REFERENCES
Archer, E. (2016). rfPermute, Estimate Permutation p-Values for Random Forest Importance Metrics. R package version 1.5.2.
Balmford, A. (1996). Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends in Ecology & Evolution, 11(5), 193–196.https://doi.org/10.1016/0169-5347(96)10026-4
Battistuzzi, F. U., & Hedges, S. B. (2009). A Major Clade of Prokaryotes with Ancient Adaptations to Life on Land. Molecular Biology and Evolution, 26(2), 335–343.https://doi.org/10.1093/molbev/msn247
Breiman, L. (2001). Machine Learning, 45(1), 5–32.https://doi.org/10.1023/a:1010933404324
Camenzind, T., Hättenschwiler, S., Treseder, K. K., Lehmann, A., & Rillig, M. C. (2017). Nutrient limitation of soil microbial processes in tropical forests. Ecological Monographs, 88(1), 4–21.https://doi.org/10.1002/ecm.1279
Chamizo, S., Mugnai, G., Rossi, F., Certini, G., & De Philippis, R. (2018). Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration. Frontiers in Environmental Science, 6, 49.https://doi.org/10.3389/fenvs.2018.00049
Chen, H., Liu, J., Wang, K., & Zhang, W. (2011). Spatial distribution of rock fragments on steep hillslopes in karst region of northwest Guangxi, China. CATENA, 84(1-2), 21–28.https://doi.org/10.1016/j.catena.2010.08.012
Creamer, R. E., Brennan, F., Fenton, O., Healy, M. G., Lalor, S. T. J., Lanigan, G. J., … Griffiths, B. S. (2010). Implications of the proposed Soil Framework Directive on agricultural systems in Atlantic Europe - a review. Soil Use and Management, 26(3), 198–211.https://doi.org/10.1111/j.1475-2743.2010.00288.x
Da C Jesus, E., Marsh, T. L., Tiedje, J. M., & de S Moreira, F. M. (2009). Erratum: Changes in land use alter the structure of bacterial communities in Western Amazon soils. The ISME Journal, 3(10), 1222–1222.https://doi.org/10.1038/ismej.2009.98
Delgado-Baquerizo, M., Trivedi, P., Trivedi, C., Eldridge, D. J., Reich, P. B., Jeffries, T. C., & Singh, B. K. (2017a). Microbial richness and composition independently drive soil multifunctionality. Functional Ecology, 31(12), 2330–2343.https://doi.org/10.1111/1365-2435.12924
Delgado-Baquerizo, M., Eldridge, D. J., Ochoa, V., Gozalo, B., Singh, B. K., & Maestre, F. T. (2017b). Soil microbial communities drive the resistance of ecosystem multifunctionality to global change in drylands across the globe. Ecology Letters, 20(10), 1295–1305.https://doi.org/10.1111/ele.12826
Delgado-Baquerizo, M., Maestre, F. T., Reich, P. B., Jeffries, T. C., Gaitan, J. J., Encinar, D., … Singh, B. K. (2016). Microbial diversity drives multifunctionality in terrestrial ecosystems. Nature Communications, 7, 10541.https://doi.org/10.1038/ncomms10541
De Vries, F. T., Liiri, M. E., Bjørnlund, L., Bowker, M. A., Christensen, S., Setälä, H. M., & Bardgett, R. D. (2012). Land use alters the resistance and resilience of soil food webs to drought. Nature Climate Change, 2(4), 276–280.https://doi.org/10.1038/nclimate1368
De Vries, F. T., & Shade, A. (2013). Controls on soil microbial community stability under climate change. Frontiers in Microbiology, 4.https://doi.org/10.3389/fmicb.2013.00265
Don, A., Schumacher, J., & Freibauer, A. (2011. Impact of tropical land-use change on soil organic carbon stocks - a meta-analysis. Global Change Biology, 17(4), 1658–1670.https://doi.org/10.1111/j.1365-2486.2010.02336.x
Durán, J., Morse, J. L., Rodríguez, A., Campbell, J. L., Christenson, L. M., Driscoll, C. T., … Groffman, P. M. (2017). Differential sensitivity to climate change of C and N cycling processes across soil horizons in a northern hardwood forest. Soil Biology and Biochemistry, 107, 77–84.https://doi.org/10.1016/j.soilbio.2016.12.028
