References
Abbott NJ, Ronnback L, & Hansson E.
(2006). Astrocyte-endothelial interactions at the blood-brain barrier.Nat Rev Neurosci, 7 (1), 41-53.
Bannister AJ, & Kouzarides T. (2011).
Regulation of chromatin by histone modifications. Cell Res,
21 (3), 381-395.
Basso DM, Beattie MS, & Bresnahan JC.
(1995). A sensitive and reliable locomotor rating scale for open field
testing in rats. J Neurotrauma, 12 (1), 1-21.
Carroll JE, Hess DC, Howard EF, &
Hill WD. (2000). Is nuclear factor-kappaB a good treatment target in
brain ischemia/reperfusion injury? Neuroreport, 11 (9), R1-4.
Chhillar R, & Dhingra D. (2013).
Antidepressant-like activity of gallic acid in mice subjected to
unpredictable chronic mild stress. Fundam Clin Pharmacol, 27 (4),
409-418.
Edwards WB, Schnitzer TJ, & Troy KL.
(2014). Bone mineral and stiffness loss at the distal femur and proximal
tibia in acute spinal cord injury. Osteoporos Int, 25 (3),
1005-1015.
Giftson JS, Jayanthi S, & Nalini N.
(2010). Chemopreventive efficacy of gallic acid, an antioxidant and
anticarcinogenic polyphenol, against 1,2-dimethyl hydrazine induced rat
colon carcinogenesis. Invest New Drugs, 28 (3), 251-259.
Giuliano F, Hultling C, El Masry WS,
Smith MD, Osterloh IH, Orr M, et al. (1999). Randomized trial of
sildenafil for the treatment of erectile dysfunction in spinal cord
injury. Sildenafil Study Group. Ann Neurol, 46 (1), 15-21.
Hausmann ON. (2003). Post-traumatic
inflammation following spinal cord injury. Spinal Cord, 41 (7),
369-378.
Hawkins BT, & Davis TP. (2005). The
blood-brain barrier/neurovascular unit in health and disease.Pharmacol Rev, 57 (2), 173-185.
Herrmann JE, Imura T, Song B, Qi J,
Ao Y, Nguyen TK, et al. (2008). STAT3 is a critical regulator of
astrogliosis and scar formation after spinal cord injury. J
Neurosci, 28 (28), 7231-7243.
Huang HL, Lin CC, Jeng KC, Yao PW,
Chuang LT, Kuo SL, et al. (2012). Fresh green tea and gallic acid
ameliorate oxidative stress in kainic acid-induced status epilepticus.J Agric Food Chem, 60 (9), 2328-2336.
Jain AN. (2003). Surflex: fully
automatic flexible molecular docking using a molecular similarity-based
search engine. J Med Chem, 46 (4), 499-511.
Kilkenny C, Browne W, Cuthill IC,
Emerson M, Altman DG, & Group NCRRGW. (2010). Animal research:
reporting in vivo experiments: the ARRIVE guidelines. J Gene Med,
12 (7), 561-563.
Kruidenier L, Chung CW, Cheng Z,
Liddle J, Che K, Joberty G, et al. (2012). A selective jumonji H3K27
demethylase inhibitor modulates the proinflammatory macrophage response.Nature, 488 (7411), 404-408.
Kurtoglu T, Basoglu H, Ozkisacik EA,
Cetin NK, Tataroglu C, Yenisey C, et al. (2014). Effects of cilostazol
on oxidative stress, systemic cytokine release, and spinal cord injury
in a rat model of transient aortic occlusion. Ann Vasc Surg,
28 (2), 479-488.
Lee JY, Choi HY, Ahn HJ, Ju BG, &
Yune TY. (2014a). Matrix metalloproteinase-3 promotes early blood-spinal
cord barrier disruption and hemorrhage and impairs long-term
neurological recovery after spinal cord injury. Am J Pathol,
184 (11), 2985-3000.
