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Abstract 

 

To greatly expand the druggable genome, fast and accurate predictions of cryptic sites for small molecules 

binding in target proteins are in high demand. In this study, we have developed a fast and simple conformational 

sampling scheme guided by normal modes solved from the coarse-grained elastic models followed by atomistic 

backbone refinement and sidechain repacking. Despite the observations of complex and diverse conformational 

changes associated with ligand binding, we found that simply sampling along each of the lowest 30 modes is near 

optimal for adequately restructuring cryptic sites so they can be detected by existing pocket finding programs like 

fpocket and concavity. We further trained machine-learning protocols to optimize the combination of the sampling-

enhanced pocket scores with other dynamic and conservation scores, which only slightly improved the performance. 

As assessed based on a training set of 84 known cryptic sites and a test set of 14 proteins, our method achieved high 

accuracy of prediction (with area under the receiver operating characteristic curve > 0.8) comparable to the 

CryptoSite server. Compared with CryptoSite and other methods based on extensive molecular dynamics simulation, 

our method is much faster (1-2 hours for an average-size protein) and simpler (using only pocket scores), so it is 

suitable for high-throughput processing of large datasets of protein structures at the genome scale. 
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Introduction 

 

A key prerequisite for successful drug design is to identify potential binding sites for small-molecule ligands 

to modulate target protein functions. These sites are often located in exposed and concave pockets with certain 

structural, dynamical, and physiochemical characteristics that favor molecular interactions. When such concave 

pockets are already formed in a ligand-unbound protein structure, various computational methods are available to 

detect them with reasonable accuracy 1,2. However, in many cases, a binding site is “cryptic” (e.g., too open/closed 

or obstructed) in the absence of a ligand and only forms after binding to a ligand. A cryptic site can also form 

transiently in the absence of ligand, thus eluding experimental and computational structural characterization. 

Therefore, cryptic sites are often difficult to identify given a ligand-unbound protein structure. To computationally 

solve this problem, one must effectively sample protein conformational changes relevant to ligand binding. Existing 

methods like long-time molecular dynamics (MD) simulation 3 and flexible molecular docking 4 are highly expensive 

and not applicable if high throughput is required. Therefore, there is a high demand for developing accurate and 

efficient methods to predict the location of cryptic sites in a given ligand-free protein structure. Discovery of cryptic 

sites will expand the druggable genome, and offer new venues of drug design by targeting hidden allosteric sites 5 

and undruggable protein-protein interfaces 6.   

 

In a recent landmark study by Cimermancic et al 7, the CryptoSite program/server was developed based on a 

dataset of known examples of cryptic sites in 93 proteins (each protein has an unbound structure that harbors a cryptic 

site with low pocket score and another structure bound with a functionally relevant ligand at the cryptic site). This 

valuable dataset has proven useful for developing/assessing methods for predicting cryptic sites 8,9. CryptoSite used 

conformational sampling by MD simulation to generate an ensemble of protein conformations for training a machine 

learning method to detect cryptic sites 7. Cimermancic et al used an energy-landscape based MD protocol10 which is 
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faster than conventional all-atom MD simulation 7. Alternative structural simulation options are available at both 

atomistic and coarse-grained levels. For high-throughput applications, coarse-grained models and simulations have 

the advantage of low computing cost and applicability to large proteins and long time scales. For example, an elastic 

network model (ENM) represents a protein structure as a network of springs connecting neighboring C atoms 11-13. 

Despite its simplicity, the normal mode analysis (NMA) of ENM can yield low-frequency modes of collective 

domain motions, which often capture conformational changes observed between experimentally solved protein 

conformations 14. NMA provides an efficient way to generate multiple receptor conformations for ensemble docking 

by deforming a given protein structure along a few low-frequency modes that capture collective motions at the 

backbone level. NMA greatly reduces the high-dimensional conformational space to be sampled. In fact, NMA was 

shown to provide better coverage of the protein conformational space than MD simulation in explicit solvent for a 

large set of proteins 15. Previous studies used all-atom and coarse-grained NMA to refine protein-ligand bound 

structure16,17, perform flexible ligand-receptor docking 18, and sample conformational changes in ligand binding 

pockets 19,20.  However, the usage of NMA is subject to the following caveats: 1. Among numerous modes, the lowest 

few (e.g., 10-20) modes are often not adequate in describing protein functional motions21, and it is difficult to select 

those modes relevant to ligand binding without the knowledge of the binding-site location (e.g, using a measure of 

relevance 19,20). So it is conceivable that many modes and their numerous combinations may have to be sampled with 

high computational cost. 2. The ability of coarse-grained modes to adequately capture small binding-pocket changes 

is not established relative to their proven capacity in describing collective inter-domain motions14. Indeed, a recent 

large-scale study found the use of ENM-based NMA to be of limited applicability in small-molecule docking 22. 

