References
Abbott NJ, Ronnback L, & Hansson E. (2006). Astrocyte-endothelial interactions at the blood-brain barrier.Nat Rev Neurosci, 7 (1), 41-53.
Bannister AJ, & Kouzarides T. (2011). Regulation of chromatin by histone modifications. Cell Res, 21 (3), 381-395.
Basso DM, Beattie MS, & Bresnahan JC. (1995). A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma, 12 (1), 1-21.
Carroll JE, Hess DC, Howard EF, & Hill WD. (2000). Is nuclear factor-kappaB a good treatment target in brain ischemia/reperfusion injury? Neuroreport, 11 (9), R1-4.
Chhillar R, & Dhingra D. (2013). Antidepressant-like activity of gallic acid in mice subjected to unpredictable chronic mild stress. Fundam Clin Pharmacol, 27 (4), 409-418.
Edwards WB, Schnitzer TJ, & Troy KL. (2014). Bone mineral and stiffness loss at the distal femur and proximal tibia in acute spinal cord injury. Osteoporos Int, 25 (3), 1005-1015.
Giftson JS, Jayanthi S, & Nalini N. (2010). Chemopreventive efficacy of gallic acid, an antioxidant and anticarcinogenic polyphenol, against 1,2-dimethyl hydrazine induced rat colon carcinogenesis. Invest New Drugs, 28 (3), 251-259.
Giuliano F, Hultling C, El Masry WS, Smith MD, Osterloh IH, Orr M, et al. (1999). Randomized trial of sildenafil for the treatment of erectile dysfunction in spinal cord injury. Sildenafil Study Group. Ann Neurol, 46 (1), 15-21.
Hausmann ON. (2003). Post-traumatic inflammation following spinal cord injury. Spinal Cord, 41 (7), 369-378.
Hawkins BT, & Davis TP. (2005). The blood-brain barrier/neurovascular unit in health and disease.Pharmacol Rev, 57 (2), 173-185.
Herrmann JE, Imura T, Song B, Qi J, Ao Y, Nguyen TK, et al. (2008). STAT3 is a critical regulator of astrogliosis and scar formation after spinal cord injury. J Neurosci, 28 (28), 7231-7243.
Huang HL, Lin CC, Jeng KC, Yao PW, Chuang LT, Kuo SL, et al. (2012). Fresh green tea and gallic acid ameliorate oxidative stress in kainic acid-induced status epilepticus.J Agric Food Chem, 60 (9), 2328-2336.
Jain AN. (2003). Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem, 46 (4), 499-511.
Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, & Group NCRRGW. (2010). Animal research: reporting in vivo experiments: the ARRIVE guidelines. J Gene Med, 12 (7), 561-563.
Kruidenier L, Chung CW, Cheng Z, Liddle J, Che K, Joberty G, et al. (2012). A selective jumonji H3K27 demethylase inhibitor modulates the proinflammatory macrophage response.Nature, 488 (7411), 404-408.
Kurtoglu T, Basoglu H, Ozkisacik EA, Cetin NK, Tataroglu C, Yenisey C, et al. (2014). Effects of cilostazol on oxidative stress, systemic cytokine release, and spinal cord injury in a rat model of transient aortic occlusion. Ann Vasc Surg, 28 (2), 479-488.
Lee JY, Choi HY, Ahn HJ, Ju BG, & Yune TY. (2014a). Matrix metalloproteinase-3 promotes early blood-spinal cord barrier disruption and hemorrhage and impairs long-term neurological recovery after spinal cord injury. Am J Pathol, 184 (11), 2985-3000.
Lee JY, Choi HY, Na WH, Ju BG, & Yune TY. (2014b). Ghrelin inhibits BSCB disruption/hemorrhage by attenuating MMP-9 and SUR1/TrpM4 expression and activation after spinal cord injury. Biochim Biophys Acta, 1842 (12 Pt A), 2403-2412.
Lee JY, Choi HY, Na WH, Ju BG, & Yune TY. (2015). 17beta-estradiol inhibits MMP-9 and SUR1/TrpM4 expression and activation and thereby attenuates BSCB disruption/hemorrhage after spinal cord injury in male rats.Endocrinology, 156 (5), 1838-1850.
Lee JY, Choi HY, Park CS, Ju BG, & Yune TY. (2018). Mithramycin A Improves Functional Recovery by Inhibiting BSCB Disruption and Hemorrhage after Spinal Cord Injury.J Neurotrauma, 35 (3), 508-520.
Lee JY, Kim HS, Choi HY, Oh TH, Ju BG, & Yune TY. (2012a). Valproic acid attenuates blood-spinal cord barrier disruption by inhibiting matrix metalloprotease-9 activity and improves functional recovery after spinal cord injury. J Neurochem, 121 (5), 818-829.
Lee JY, Kim HS, Choi HY, Oh TH, & Yune TY. (2012b). Fluoxetine inhibits matrix metalloprotease activation and prevents disruption of blood-spinal cord barrier after spinal cord injury. Brain, 135 (Pt 8), 2375-2389.
Lee JY, Na WH, Choi HY, Lee KH, Ju BG, & Yune TY. (2016). Jmjd3 mediates blood-spinal cord barrier disruption after spinal cord injury by regulating MMP-3 and MMP-9 expressions. Neurobiol Dis, 95 , 66-81.
Lee K, Na W, Lee JY, Na J, Cho H, Wu H, et al. (2012c). Molecular mechanism of Jmjd3-mediated interleukin-6 gene regulation in endothelial cells underlying spinal cord injury.J Neurochem, 122 (2), 272-282.