Lee JY, Choi HY, Na WH, Ju BG, &
Yune TY. (2014b). Ghrelin inhibits BSCB disruption/hemorrhage by
attenuating MMP-9 and SUR1/TrpM4 expression and activation after spinal
cord injury. Biochim Biophys Acta, 1842 (12 Pt A), 2403-2412.
Lee JY, Choi HY, Na WH, Ju BG, &
Yune TY. (2015). 17beta-estradiol inhibits MMP-9 and SUR1/TrpM4
expression and activation and thereby attenuates BSCB
disruption/hemorrhage after spinal cord injury in male rats.Endocrinology, 156 (5), 1838-1850.
Lee JY, Choi HY, Park CS, Ju BG, &
Yune TY. (2018). Mithramycin A Improves Functional Recovery by
Inhibiting BSCB Disruption and Hemorrhage after Spinal Cord Injury.J Neurotrauma, 35 (3), 508-520.
Lee JY, Kim HS, Choi HY, Oh TH, Ju
BG, & Yune TY. (2012a). Valproic acid attenuates blood-spinal cord
barrier disruption by inhibiting matrix metalloprotease-9 activity and
improves functional recovery after spinal cord injury. J
Neurochem, 121 (5), 818-829.
Lee JY, Kim HS, Choi HY, Oh TH, &
Yune TY. (2012b). Fluoxetine inhibits matrix metalloprotease activation
and prevents disruption of blood-spinal cord barrier after spinal cord
injury. Brain, 135 (Pt 8), 2375-2389.
Lee JY, Na WH, Choi HY, Lee KH, Ju
BG, & Yune TY. (2016). Jmjd3 mediates blood-spinal cord barrier
disruption after spinal cord injury by regulating MMP-3 and MMP-9
expressions. Neurobiol Dis, 95 , 66-81.
Lee K, Na W, Lee JY, Na J, Cho H, Wu
H, et al. (2012c). Molecular mechanism of Jmjd3-mediated interleukin-6
gene regulation in endothelial cells underlying spinal cord injury.J Neurochem, 122 (2), 272-282.
Lee SM, Yune TY, Kim SJ, Park DW, Lee
YK, Kim YC, et al. (2003). Minocycline reduces cell death and improves
functional recovery after traumatic spinal cord injury in the rat.J Neurotrauma, 20 (10), 1017-1027.
Lu Z, Nie G, Belton PS, Tang H, &
Zhao B. (2006). Structure-activity relationship analysis of antioxidant
ability and neuroprotective effect of gallic acid derivatives.Neurochem Int, 48 (4), 263-274.
Mansouri MT, Farbood Y, Sameri MJ,
Sarkaki A, Naghizadeh B, & Rafeirad M. (2013a). Neuroprotective effects
of oral gallic acid against oxidative stress induced by
6-hydroxydopamine in rats. Food Chem, 138 (2-3), 1028-1033.
Mansouri MT, Naghizadeh B,
Ghorbanzadeh B, Farbood Y, Sarkaki A, & Bavarsad K. (2013b). Gallic
acid prevents memory deficits and oxidative stress induced by
intracerebroventricular injection of streptozotocin in rats.Pharmacol Biochem Behav, 111 , 90-96.
Na W, Shin JY, Lee JY, Jeong S, Kim
WS, Yune TY, et al. (2017). Dexamethasone suppresses JMJD3 gene
activation via a putative negative glucocorticoid response element and
maintains integrity of tight junctions in brain microvascular
endothelial cells. J Cereb Blood Flow Metab, 37 (12), 3695-3708.
Nabavi SF, Habtemariam S, Jafari M,
Sureda A, & Nabavi SM. (2012). Protective role of gallic acid on sodium
fluoride induced oxidative stress in rat brain. Bull Environ
Contam Toxicol, 89 (1), 73-77.
