References
1. Owolabi J, Hekeu M. Heavy metal resistance and antibiotic
susceptibility pattern of bacteria isolated from selected polluted soils
in Lagos and Ota, Nigeria. International Journal of Basic & Applied
Sciences. 2014;14(6):6-12.
2. Massoud R, Hadiani MR, Hamzehlou P, Khosravi-Darani K. Bioremediation
of heavy metals in food industry: Application of Saccharomyces
cerevisiae. Electronic Journal of Biotechnology. 2019; 37:56-60.
doi.org/10.1016/j.ejbt.2018.11.003
3. Sardar K, Ali S, Hameed S, Afzal S, Fatima S, Shakoor MB, et al.
Heavy metals contamination and what are the impacts on living organisms.
Greener Journal of Environmental management and public safety.
2013;2(4):172-9.
10.15580/GJEMPS.2013.4.060413652
4. Gheshlagh FS-N, Ziarati P, Bidgoli SA. Seasonal fluctuation of heavy
metal and nitrate pollution in ground water of farmlands in Talesh,
Gilan, Iran. International Journal of Farming and Allied Sciences.
2013;2:836-41.
5. Ziarati P, Moslehishad M, Mohammad-Makki FM. Novel adsorption method
for contaminated water by wild endemic almond: Amygdalus scoparia.
Biosciences biotechnology research asia. 2016;13(1):147-53.
6. Galadima A, Muhammad N, Garba Z. Spectroscopic investigation of heavy
metals in waste water from University students’ halls of residence. Int
J Chem. 2010;20(4):239-44.
7. Makki FM, Ziarati P. Determination of histamine and heavy metal
concentrations in tomato pastes and fresh tomato (Solanum lycopersicum)
in Iran. Biosci Biotechnol Res Asia. 2014;11(2):537-44.
doi: http://dx.doi.org/10.13005/bbra/1304
8. Odokuma L, Akponah E. Effect of nutrient supplementation on
biodegradation and metal uptake by three bacteria in crude oil impacted
fresh and brackish waters of the Niger Delta. Journal of Cell and Animal
Biology. 2012;4(1):001-18.
9. Sarma B, Acharya C, Joshi S. Pseudomonads: a versatile bacterial
group exhibiting dual resistance to metals and antibiotics. Afr J
Microbiol Res. 2010;4(25):2828-35.
10. Mishra V. Biosorption of zinc ion: a deep comprehension. Applied
Water Science. 2014;4(4):311-32.
DOI: 10.1007/s13201-013-0150-x
11. Wang J, Chen C. Biosorbents for heavy metals removal and their
future. Biotechnology advances. 2009;27(2):195-226.
doi.org/10.1016/j.biotechadv.2008.11.002
12. Lee T, Park J-w, Lee J-H. Waste green sands as reactive media for
the removal of zinc from water. Chemosphere. 2004;56(6):571-81.
DOI: 10.1016/j.chemosphere.2004.04.037
13. Abdelwahab O, Amin N, El-Ashtoukhy EZ. Removal of zinc ions from
aqueous solution using a cation exchange resin. Chemical Engineering
Research and Design. 2013;91(1):165-73.
/doi.org/10.1016/j.cherd.2012.07.005
14. Arshad M, Zafar MN, Younis S, Nadeem R. The use of Neem biomass for
the biosorption of zinc from aqueous solutions. Journal of Hazardous
Materials. 2008;157(2-3):534-40.
doi.org/10.1016/j.jhazmat.2008.01.017
15. Baig KS, Doan H, Wu J. Multicomponent isotherms for biosorption of
Ni2+ and Zn2+. Desalination. 2009;249(1):429-39.
DOI: 10.1016/j.desal.2009.06.052
16. MacDiarmid CW, Milanick MA, Eide DJ. Biochemical Properties of
Vacuolar Zinc Transport Systems ofSaccharomyces cerevisiae. Journal of
Biological Chemistry. 2002;277(42):39187-94.