Lee SM, Yune TY, Kim SJ, Park DW, Lee YK, Kim YC, et al. (2003). Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat.J Neurotrauma, 20 (10), 1017-1027.
Lu Z, Nie G, Belton PS, Tang H, & Zhao B. (2006). Structure-activity relationship analysis of antioxidant ability and neuroprotective effect of gallic acid derivatives.Neurochem Int, 48 (4), 263-274.
Mansouri MT, Farbood Y, Sameri MJ, Sarkaki A, Naghizadeh B, & Rafeirad M. (2013a). Neuroprotective effects of oral gallic acid against oxidative stress induced by 6-hydroxydopamine in rats. Food Chem, 138 (2-3), 1028-1033.
Mansouri MT, Naghizadeh B, Ghorbanzadeh B, Farbood Y, Sarkaki A, & Bavarsad K. (2013b). Gallic acid prevents memory deficits and oxidative stress induced by intracerebroventricular injection of streptozotocin in rats.Pharmacol Biochem Behav, 111 , 90-96.
Na W, Shin JY, Lee JY, Jeong S, Kim WS, Yune TY, et al. (2017). Dexamethasone suppresses JMJD3 gene activation via a putative negative glucocorticoid response element and maintains integrity of tight junctions in brain microvascular endothelial cells. J Cereb Blood Flow Metab, 37 (12), 3695-3708.
Nabavi SF, Habtemariam S, Jafari M, Sureda A, & Nabavi SM. (2012). Protective role of gallic acid on sodium fluoride induced oxidative stress in rat brain. Bull Environ Contam Toxicol, 89 (1), 73-77.
Noble LJ, Donovan F, Igarashi T, Goussev S, & Werb Z. (2002). Matrix metalloproteinases limit functional recovery after spinal cord injury by modulation of early vascular events. J Neurosci, 22 (17), 7526-7535.
Patel SS, & Goyal RK. (2011). Cardioprotective effects of gallic acid in diabetes-induced myocardial dysfunction in rats. Pharmacognosy Res, 3 (4), 239-245.
Przanowski P, Dabrowski M, Ellert-Miklaszewska A, Kloss M, Mieczkowski J, Kaza B, et al. (2014). The signal transducers Stat1 and Stat3 and their novel target Jmjd3 drive the expression of inflammatory genes in microglia. J Mol Med (Berl), 92 (3), 239-254.
Rivlin AS, & Tator CH. (1977). Objective clinical assessment of motor function after experimental spinal cord injury in the rat. J Neurosurg, 47 (4), 577-581.
Sarkaki A, Farbood Y, Gharib-Naseri MK, Badavi M, Mansouri MT, Haghparast A, et al. (2015). Gallic acid improved behavior, brain electrophysiology, and inflammation in a rat model of traumatic brain injury. Can J Physiol Pharmacol, 93 (8), 687-694.
Sarkaki A, Fathimoghaddam H, Mansouri SM, Korrani MS, Saki G, & Farbood Y. (2014). Gallic acid improves cognitive, hippocampal long-term potentiation deficits and brain damage induced by chronic cerebral hypoperfusion in rats. Pak J Biol Sci, 17 (8), 978-990.
Schreibelt G, Kooij G, Reijerkerk A, van Doorn R, Gringhuis SI, van der Pol S, et al. (2007). Reactive oxygen species alter brain endothelial tight junction dynamics via RhoA, PI3 kinase, and PKB signaling. FASEB J, 21 (13), 3666-3676.
Sun J, Ren DD, Wan JY, Chen C, Chen D, Yang H, et al. (2017). Desensitizing Mitochondrial Permeability Transition by ERK-Cyclophilin D Axis Contributes to the Neuroprotective Effect of Gallic Acid against Cerebral Ischemia/Reperfusion Injury.Front Pharmacol, 8 , 184.
Tang Y, Li T, Li J, Yang J, Liu H, Zhang XJ, et al. (2014). Jmjd3 is essential for the epigenetic modulation of microglia phenotypes in the immune pathogenesis of Parkinson’s disease. Cell Death Differ, 21 (3), 369-380.
Yang D, Okamura H, Teramachi J, & Haneji T. (2016). Histone demethylase Jmjd3 regulates osteoblast apoptosis through targeting anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bim. Biochim Biophys Acta, 1863 (4), 650-659.
Yang YH, Wang Z, Zheng J, & Wang R. (2015). Protective effects of gallic acid against spinal cord injury-induced oxidative stress. Mol Med Rep, 12 (2), 3017-3024.
You BR, Kim SZ, Kim SH, & Park WH. (2011). Gallic acid-induced lung cancer cell death is accompanied by ROS increase and glutathione depletion. Mol Cell Biochem, 357 (1-2), 295-303.
Yune TY, Lee JY, Jiang MH, Kim DW, Choi SY, & Oh TH. (2008). Systemic administration of PEP-1-SOD1 fusion protein improves functional recovery by inhibition of neuronal cell death after spinal cord injury. Free Radic Biol Med, 45 (8), 1190-1200.
Yune TY, Lee JY, Jung GY, Kim SJ, Jiang MH, Kim YC, et al. (2007). Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. J Neurosci, 27 (29), 7751-7761.
Zlokovic BV. (2008). The blood-brain barrier in health and chronic neurodegenerative disorders. Neuron, 57 (2), 178-201.