial Communities Revealed under a Diversely
Managed Agroecosystem. PLoS ONE, 7(7), e40338.http://doi.org/10.1371/journal.pone.0040338
Soil Survey Staff. (2010). Keys to Soil Taxonomy, eleventh ed. USDA
Natural Resources Conservation Service, Washington DC, USA.
Szoboszlay, M., Dohrmann, A. B., Poeplau, C., Don, A., & Tebbe, C. C.
(2017). Impact of land-use change and soil organic carbon quality on
microbial diversity in soils across Europe. FEMS Microbiology Ecology,
93(12).http://doi.org/10.1093/femsec/fix146
Tang, J., Tang, X., Qin, Y., He, Q., Yi, Y., & Ji, Z. (2019). Karst
rocky desertification progress: Soil calcium as a possible driving
force. Science of The Total Environment, 649, 1250–1259.http://doi.org/10.1016/j.scitotenv.2018.08.242
Tejnecký, V., Křížová, P., Penížek, V., Maňourová, A., Sillam-Dussès,
D., Šobotník, J., … Drábek, O. (2019). The influence of land-use
on tropical soil chemical characteristics with emphasis on aluminium.
Journal of Inorganic Biochemistry, 110962.http://doi.org/10.1016/j.jinorgbio.2019.110962
Tian, J., He, N., Kong, W., Deng, Y., Feng, K., Green, S. M., …
Yu, G. (2018). Deforestation decreases spatial turnover and alters the
network interactions in soil bacterial communities. Soil Biology and
Biochemistry, 123, 80–86.http://doi.org/10.1016/j.soilbio.2018.05.007
Tian, Q., Taniguchi, T., Shi, W.Y., Li, G., Yamanaka, N., & Du, S.
(2017). Land-use types and soil chemical properties influence soil
microbial communities in the semiarid Loess Plateau region in China.
Scientific Reports, 7(1).http://doi.org/10.1038/srep45289
Trivedi, P., Anderson, I. C., & Singh, B. K. (2013). Microbial
modulators of soil carbon storage: integrating genomic and metabolic
knowledge for global prediction. Trends in Microbiology, 21(12),
641–651.http://doi.org/10.1016/j.tim.2013.09.005
Valencia, E., Gross, N., Quero, J. L., Carmona, C. P., Ochoa, V.,
Gozalo, B., … Maestre, F. T. (2018). Cascading effects from
plants to soil microorganisms explain how plant species richness and
simulated climate change affect soil multifunctionality. Global Change
Biology.http://doi.org/10.1111/gcb.14440
Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A.
(2014). Soil biodiversity and soil community composition determine
ecosystem multifunctionality. Proceedings of the National Academy of
Sciences, 111(14), 5266–5270.http://doi.org/10.1073/pnas.1320054111
Wang, H., Marshall, C. W., Cheng, M., Xu, H., Li, H., Yang, X., &
Zheng, T. (2017). Changes in land use driven by urbanization impact
nitrogen cycling and the microbial community composition in soils.
Scientific Reports, 7(1).http://doi.org/10.1038/srep44049
Wang, Y., Dungait, J. A. J., Xing, K., Green, S. M., Hartley, I., Tu,
C., … Kuzyakov, Y. (2019). Persistence of soil microbial function
at the rock‐soil interface in degraded karst topsoils. Land Degradation
& Development.http://doi.org/10.1002/ldr.3445
Wertz, J. T., Kim, E., Breznak, J. A., Schmidt, T. M., & Rodrigues, J.
L. M. (2011). Genomic and Physiological Characterization of the
Verrucomicrobia Isolate Diplosphaera colitermitum gen. nov., sp. nov.,
Reveals Microaerophily and Nitrogen Fixation Genes. Applied and
Environmental Microbiology, 78(5), 1544–1555.http://doi.org/10.1128/aem.06466-11
Williams, D. R., Alvarado, F., Green, R. E., Manica, A., Phalan, B., &
Balmford, A. (2017). Land-use strategies to balance livestock
production, biodiversity conservation and carbon storage in Yucatán,
Mexico. Global Change Biology, 23(12), 5260–5272.http://doi.org/10.1111/gcb.13791
Xiao, S., Zhang, W., Ye, Y., Zhao, J., & Wang, K. (2017). Soil
aggregate mediates the impacts of land uses on organic carbon, total
nitrogen and microbial activity in a Karst ecosystem. Scientific
Reports, 7(1).http://doi.org/10.1038/srep41402
Xie, J., Shi, H., Du, Z., Wang, T., Liu, X., & Chen, S. (2016).
Comparative genomic and functional analysis reveal conservation of plant
growth promoting traits in Paenibacillus polymyxa and its closely
related species. Scientific Reports, 6(1).http://doi.org/10.1038/srep21329
Xue, L., Ren, H., Li, S., Leng, X., & Yao, X. (2017). Soil Bacterial
Community Structure and Co-occurrence Pattern during Vegetation
Restoration in Karst Rocky Desertification Area. Frontiers in
Microbiology, 8.http://doi.org/10.3389/fmicb.2017.02377
Yun, Y., Wang, H., Man, B., Xiang, X., Zhou, J., Qiu, X., …
Engel, A. S. (2016). The Relationship between pH and Bacterial
Communities in a Single Karst Ecosystem and Its Implication for Soil
Acidification. Frontiers in Microbiology, 7.http://doi.org/10.3389/fmicb.2016.01955
Zhang, K., Shi, Y., Jing, X., He, J.-S., Sun, R., Yang, Y., …
Chu, H. (2016). Effects of Short-Term Warming and Altered Precipitation
on Soil Microbial Communities in Alpine Grassland of the Tibetan
Plateau. Frontiers in Microbiology, 7.http://doi.org/10.3389/fmicb.2016.01032
Zhang, W., Zhao, J., Pan, F., Li, D., Chen, H., & Wang, K. (2015).
Changes in nitrogen and phosphorus limitation during secondary
succession in a karst region in southwest China. Plant and Soil,
391(1-2), 77–91.http://doi.org/10.1007/s11104-015-2406-8
Zhao, N., Yu, G., He, N., Wang, Q., Guo, D., Zhang, X., … Jia, Y.
(2016). Coordinated pattern of multi-element variability in leaves and
roots across Chinese forest biomes. Global Ecology and Biogeography,
25(3), 359–367.http://doi.org/10.1111/geb.12427
Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Dietrich, M.,
… Wanek, W. (2019). Soil multifunctionality is affected by the
soil environment and by microbial community composition and diversity.
Soil Biology and Biochemistry, 107521.http://doi.org/10.1016/j.soilbio.2019.107521
Zhu, B., & Cheng, W. (2011). Constant and diurnally-varying temperature
regimes lead to different temperature sensitivities of soil organic
carbon decomposition. Soil Biology and Biochemistry, 43(4), 866–869.http://doi.org/10.1016/j.soilbio.2010.12.021
Zhu, Y., Bennett, J. M., & Marchuk, A. (2019). Reduction of hydraulic
conductivity and loss of organic carbon in non-dispersive soils of
different clay mineralogy is related to magnesium induced
disaggregation. Geoderma, 349, 1–10.http://doi.org/10.1016/j.geoderma.2019.04.019