DOI: 10.1074/jbc.M205052200
17. Rebar E, Miller J. Design and applications of engineered zinc finger
proteins. Biotech International. 2004:20-3.
DOI: 10.1016/j.gene.2005.09.011
18. Azad SK, Shariatmadari F, Torshizi MK. Production of zinc-enriched
biomass of Saccharomyces cerevisiae. Journal of Elementology.
2014;19(2).
DOI:10.5601/jelem.2014.19.2.655
19. Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal
virulence. FEMS microbiology reviews. 2018;42(1):fux050.
doi.org/10.1093/femsre/fux050
20. Andreini C, Banci L, Bertini I, Rosato A. Zinc through the three
domains of life. Journal of proteome research. 2006;5(11):3173-8.
doi: 10.1021/pr0603699.
21. North M, Steffen J, Loguinov AV, Zimmerman GR, Vulpe CD, Eide DJ.
Genome-wide functional profiling identifies genes and processes
important for zinc-limited growth of Saccharomyces cerevisiae. PLoS
genetics. 2012;8(6).
DOI: 10.1371/journal.pgen.1002699
22. MacDiarmid CW, Gaither LA, Eide D. Zinc transporters that regulate
vacuolar zinc storage in Saccharomyces cerevisiae. The EMBO journal.
2000;19(12):2845-55.
doi: 10.1093/emboj/19.12.2845
23. Li L, Kaplan J. The yeast gene MSC2, a member of the cation
diffusion facilitator family, affects the cellular distribution of zinc.
Journal of Biological Chemistry. 2001;276(7):5036-43.
DOI: 10.1074/jbc.M008969200
24. Ellis CD, MacDiarmid CW, Eide DJ. Heteromeric protein complexes
mediate zinc transport into the secretory pathway of eukaryotic cells.
Journal of Biological Chemistry. 2005;280(31):28811-8.
DOI: 10.1074/jbc.M505500200
25. Cain A, Vannela R, Woo LK. Cyanobacteria as a biosorbent for
mercuric ion. Bioresource technology. 2008;99(14):6578-86.
https://doi.org/10.1016/j.biortech.2007.11.034
26. Jasrotia S, Kansal A, Mehra A. Performance of aquatic plant species
for phytoremediation of arsenic-contaminated water. Appl Water Sci 7
(2): 889–896. 2017.
DOI: 10.1007/s13201-015-0300-4
27. Halder S. Bioremediation of heavy metals through fresh water
microalgae: a review. Scholars Academic Journal of Biosciences.
2014;2(11):825-30.
28. Machado MD, Soares EV, Soares HM. Removal of heavy metals using a
brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation
as a tool in the prediction and improving of treatment efficiency of
real electroplating effluents. Journal of hazardous materials.
2010;180(1-3):347-53.
DOI: 10.1016/j.jhazmat.2010.04.037
29. Lapeña D, Kosa G, Hansen LD, Mydland LT, Passoth V, Horn SJ, et al.
Production and characterization of yeasts grown on media composed of
spruce-derived sugars and protein hydrolysates from chicken by-products.
Microbial cell factories. 2020;19(1):19.
DOI:
10.1186/s12934-020-1287-6
30. Ritala A, Häkkinen ST, Toivari M, Wiebe MG. Single cell
protein—state-of-the-art, industrial landscape and patents 2001–2016.
Frontiers in microbiology. 2017;8:2009.
doi: 10.3389/fmicb.2017.02009
31. Øverland M, Skrede A. Yeast derived from lignocellulosic biomass as
a sustainable feed resource for use in aquaculture. Journal of the
Science of Food and Agriculture. 2017;97(3):733-42.