Noble LJ, Donovan F, Igarashi T,
Goussev S, & Werb Z. (2002). Matrix metalloproteinases limit functional
recovery after spinal cord injury by modulation of early vascular
events. J Neurosci, 22 (17), 7526-7535.
Patel SS, & Goyal RK. (2011).
Cardioprotective effects of gallic acid in diabetes-induced myocardial
dysfunction in rats. Pharmacognosy Res, 3 (4), 239-245.
Przanowski P, Dabrowski M,
Ellert-Miklaszewska A, Kloss M, Mieczkowski J, Kaza B, et al. (2014).
The signal transducers Stat1 and Stat3 and their novel target Jmjd3
drive the expression of inflammatory genes in microglia. J Mol Med
(Berl), 92 (3), 239-254.
Rivlin AS, & Tator CH. (1977).
Objective clinical assessment of motor function after experimental
spinal cord injury in the rat. J Neurosurg, 47 (4), 577-581.
Sarkaki A, Farbood Y, Gharib-Naseri
MK, Badavi M, Mansouri MT, Haghparast A, et al. (2015). Gallic acid
improved behavior, brain electrophysiology, and inflammation in a rat
model of traumatic brain injury. Can J Physiol Pharmacol, 93 (8),
687-694.
Sarkaki A, Fathimoghaddam H, Mansouri
SM, Korrani MS, Saki G, & Farbood Y. (2014). Gallic acid improves
cognitive, hippocampal long-term potentiation deficits and brain damage
induced by chronic cerebral hypoperfusion in rats. Pak J Biol Sci,
17 (8), 978-990.
Schreibelt G, Kooij G, Reijerkerk A,
van Doorn R, Gringhuis SI, van der Pol S, et al. (2007). Reactive oxygen
species alter brain endothelial tight junction dynamics via RhoA, PI3
kinase, and PKB signaling. FASEB J, 21 (13), 3666-3676.
Sun J, Ren DD, Wan JY, Chen C, Chen
D, Yang H, et al. (2017). Desensitizing Mitochondrial Permeability
Transition by ERK-Cyclophilin D Axis Contributes to the Neuroprotective
Effect of Gallic Acid against Cerebral Ischemia/Reperfusion Injury.Front Pharmacol, 8 , 184.
Tang Y, Li T, Li J, Yang J, Liu H,
Zhang XJ, et al. (2014). Jmjd3 is essential for the epigenetic
modulation of microglia phenotypes in the immune pathogenesis of
Parkinson’s disease. Cell Death Differ, 21 (3), 369-380.
Yang D, Okamura H, Teramachi J, &
Haneji T. (2016). Histone demethylase Jmjd3 regulates osteoblast
apoptosis through targeting anti-apoptotic protein Bcl-2 and
pro-apoptotic protein Bim. Biochim Biophys Acta, 1863 (4),
650-659.
Yang YH, Wang Z, Zheng J, & Wang R.
(2015). Protective effects of gallic acid against spinal cord
injury-induced oxidative stress. Mol Med Rep, 12 (2), 3017-3024.
You BR, Kim SZ, Kim SH, & Park WH.
(2011). Gallic acid-induced lung cancer cell death is accompanied by ROS
increase and glutathione depletion. Mol Cell Biochem, 357 (1-2),
295-303.
Yune TY, Lee JY, Jiang MH, Kim DW,
Choi SY, & Oh TH. (2008). Systemic administration of PEP-1-SOD1 fusion
protein improves functional recovery by inhibition of neuronal cell
death after spinal cord injury. Free Radic Biol Med, 45 (8),
1190-1200.
Yune TY, Lee JY, Jung GY, Kim SJ,
Jiang MH, Kim YC, et al. (2007). Minocycline alleviates death of
oligodendrocytes by inhibiting pro-nerve growth factor production in
microglia after spinal cord injury. J Neurosci, 27 (29),
7751-7761.
Zlokovic BV. (2008). The blood-brain
barrier in health and chronic neurodegenerative disorders. Neuron,
57 (2), 178-201.