Fierer, N., Bradford, M. A., & Jackson, R. B. (2007). Toward an Ecological Classification of Soil Bacteria. Ecology, 88(6), 1354–1364.https://doi.org/10.1890/05-1839
Gao, J., Xue, Y., & Wu, S. (2013). Potential impacts on regional climate due to land degradation in the Guizhou Karst Plateau of China. Environmental Research Letters, 8(4), 044037.https://doi.org/10.1088/1748-9326/8/4/044037
Gómez-Acata, E. S., Valencia-Becerril, I., Valenzuela-Encinas, C., Velásquez-Rodríguez, A. S., Navarro-Noya, Y. E., Montoya-Ciriaco, N., … Dendooven, L. (2016). Deforestation and Cultivation with Maize (Zea maysL.) has a Profound Effect on the Bacterial Community Structure in Soil. Land Degradation & Development, 27(4), 1122–1130.https://doi.org/10.1002/ldr.2328
Griffiths, B. S., & Philippot, L. (2013). Insights into the resistance and resilience of the soil microbial community. FEMS Microbiology Reviews, 37(2), 112–129.https://doi.org/10.1111/j.1574-6976.2012.00343.x
Guillaume, T., Damris, M., & Kuzyakov, Y. (2015). Losses of soil carbon by converting tropical forest to plantations: erosion and decomposition estimated byδ13C. Global Change Biology, 21(9), 3548–3560.https://doi.org/10.1111/gcb.12907
Hu, N., Li, H., Tang, Z., Li, Z., Li, G., Jiang, Y., … Lou, Y. (2016). Community size, activity and C:N stoichiometry of soil microorganisms following reforestation in a Karst region. European Journal of Soil Biology, 73, 77–83.https://doi.org/10.1016/j.ejsobi.2016.01.007
Huang, Q.-H., & Cai, Y.-L. (2006). Spatial pattern of Karst rock desertification in the Middle of Guizhou Province, Southwestern China. Environmental Geology, 52(7), 1325–1330.https://doi.org/10.1007/s00254-006-0572-y
Jiang, J., Wang, Y.-P., Yu, M., Cao, N., & Yan, J. (2018). Soil organic matter is important for acid buffering and reducing aluminum leaching from acidic forest soils. Chemical Geology.http://doi.org/10.1016/j.chemgeo.2018.10.009
Jing, X., Sanders, N. J., Shi, Y., Chu, H., Classen, A. T., Zhao, K., … He, J.-S. (2015). The links between ecosystem multifunctionality and above- and belowground biodiversity are mediated by climate. Nature Communications, 6(1).http://doi.org/10.1038/ncomms9159
Kemmitt, S., Wright, D., Goulding, K., & Jones, D. (2006). pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biology and Biochemistry, 38(5), 898–911.http://doi.org/10.1016/j.soilbio.2005.08.006
Lauber, C. L., Strickland, M. S., Bradford, M. A., & Fierer, N. (2008). The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biology and Biochemistry, 40(9), 2407–2415.http://doi.org/10.1016/j.soilbio.2008.05.021
Lefcheck, J. S., Byrnes, J. E. K., Isbell, F., Gamfeldt, L., Griffin, J. N., Eisenhauer, N., … Duffy, J. E. (2015). Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nature Communications, 6(1).http://doi.org/10.1038/ncomms7936
Li, D., Zhang, X., Green, S. M., Dungait, J. A. J., Wen, X., Tang, Y., … Quine, T. A. (2018). Nitrogen functional gene activity in soil profiles under progressive vegetative recovery after abandonment of agriculture at the Puding Karst Critical Zone Observatory, SW China. Soil Biology and Biochemistry, 125, 93–102.http://doi.org/10.1016/j.soilbio.2018.07.004
Li, J., Delgado-Baquerizo, M., Wang, J.-T., Hu, H.-W., Cai, Z.-J., Zhu, Y.-N., & Singh, B. K. (2019). Fungal richness contributes to multifunctionality in boreal forest soil. Soil Biology and Biochemistry, 136, 107526.http://doi.org/10.1016/j.soilbio.2019.107526
Liang, L. L., Grantz, D. A., & Jenerette, G. D. (2016). Multivariate regulation of soil CO2 and N2 O pulse emissions from agricultural soils. Global Change Biology, 22(3), 1286–1298.http://doi.org/10.1111/gcb.13130