DOI: 10.1002/jsfa.8007
32. Kurcz A, Błażejak S, Kot AM, Bzducha-Wróbel A, Kieliszek M.
Application of industrial wastes for the production of microbial
single-cell protein by fodder yeast Candida utilis. Waste and Biomass
Valorization. 2018;9(1):57-64.
DOI: 10.1007/s12649-016-9782-z
33. Øverland M, Karlsson A, Mydland LT, Romarheim OH, Skrede A.
Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces
cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo
salar). Aquaculture. 2013;402:1-7.
DOI: 10.1016/j.aquaculture.2013.03.016
34. Wang J, Chen C. Biosorption of heavy metals by Saccharomyces
cerevisiae: a review. Biotechnology advances. 2006;24(5):427-51.
doi: 10.1016/j.biotechadv.2006.03.001.
35. Chen C, Wang J-L. Characteristics of Zn2+ biosorption by
Saccharomyces cerevisiae. Biomedical and environmental sciences: BES.
2007;20(6):478-82.
36. Waldron KJ, Rutherford JC, Ford D, Robinson NJ. Metalloproteins and
metal sensing. Nature. 2009;460(7257):823-30.
DOI: 10.1038/nature08300
37. Amich J, Vicentefranqueira R, Leal F, Calera JA. Aspergillus
fumigatus survival in alkaline and extreme zinc-limiting environments
relies on the induction of a zinc homeostasis system encoded by the zrfC
and aspf2 genes. Eukaryotic cell. 2010;9(3):424-37.
DOI: 10.1128/EC.00348-09
38. Tahir A, Lateef Z, Abdel-Megeed A, Sholkamy EN, Mostafa AA. In vitro
compatibility of fungi for the biosorption of zinc (II) and copper (II)
from electroplating effluent. Current Science (00113891). 2017;112(4).
DOI: 10.18520/cs/v112/i04/839-844
39. Aksu Z. Equilibrium and kinetic modelling of cadmium (II)
biosorption by C. vulgaris in a batch system: effect of temperature.
Separation and Purification Technology. 2001;21(3):285-94.
doi.org/10.1016/S1383-5866(00)00212-4
40. Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, et al. Biosorption of
cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated
from cadmium hyperaccumulator Solanum nigrum L. Bioresource technology.
2010;101(6):1668-74.
doi: 10.1016/j.biortech.2009.09.083
41. Bajpai P. Single cell
protein production from lignocellulosic biomass: Springer; 2017.
Figure legend:
Figure1. A) PCR products on 1.5% agarose gel. The samples
which expressed Zrt1 and Fet4 genes illustrated fragment patterns of
2102 bp and 165 bp. M: marker, (+): positive control, (-): negative
control, 41-44: number of samples. B) PCR ITS products on 1.5%
agarose gel. The samples which illustrated ITS fragment patterns
identified as yeast strains. M: marker, 1-3: yeast strains. C)Phylogenetic tree of sequenced samples. Samples 2and3 were identified asS. cerevisiae yeasts.
Figure 2. The effect of supplementing the SDB culture medium
with ZnSO4 on growth rate of S. cerevisiae . The
maximum growth rate observed in 25 µg/ml of zinc concentration at 24
hours after inoculation
Figure 3. Differentially expression levels of Zrt1 and Fet4 inS. cerevisiae under supplementing the SDB medium with different
concentrations of zinc and after 24 h of incubation, versus control
(without the addition of zinc). The maximum Zrt1 transcript level was
observed in 25 µg/ml of zinc concentration. While Fet4 transcript level
found to be significantly increased in the presence of 50 µg/ml of zinc.
The p values were indicated as *p < 0.05, **p <
0.01, and ***p < 0.001
Figure 4. Differentially expression levels of Zrt1 and Fet4 inS. cerevisiae in pH 3, 4, 5 and 6 versus control (pH 5.8). The
maximum Fet4 transcript level was observed in pH 4, while the equal
increment of Zrt1 and Fet4 expression was observed in pH 6.* Represents
p value < 0.05.