References
1. Owolabi J, Hekeu M. Heavy metal resistance and antibiotic susceptibility pattern of bacteria isolated from selected polluted soils in Lagos and Ota, Nigeria. International Journal of Basic & Applied Sciences. 2014;14(6):6-12.
2. Massoud R, Hadiani MR, Hamzehlou P, Khosravi-Darani K. Bioremediation of heavy metals in food industry: Application of Saccharomyces cerevisiae. Electronic Journal of Biotechnology. 2019; 37:56-60.
doi.org/10.1016/j.ejbt.2018.11.003
3. Sardar K, Ali S, Hameed S, Afzal S, Fatima S, Shakoor MB, et al. Heavy metals contamination and what are the impacts on living organisms. Greener Journal of Environmental management and public safety. 2013;2(4):172-9.
10.15580/GJEMPS.2013.4.060413652
4. Gheshlagh FS-N, Ziarati P, Bidgoli SA. Seasonal fluctuation of heavy metal and nitrate pollution in ground water of farmlands in Talesh, Gilan, Iran. International Journal of Farming and Allied Sciences. 2013;2:836-41.
5. Ziarati P, Moslehishad M, Mohammad-Makki FM. Novel adsorption method for contaminated water by wild endemic almond: Amygdalus scoparia. Biosciences biotechnology research asia. 2016;13(1):147-53.
6. Galadima A, Muhammad N, Garba Z. Spectroscopic investigation of heavy metals in waste water from University students’ halls of residence. Int J Chem. 2010;20(4):239-44.
7. Makki FM, Ziarati P. Determination of histamine and heavy metal concentrations in tomato pastes and fresh tomato (Solanum lycopersicum) in Iran. Biosci Biotechnol Res Asia. 2014;11(2):537-44.
doi: http://dx.doi.org/10.13005/bbra/1304
8. Odokuma L, Akponah E. Effect of nutrient supplementation on biodegradation and metal uptake by three bacteria in crude oil impacted fresh and brackish waters of the Niger Delta. Journal of Cell and Animal Biology. 2012;4(1):001-18.
9. Sarma B, Acharya C, Joshi S. Pseudomonads: a versatile bacterial group exhibiting dual resistance to metals and antibiotics. Afr J Microbiol Res. 2010;4(25):2828-35.
10. Mishra V. Biosorption of zinc ion: a deep comprehension. Applied Water Science. 2014;4(4):311-32.
DOI: 10.1007/s13201-013-0150-x
11. Wang J, Chen C. Biosorbents for heavy metals removal and their future. Biotechnology advances. 2009;27(2):195-226.
doi.org/10.1016/j.biotechadv.2008.11.002
12. Lee T, Park J-w, Lee J-H. Waste green sands as reactive media for the removal of zinc from water. Chemosphere. 2004;56(6):571-81.
DOI: 10.1016/j.chemosphere.2004.04.037
13. Abdelwahab O, Amin N, El-Ashtoukhy EZ. Removal of zinc ions from aqueous solution using a cation exchange resin. Chemical Engineering Research and Design. 2013;91(1):165-73.
/doi.org/10.1016/j.cherd.2012.07.005
14. Arshad M, Zafar MN, Younis S, Nadeem R. The use of Neem biomass for the biosorption of zinc from aqueous solutions. Journal of Hazardous Materials. 2008;157(2-3):534-40.
doi.org/10.1016/j.jhazmat.2008.01.017
15. Baig KS, Doan H, Wu J. Multicomponent isotherms for biosorption of Ni2+ and Zn2+. Desalination. 2009;249(1):429-39.
DOI: 10.1016/j.desal.2009.06.052
16. MacDiarmid CW, Milanick MA, Eide DJ. Biochemical Properties of Vacuolar Zinc Transport Systems ofSaccharomyces cerevisiae. Journal of Biological Chemistry. 2002;277(42):39187-94.
DOI: 10.1074/jbc.M205052200
17. Rebar E, Miller J. Design and applications of engineered zinc finger proteins. Biotech International. 2004:20-3.
DOI: 10.1016/j.gene.2005.09.011
18. Azad SK, Shariatmadari F, Torshizi MK. Production of zinc-enriched biomass of Saccharomyces cerevisiae. Journal of Elementology. 2014;19(2).
DOI:10.5601/jelem.2014.19.2.655
19. Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS microbiology reviews. 2018;42(1):fux050.
doi.org/10.1093/femsre/fux050
20. Andreini C, Banci L, Bertini I, Rosato A. Zinc through the three domains of life. Journal of proteome research. 2006;5(11):3173-8.
doi: 10.1021/pr0603699.
21. North M, Steffen J, Loguinov AV, Zimmerman GR, Vulpe CD, Eide DJ. Genome-wide functional profiling identifies genes and processes important for zinc-limited growth of Saccharomyces cerevisiae. PLoS genetics. 2012;8(6).
DOI: 10.1371/journal.pgen.1002699
22. MacDiarmid CW, Gaither LA, Eide D. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae. The EMBO journal. 2000;19(12):2845-55.
doi: 10.1093/emboj/19.12.2845
23. Li L, Kaplan J. The yeast gene MSC2, a member of the cation diffusion facilitator family, affects the cellular distribution of zinc. Journal of Biological Chemistry. 2001;276(7):5036-43.
DOI: 10.1074/jbc.M008969200
24. Ellis CD, MacDiarmid CW, Eide DJ. Heteromeric protein complexes mediate zinc transport into the secretory pathway of eukaryotic cells. Journal of Biological Chemistry. 2005;280(31):28811-8.