Luo, Gongwen et al. (2018), Data from: Deciphering the associations between soil microbial diversity and ecosystem multifunctionality driven by long-term fertilization management, Dryad, Dataset,https://doi.org/10.5061/dryad.jj110
Luo, G., Wang, T., Li, K., Li, L., Zhang, J., Guo, S., … Shen, Q. (2019). Historical-nitrogen deposition and straw addition facilitate the resistance of soil multifunctionality to drying-wetting cycles. Applied and Environmental Microbiology.http://doi.org/10.1128/aem.02251-18
Maestre, F. T., Delgado-Baquerizo, M., Jeffries, T. C., Eldridge, D. J., Ochoa, V., Gozalo, B., … Singh, B. K. (2015). Increasing aridity reduces soil microbial diversity and abundance in global drylands. Proceedings of the National Academy of Sciences, 201516684.http://doi.org/10.1073/pnas.1516684112
Maestre, F. T., Quero, J. L., Gotelli, N. J., Escudero, A., Ochoa, V., Delgado-Baquerizo, M., … Escolar, C. (2012). Plant Species Richness and Ecosystem Multifunctionality in Global Drylands. Science, 335(6065), 214–218.http://doi.org/10.1126/science.1215442
Maranguit, D., Guillaume, T., & Kuzyakov, Y. (2017). Land-use change affects phosphorus fractions in highly weathered tropical soils. CATENA, 149(1), 385–393.http://doi.org/10.1016/j.catena.2016.10.010
McKinney, M. L., & Lockwood, J. L. (1999). Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends in Ecology & Evolution, 14(11), 450–453.http://doi.org/10.1016/s0169-5347(99)01679-1
Meng, M., Lin, J., Guo, X., Liu, X., Wu, J., Zhao, Y., & Zhang, J. (2019). Impacts of forest conversion on soil bacterial community composition and diversity in subtropical forests. CATENA, 175(4), 167–173.http://doi.org/10.1016/j.catena.2018.12.017
Naeem, S., & Li, S. (1997). Biodiversity enhances ecosystem reliability. Nature, 390(6659), 507–509.http://doi.org/10.1038/37348
Navarrete, A. A., Venturini, A. M., Meyer, K. M., Klein, A. M., Tiedje, J. M., Bohannan, B. J. M., … Rodrigues, J. L. M. (2015). Differential Response of Acidobacteria Subgroups to Forest-to-Pasture Conversion and Their Biogeographic Patterns in the Western Brazilian Amazon. Frontiers in Microbiology, 6.http://doi.org/10.3389/fmicb.2015.01443
Navarrete, A. A., Soares, T., Rossetto, R., van Veen, J. A., Tsai, S. M., & Kuramae, E. E. (2015b). Verrucomicrobial community structure and abundance as indicators for changes in chemical factors linked to soil fertility. Antonie van Leeuwenhoek, 108(3), 741–752.http://doi.org/10.1007/s10482-015-0530-3
Navarrete, A. A., Tsai, S. M., Mendes, L. W., Faust, K., de Hollander, M., Cassman, N. A., … Kuramae, E. E. (2015). Soil microbiome responses to the short-term effects of Amazonian deforestation. Molecular Ecology, 24(10), 2433–2448.http://doi.org/10.1111/mec.13172
Newbold, T., Hudson, L. N., Contu, S., Hill, S. L. L., Beck, J., Liu, Y., … Purvis, A. (2018). Widespread winners and narrow-ranged losers: Land use homogenizes biodiversity in local assemblages worldwide. PLOS Biology, 16(12), e2006841.http://doi.org/10.1371/journal.pbio.2006841
Orwin, K. H., & Wardle, D. A. (2004). New indices for quantifying the resistance and resilience of soil biota to exogenous disturbances. Soil Biology and Biochemistry, 36(11), 1907–1912.http://doi.org/10.1016/j.soilbio.2004.04.036
Pan, Y., Cassman, N., de Hollander, M., Mendes, L. W., Korevaar, H., Geerts, R. H. E. M., … Kuramae, E. E. (2014). Impact of long-term N, P, K, and NPK fertilization on the composition and potential functions of the bacterial community in grassland soil. FEMS Microbiology Ecology, 90(1), 195–205.http://doi.org/10.1111/1574-6941.12384
