REFERENCES
Agarwal, A., Gupta, S. D., Barman, M., & Mitra, A. (2018).
Photosynthetic apparatus plays a central role in photosensitive
physiological acclimations affecting spinach (Spinacia oleraceaL.) growth in response to blue and red photon flux
ratios. Environmental and Experimental Botany , 156 ,
170-182.
Barman, M., & Mitra, A. (2019). Temporal relationship between emitted
and endogenous floral scent volatiles in summer‐and winter‐bloomingJasminum species. Physiologia Plantarum , 166 ,
946-959.
Barman, M., Kotamreddy, J. N. R., Agarwal, A., & Mitra, A. (2020).
Enhanced emission of linalool from floral scent volatile bouquet inJasminum auriculatum variants developed via gamma
irradiation. Industrial Crops and Products , 152 , 112545.
Bera, P., Kotamreddy, J. N. R., Samanta, T., Maiti, S., & Mitra, A.
(2015). Inter-specific variation in headspace scent volatiles
composition of four commercially cultivated jasmine
flowers. Natural Product Research , 29 , 1328-1335.
Bera, P., Mukherjee, C., & Mitra, A. (2017). Enzymatic production and
emission of floral scent volatiles in Jasminum
sambac . Plant Science , 256 , 25-38.
Chakraborty, D., Sircar, D., & Mitra, A. (2008). Phenylalanine
ammonia-lyase-mediated biosynthesis of 2-hydroxy-4-methoxybenzaldehyde
in roots of Hemidesmus indicus . Journal of Plant
Physiology , 165, 1033-1040.
Chen, X.M., Kobayashi, H., Sakai, M., Hirata, H., Asai, T., Ohnishi, T.,
Baldermann, S. & Watanabe, N. (2011). Functional characterization of
rose phenylacetaldehyde reductase (PAR), an enzyme involved in the
biosynthesis of the scent compound 2-phenylethanol. Journal of
Plant Physiology , 168 , 88-95.
Cheng, S., Fu, X., Mei, X., Zhou, Y., Du, B., Watanabe, N., & Yang, Z.
(2016). Regulation of biosynthesis and emission of volatile
phenylpropanoids/benzenoids in petunia × hybrida flowers by
multi-factors of circadian clock, light, and temperature. Plant
Physiology and Biochemistry , 107 , 1-8.
Cna’ani, A., Muehlemann, J. K., Ravid, J., Masci, T., Klempien, A.,
Nguyen, T. T., Dudareva, N., Pichersky, E. & Vainstein, A. (2015).Petunia × hybrida floral scent production is negatively
affected by high‐temperature growth conditions. Plant, Cell &
Environment , 38 , 1333-1346.
Dement, W. A., Tyson, B. J., & Mooney, H. A. (1975). Mechanism of
monoterpene volatilization in Salvia
mellifera . Phytochemistry , 14 , 2555-2557.
Dudareva, N., Raguso, R. A., Wang, J., Ross, J. R., & Pichersky, E.
(1998). Floral scent production in Clarkia breweri : III.
Enzymatic synthesis and emission of benzenoid esters. Plant
Physiology , 116 , 599-604.
Dudareva, N., D’auria, J. C., Nam, K. H., Raguso, R. A., & Pichersky,
E. (1998). Acetyl‐CoA: benzylalcohol acetyltransferase–an enzyme
involved in floral scent production in Clarkia breweri . The
Plant Journal , 14 , 297-304.
Dudareva, N., Klempien, A., Muhlemann, J. K., & Kaplan, I. (2013).
Biosynthesis, function and metabolic engineering of plant volatile
organic compounds. New Phytologist , 198 , 16-32.
Edris, A. E., Chizzola, R., & Franz, C. (2008). Isolation and
characterization of the volatile aroma compounds from the concrete
headspace and the absolute of Jasminum sambac (L.) Ait.
(Oleaceae) flowers grown in Egypt. European Food Research and
Technology , 226 , 621.
Fu, J., Hou, D., Zhang, C., Bao, Z., Zhao, H., & Hu, S. (2017). The
emission of the floral scent of four Osmanthus fragrans cultivars
in response to different temperatures. Molecules , 22 , 430.
Gupta, G. N., & Chandra, G. (1957) Indian Jasmine. Economic
Botany , 11 , 178–181.
Helsper, J. P., Davies, J. A., Bouwmeester, H. J., Krol, A. F., & van
Kampen, M. H. (1998). Circadian rhythmicity in emission of volatile
compounds by flowers of Rosa hybrida L. cv. Honesty.Planta , 207 , 88-95.