DOI: 10.1074/jbc.M505500200
25. Cain A, Vannela R, Woo LK. Cyanobacteria as a biosorbent for mercuric ion. Bioresource technology. 2008;99(14):6578-86.
https://doi.org/10.1016/j.biortech.2007.11.034
26. Jasrotia S, Kansal A, Mehra A. Performance of aquatic plant species for phytoremediation of arsenic-contaminated water. Appl Water Sci 7 (2): 889–896. 2017.
DOI: 10.1007/s13201-015-0300-4
27. Halder S. Bioremediation of heavy metals through fresh water microalgae: a review. Scholars Academic Journal of Biosciences. 2014;2(11):825-30.
28. Machado MD, Soares EV, Soares HM. Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. Journal of hazardous materials. 2010;180(1-3):347-53.
DOI: 10.1016/j.jhazmat.2010.04.037
29. Lapeña D, Kosa G, Hansen LD, Mydland LT, Passoth V, Horn SJ, et al. Production and characterization of yeasts grown on media composed of spruce-derived sugars and protein hydrolysates from chicken by-products. Microbial cell factories. 2020;19(1):19.
DOI: 10.1186/s12934-020-1287-6
30. Ritala A, Häkkinen ST, Toivari M, Wiebe MG. Single cell protein—state-of-the-art, industrial landscape and patents 2001–2016. Frontiers in microbiology. 2017;8:2009.
doi: 10.3389/fmicb.2017.02009
31. Øverland M, Skrede A. Yeast derived from lignocellulosic biomass as a sustainable feed resource for use in aquaculture. Journal of the Science of Food and Agriculture. 2017;97(3):733-42.
DOI: 10.1002/jsfa.8007
32. Kurcz A, Błażejak S, Kot AM, Bzducha-Wróbel A, Kieliszek M. Application of industrial wastes for the production of microbial single-cell protein by fodder yeast Candida utilis. Waste and Biomass Valorization. 2018;9(1):57-64.
DOI: 10.1007/s12649-016-9782-z
33. Øverland M, Karlsson A, Mydland LT, Romarheim OH, Skrede A. Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture. 2013;402:1-7.
DOI: 10.1016/j.aquaculture.2013.03.016
34. Wang J, Chen C. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnology advances. 2006;24(5):427-51.
doi: 10.1016/j.biotechadv.2006.03.001.
35. Chen C, Wang J-L. Characteristics of Zn2+ biosorption by Saccharomyces cerevisiae. Biomedical and environmental sciences: BES. 2007;20(6):478-82.
36. Waldron KJ, Rutherford JC, Ford D, Robinson NJ. Metalloproteins and metal sensing. Nature. 2009;460(7257):823-30.
DOI: 10.1038/nature08300
37. Amich J, Vicentefranqueira R, Leal F, Calera JA. Aspergillus fumigatus survival in alkaline and extreme zinc-limiting environments relies on the induction of a zinc homeostasis system encoded by the zrfC and aspf2 genes. Eukaryotic cell. 2010;9(3):424-37.
DOI: 10.1128/EC.00348-09
38. Tahir A, Lateef Z, Abdel-Megeed A, Sholkamy EN, Mostafa AA. In vitro compatibility of fungi for the biosorption of zinc (II) and copper (II) from electroplating effluent. Current Science (00113891). 2017;112(4).
DOI: 10.18520/cs/v112/i04/839-844
39. Aksu Z. Equilibrium and kinetic modelling of cadmium (II) biosorption by C. vulgaris in a batch system: effect of temperature. Separation and Purification Technology. 2001;21(3):285-94.
doi.org/10.1016/S1383-5866(00)00212-4
40. Xiao X, Luo S, Zeng G, Wei W, Wan Y, Chen L, et al. Biosorption of cadmium by endophytic fungus (EF) Microsphaeropsis sp. LSE10 isolated from cadmium hyperaccumulator Solanum nigrum L. Bioresource technology. 2010;101(6):1668-74.
doi: 10.1016/j.biortech.2009.09.083
41. Bajpai P. Single cell protein production from lignocellulosic biomass: Springer; 2017.
Figure legend:
Figure1. A) PCR products on 1.5% agarose gel. The samples which expressed Zrt1 and Fet4 genes illustrated fragment patterns of 2102 bp and 165 bp. M: marker, (+): positive control, (-): negative control, 41-44: number of samples. B) PCR ITS products on 1.5% agarose gel. The samples which illustrated ITS fragment patterns identified as yeast strains. M: marker, 1-3: yeast strains. C)Phylogenetic tree of sequenced samples. Samples 2and3 were identified asS. cerevisiae yeasts.
Figure 2. The effect of supplementing the SDB culture medium with ZnSO4 on growth rate of S. cerevisiae . The maximum growth rate observed in 25 µg/ml of zinc concentration at 24 hours after inoculation
Figure 3. Differentially expression levels of Zrt1 and Fet4 inS. cerevisiae under supplementing the SDB medium with different concentrations of zinc and after 24 h of incubation, versus control (without the addition of zinc). The maximum Zrt1 transcript level was observed in 25 µg/ml of zinc concentration. While Fet4 transcript level found to be significantly increased in the presence of 50 µg/ml of zinc. The p values were indicated as *p < 0.05, **p < 0.01, and ***p < 0.001
Figure 4. Differentially expression levels of Zrt1 and Fet4 inS. cerevisiae in pH 3, 4, 5 and 6 versus control (pH 5.8). The maximum Fet4 transcript level was observed in pH 4, while the equal increment of Zrt1 and Fet4 expression was observed in pH 6.* Represents p value < 0.05.