Perakis, S. S., Sinkhorn, E. R., Catricala, C. E., Bullen, T. D., Fitzpatrick, J. A., Hynicka, J. D., & Cromack, K. (2013). Forest calcium depletion and biotic retention along a soil nitrogen gradient. Ecological Applications, 23(8), 1947–1961.http://doi.org/10.1890/12-2204.1
Pimm, S. L. (1984). The complexity and stability of ecosystems. Nature, 307(5949), 321–326.http://doi.org/10.1038/307321a0
Ramirez, K. S., Leff, J. W., Barberan, A., Bates, S. T., Betley, J., Crowther, T. W., … Fierer, N. (2014). Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proceedings of the Royal Society B: Biological Sciences, 281(1795), 20141988–20141988.http://doi.org/10.1098/rspb.2014.1988
Sala, O. E. (2000). Global Biodiversity Scenarios for the Year 2100. Science, 287(5459), 1770–1774.http://doi.org/10.1126/science.287.5459.1770
Schermelleh-Engel, K., Moosbrugger, H. & Muller, H. (2003). Evaluating the fit of structural equation models, tests of significance descriptive goodness-of-fit measures. Methods Psychol. Res. Online,8,23–74.
Shange, R. S., Ankumah, R. O., Ibekwe, A. M., Zabawa, R., & Dowd, S. E. (2012). Distinct Soil Bacterial Communities Revealed under a Diversely Managed Agroecosystem. PLoS ONE, 7(7), e40338.http://doi.org/10.1371/journal.pone.0040338
Soil Survey Staff. (2010). Keys to Soil Taxonomy, eleventh ed. USDA Natural Resources Conservation Service, Washington DC, USA.
Szoboszlay, M., Dohrmann, A. B., Poeplau, C., Don, A., & Tebbe, C. C. (2017). Impact of land-use change and soil organic carbon quality on microbial diversity in soils across Europe. FEMS Microbiology Ecology, 93(12).http://doi.org/10.1093/femsec/fix146
Tang, J., Tang, X., Qin, Y., He, Q., Yi, Y., & Ji, Z. (2019). Karst rocky desertification progress: Soil calcium as a possible driving force. Science of The Total Environment, 649, 1250–1259.http://doi.org/10.1016/j.scitotenv.2018.08.242
Tejnecký, V., Křížová, P., Penížek, V., Maňourová, A., Sillam-Dussès, D., Šobotník, J., … Drábek, O. (2019). The influence of land-use on tropical soil chemical characteristics with emphasis on aluminium. Journal of Inorganic Biochemistry, 110962.http://doi.org/10.1016/j.jinorgbio.2019.110962
Tian, J., He, N., Kong, W., Deng, Y., Feng, K., Green, S. M., … Yu, G. (2018). Deforestation decreases spatial turnover and alters the network interactions in soil bacterial communities. Soil Biology and Biochemistry, 123, 80–86.http://doi.org/10.1016/j.soilbio.2018.05.007
Tian, Q., Taniguchi, T., Shi, W.Y., Li, G., Yamanaka, N., & Du, S. (2017). Land-use types and soil chemical properties influence soil microbial communities in the semiarid Loess Plateau region in China. Scientific Reports, 7(1).http://doi.org/10.1038/srep45289
Trivedi, P., Anderson, I. C., & Singh, B. K. (2013). Microbial modulators of soil carbon storage: integrating genomic and metabolic knowledge for global prediction. Trends in Microbiology, 21(12), 641–651.http://doi.org/10.1016/j.tim.2013.09.005
Valencia, E., Gross, N., Quero, J. L., Carmona, C. P., Ochoa, V., Gozalo, B., … Maestre, F. T. (2018). Cascading effects from plants to soil microorganisms explain how plant species richness and simulated climate change affect soil multifunctionality. Global Change Biology.http://doi.org/10.1111/gcb.14440
Wagg, C., Bender, S. F., Widmer, F., & van der Heijden, M. G. A. (2014). Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences, 111(14), 5266–5270.http://doi.org/10.1073/pnas.1320054111