Hendel-Rahmanim, K., Masci, T., Vainstein, A., & Weiss, D. (2007).
Diurnal regulation of scent emission in rose
flowers. Planta , 226 , 1491-1499.
Hu, Z., Zhang, H., Leng, P., Zhao, J., Wang, W., & Wang, S. (2013). The
emission of floral scent from Lilium ‘siberia’in response to
light intensity and temperature. Acta Physiologiae
Plantarum , 35 , 1691-1700.
Irmisch, S., Krause, S. T., Kunert, G., Gershenzon, J., Degenhardt, J.,
& Köllner, T. G. (2012). The organ-specific expression of terpene
synthase genes contributes to the terpene hydrocarbon composition of
chamomile essential oils. BMC Plant Biology , 12 , 84.
Ito, Y., Sugimoto, A., Kakuda, T., & Kubota, K. (2002). Identification
of potent odorants in Chinese jasmine green tea scented with flowers ofJasminum sambac . Journal of Agricultural and Food
Chemistry, 50 , 4878-4884.
Jakobsen, H. B., & Olsen, C. E. (1994). Influence of climatic factors
on emission of flower volatiles in situ. Planta , 192 ,
365-371.
Jian, W., Cao, H., Yuan, S., Liu, Y., Lu, J., Lu, W., Li, N., Wang, J.,
Zou, J., Tang, N., Xu, C., Cheng, Y., Gao, Y., Xi, W., Bouzayen, M., &
Li, Z., 2019. SlMYB75, an MYB-type transcription factor, promotes
anthocyanin accumulation and enhances volatile aroma production in
tomato fruits. Horticulture Research , 6 , 1-15.
Joulain, D., & Laurent, R. (1995). The absolute from flowers ofJasminum auriculatum Vahl. from India. Flavour and
Fragrance Journal , 10 , 193-197.
Kolosova, N., Gorenstein, N., Kish, C. M., & Dudareva, N. (2001).
Regulation of circadian methyl benzoate emission in diurnally and
nocturnally emitting plants. The Plant Cell , 13 ,
2333-2347.
Kuroda, K., Inoue, N., Ito, Y., Kubota, K., Sugimoto, A., Kakuda, T., &
Fushiki, T. (2005). Sedative effects of the jasmine tea odor and
(R)-(−)-linalool, one of its major odor components, on autonomic nerve
activity and mood states. European Journal of Applied Physiology ,95 , 107-114.
Kutty, N. N., & Mitra, A. (2019). Profiling of volatile and
non-volatile metabolites in Polianthes tuberosa L. flowers
reveals intraspecific variation among
cultivars. Phytochemistry , 162 , 10-20.
Li, Y. H., Zhang, W., & Li, Y. (2015). Transcriptomic analysis of
flower blooming in Jasminum sambac through de novo RNA
sequencing. Molecules , 20 , 10734-10747.
Liu, J., Osbourn, A., & Ma, P. (2015). MYB transcription factors as
regulators of phenylpropanoid metabolism in plants. Molecular
Plant , 8 , 689-708.
Maiti, S., & Mitra, A. (2017). Morphological, physiological and
ultrastructural changes in flowers explain the spatio-temporal emission
of scent volatiles in Polianthes tuberosa L. Plant & Cell
Physiology , 58 , 2095-2111.
Majetic, C. J., & Sinka, B. N. (2013). Diverging pathways: differential
benzenoid and phenylpropanoid volatile production in Phlox
subulata L. cultivars. Biochemical Systematics and
Ecology , 50 , 75-81.
Muhlemann, J. K., Klempien, A., & Dudareva, N. (2014). Floral
volatiles: from biosynthesis to function. Plant, Cell &
Environment , 37 , 1936-1949.
Oka, N., Ohishi, H., Hatano, T., Hornberger, M., Sakata, K., &
Watanabe, N. (1999). Aroma evolution during flower opening in Rosa
damascena Mill. Zeitschrift für Naturforschung C , 54 ,
889-895.
Oyama-Okubo, N., Ando, T., Watanabe, N., Marchesi, E., Uchida, K., &
Nakayama, M. (2005) Emission mechanism of floral scent in Petunia
axillaris . Bioscience, Biotechnology, and Biochemistry69 , 773–777.
Paul, I., Chatterjee, A., Maiti, S., Bhadoria, P B S., & Mitra, A.
(2019) Dynamic trajectories of volatile and non-volatile specialised
metabolites in ‘overnight’ fragrant flowers of Murraya
paniculata . Plant Biology , 21 , 899–910.
Pichersky, E., Raguso, R. A., Lewinsohn, E., & Croteau, R. (1994).
Floral scent production in Clarkia (Onagraceae) (I. Localization
and developmental modulation of monoterpene emission and linalool
synthase activity). Plant Physiology , 106 , 1533-1540.
Pragadheesh, V. S., Chanotiya, C. S., Rastogi, S., & Shasany, A. K.
(2017). Scent from Jasminum grandiflorum flowers: Investigation
of the change in linalool enantiomers at various developmental stages
using chemical and molecular methods. Phytochemistry , 140 ,
83-94.
Ramya, M., An, H. R., Baek, Y. S., Reddy, K. E., & Park, P. H. (2018).
Orchid floral volatiles: Biosynthesis genes and transcriptional
regulations. Scientia Horticulturae , 235 , 62-69.
Raguso, R. A., & Pichersky, E.
(1995). Floral volatiles from Clarkia breweri and C.
concinna (Onagraceae): Recent evolution of floral scent and moth
pollination. Plant Systematics and Evolution , 194 , 55-67.
Reuveni, M., Sagi, Z., Evnor, D., & Hetzroni, A. (1999). β-Glucosidase
activity is involved in scent production in Narcissus flowers.Plant Science , 147 , 19-24.
Sagae, M., Oyama-Okubo, N., Ando, T., Marchesi, E. & Nakayama, M.
(2008). Effect of temperature on the floral scent emission and
endogenous volatile profile of Petunia axillaris .Bioscience, Biotechnology, and Biochemistry, 72 ,110–115.
Schmittgen, T. D., & Livak, K. J. (2008). Analyzing real-time PCR data
by the comparative CT method. Nature
Protocols , 3 , 1101-1108.
Schuurink, R. C., Haring, M. A., & Clark, D. G. (2006). Regulation of
volatile benzenoid biosynthesis in petunia flowers. Trends in
Plant Science , 11 , 20-25.
Shaked‐Sachray, L., Weiss, D., Reuveni, M., Nissim‐Levi, A., &
Oren‐Shamir, M. (2002). Increased anthocyanin accumulation in aster
flowers at elevated temperatures due to magnesium
treatment. Physiologia Plantarum , 114 , 559-565.
Shalit, M., Guterman, I., Volpin, H., Bar, E., Tamari, T., Menda, N.,
Adam, Z., Zamir, D., Vainstein, A., Weiss, D. & Pichersky, E. (2003).
Volatile ester formation in roses. Identification of an acetyl-coenzyme
A. Geraniol/citronellol acetyltransferase in developing rose
petals. Plant Physiology , 131 , 1868-1876.
Sheveleva, E. V., Marquez, S., Chmara, W., Zegeer, A., Jensen, R. G., &
Bohnert, H. J. (1998). Sorbitol-6-phosphate dehydrogenase expression in
transgenic tobacco: high amounts of sorbitol lead to necrotic
lesions. Plant Physiology , 117 , 831-839.
Tarczynski, M. C., Jensen, R. G., & Bohnert, H. J. (1993). Stress
protection of transgenic tobacco by production of the osmolyte
mannitol. Science , 259 , 508-510.
Watanabe, N., Watanabe, S., Nakajima, R., Moon, J. H., Shimokihara, K.,
Inagaki, J., Etoh, H., Asai, T., Sakata, K. & Ina, K. (1993). Formation
of flower fragrance compounds from their precursors by enzymic action
during flower opening. Bioscience, Biotechnology, and
Biochemistry , 57 , 1101-1106.
Wei, A., & Shibamoto, T. (2007). Antioxidant activities and volatile
constituents of various essential oils. Journal of Agricultural
and Food Chemistry , 55 , 1737-1742.
Xia, J., Sinelnikov, I. V., Han, B., & Wishart, D. S. (2015).
MetaboAnalyst 3.0-making metabolomics more meaningful. Nucleic
Acids Research , 43 , 251-257.
Yu, Y., Lyu, S., Chen, D., Lin, Y., Chen, J., Chen, G., & Ye, N.
(2017). Volatiles emitted at different flowering stages ofJasminum sambac and expression of genes related to α-farnesene
biosynthesis. Molecules , 22 , 546.
Zeng, L., Wang, X., Dong, F., Watanabe, N., & Yang, Z. (2019).
Increasing postharvest high-temperatures lead to increased volatile
phenylpropanoids/benzenoids accumulation in cut rose (Rosa
hybrida ) flowers. Postharvest Biology and
Technology , 148 , 68-75.