Wang, H., Marshall, C. W., Cheng, M., Xu, H., Li, H., Yang, X., & Zheng, T. (2017). Changes in land use driven by urbanization impact nitrogen cycling and the microbial community composition in soils. Scientific Reports, 7(1).http://doi.org/10.1038/srep44049
Wang, Y., Dungait, J. A. J., Xing, K., Green, S. M., Hartley, I., Tu, C., … Kuzyakov, Y. (2019). Persistence of soil microbial function at the rock‐soil interface in degraded karst topsoils. Land Degradation & Development.http://doi.org/10.1002/ldr.3445
Wertz, J. T., Kim, E., Breznak, J. A., Schmidt, T. M., & Rodrigues, J. L. M. (2011). Genomic and Physiological Characterization of the Verrucomicrobia Isolate Diplosphaera colitermitum gen. nov., sp. nov., Reveals Microaerophily and Nitrogen Fixation Genes. Applied and Environmental Microbiology, 78(5), 1544–1555.http://doi.org/10.1128/aem.06466-11
Williams, D. R., Alvarado, F., Green, R. E., Manica, A., Phalan, B., & Balmford, A. (2017). Land-use strategies to balance livestock production, biodiversity conservation and carbon storage in Yucatán, Mexico. Global Change Biology, 23(12), 5260–5272.http://doi.org/10.1111/gcb.13791
Xiao, S., Zhang, W., Ye, Y., Zhao, J., & Wang, K. (2017). Soil aggregate mediates the impacts of land uses on organic carbon, total nitrogen and microbial activity in a Karst ecosystem. Scientific Reports, 7(1).http://doi.org/10.1038/srep41402
Xie, J., Shi, H., Du, Z., Wang, T., Liu, X., & Chen, S. (2016). Comparative genomic and functional analysis reveal conservation of plant growth promoting traits in Paenibacillus polymyxa and its closely related species. Scientific Reports, 6(1).http://doi.org/10.1038/srep21329
Xue, L., Ren, H., Li, S., Leng, X., & Yao, X. (2017). Soil Bacterial Community Structure and Co-occurrence Pattern during Vegetation Restoration in Karst Rocky Desertification Area. Frontiers in Microbiology, 8.http://doi.org/10.3389/fmicb.2017.02377
Yun, Y., Wang, H., Man, B., Xiang, X., Zhou, J., Qiu, X., … Engel, A. S. (2016). The Relationship between pH and Bacterial Communities in a Single Karst Ecosystem and Its Implication for Soil Acidification. Frontiers in Microbiology, 7.http://doi.org/10.3389/fmicb.2016.01955
Zhang, K., Shi, Y., Jing, X., He, J.-S., Sun, R., Yang, Y., … Chu, H. (2016). Effects of Short-Term Warming and Altered Precipitation on Soil Microbial Communities in Alpine Grassland of the Tibetan Plateau. Frontiers in Microbiology, 7.http://doi.org/10.3389/fmicb.2016.01032
Zhang, W., Zhao, J., Pan, F., Li, D., Chen, H., & Wang, K. (2015). Changes in nitrogen and phosphorus limitation during secondary succession in a karst region in southwest China. Plant and Soil, 391(1-2), 77–91.http://doi.org/10.1007/s11104-015-2406-8
Zhao, N., Yu, G., He, N., Wang, Q., Guo, D., Zhang, X., … Jia, Y. (2016). Coordinated pattern of multi-element variability in leaves and roots across Chinese forest biomes. Global Ecology and Biogeography, 25(3), 359–367.http://doi.org/10.1111/geb.12427
Zheng, Q., Hu, Y., Zhang, S., Noll, L., Böckle, T., Dietrich, M., … Wanek, W. (2019). Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biology and Biochemistry, 107521.http://doi.org/10.1016/j.soilbio.2019.107521
Zhu, B., & Cheng, W. (2011). Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbon decomposition. Soil Biology and Biochemistry, 43(4), 866–869.http://doi.org/10.1016/j.soilbio.2010.12.021
Zhu, Y., Bennett, J. M., & Marchuk, A. (2019). Reduction of hydraulic conductivity and loss of organic carbon in non-dispersive soils of different clay mineralogy is related to magnesium induced disaggregation. Geoderma, 349, 1–10.http://doi.org/10.1016/j.geoderma.2019.04.019