 

To address the above caveats of NMA, this study will focus on validation and optimization of normal modes 

guided conformational sampling to facilitate accurate prediction of cryptic sites. This task is formulated as a 

classification machine learning (ML) problem: each residue is labeled as either in a cryptic site or not based on their 

various features/scores (including sampling-enhanced pocket scores and other complimentary scores like residue 

conservation, B-factors, and dynamic importance, see Methods). To accurately model conformational changes at 
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atomic resolution, we refine the C-only conformations from normal-mode displacement using fast programs for 

backbone refinement and sidechain repacking (see Methods). As a result, our protocol can model both backbone and 

sidechain conformational changes with high efficiency. Surprisingly, we found simple and fast sampling along each 

of the lowest 30 modes to be near-optimal without the burden of exploring lots of modes and their exponentially 

numerous combinations. We further developed ML protocols to optimize the combination of the sampling-enhanced 

pocket scores with other dynamic and conservation scores, which only slightly improved the performance. Overall, 

our protocol achieved similarly high accuracy to predict cryptic sites as CrypoSite. Compared with MD-based 

sampling in CryptoSite, our NMA-based protocol achieved better sampling of pocket-forming conformations, 

resulting in more cryptic-site residues identified (using threshold of 0.05 for pocket scores). Our protocol is also 

much faster (1~2 hours for an average-size protein vs 1-2 days by CrypoSite) and simpler (using just 2 pocket scores 

plus 3 optional scores vs 58 features in CrypoSite). Therefore, our method is suitable for high-throughput processing 

of large datasets at the genome scale. 

 

Materials and Methods 

Elastic network model (ENM) and normal mode analysis (NMA)  

 

 In an ENM, a protein is represented as a network of coarse-grained beads corresponding to the C atoms of 

protein residues. Harmonic springs link all pairs of residues within 25 Å 23 which ensures adequate local connectivity 

to avoid unwanted zero modes. Meanwhile, to avoid introducing unphysical long-range coupling, we use a distance-

dependent nonbonded force constant that decays by 50% at Rc = 10 Å, and a 10-fold larger force constant for the 

bonded interactions (i.e. between residue i and i+1).   

 

 The ENM potential energy is: 
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where N is the number of residues, ( ) x is the Heaviside function, 
ijd  is the distance between residue i and j, 

,0ijd  is 

the value of 
ijd as given by a reference structure. We tested other values of Rc between 7 Å and 15 Å, and verified 

that the NMA results are similar but slightly worse. 

 

 NMA solves eigen decomposition for a Hessian matrix H  which is obtained by calculating the second 

derivatives of the above ENM potential energy 24: 

m m mHV V ,          (2) 

where m and mV  represent the eigenvalue and eigenvector of mode m, respectively. After excluding six zero modes 

corresponding to three rotations and three translations, we number non-zero modes starting from 1 in the order of 

ascending eigenvalue. 

 

For mode m, we use a perturbation analysis to assess how much the eigenvalue changes (represented as m ) 

in response to a local perturbation at a chosen residue position n 25-27 (i.e., by uniformly weakening the springs 

connected to this position to mimic a point mutation). Then we average /m m  over the lowest M  modes to assess 

the dynamic importance of this residue position 28: 
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This dynamic importance score measures local flexibility (i.e. total deformation of springs connecting residue n to 

its neighbors) which is known to be enhanced moderately near a cryptic site 8. 

 

 To validate ENM-based NMA, we compare each mode (i.e., mode m) with the observed structural change 

obsX  between two distinct protein structures (i.e., one unbound structure and another ligand-bound structure) by 

calculating the following overlap coefficient
 
29: 

/ | |m obs m obsO X V X  ,        (4) 
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where |
mO | varies between 0 and 1 with higher value meaning greater similarity. 2

mO  gives the fractional contribution 

of mode m to 
obsX . The cumulative overlap 

2
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to 
obsX

 
29, and can be used to assess the accuracy of NMA in describing a given conformational change.  

 

To assess local flexibility at individual residue positions as described by the lowest M modes, we calculate 

the following simulated B factors : 
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where 
,m nxV , 

,m nyV , and 
,m nzV  are the x, y, and z component of mode m’s eigenvector at residue position n. 

 

 The above two dynamic scores (Dn and Bn) are used to rank residues for predicting cryptic sites, along with 

other scores (including pocket scores and residue conservation scores). 

 

NMA-guided conformational sampling 

 

We use the following two NMA-guided sampling schemes: 

 

Single-mode exploration: 

We sample along the direction of each mode’s eigenvector without mixing modes. For a given mode m, we 

incrementally displace the C atoms along a displacement vector 
m k mX f V   where fk is chosen for 5 discrete root 

mean square deviation (RMSD) values (k=1, 2, 3, 4, and 5 Å). For M modes, a total of 10M displaced models are 

generated. 

 

Multi-modes combination:  
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We sample along directions given by a linear combination of the lowest M modes:
1

M

k m m

m

X f g V


  , where 

gm are random numbers from [0,1] and fk is chosen for 5 RMSD values (k=1, 2, 3, 4, and 5 Å). For M modes, a total 

of 30M models are generated which provides a 3-fold enhancement of sampling than the single-mode exploration 

scheme.  

 

Because a linear displacement of residue atoms along their C eigenvector would distort the covalent 

bonding geometry, the protein backbone is reconstructed and refined after the displacement using the PD2_ca2main 

program (downloaded from http://www.sbg.bio.ic.ac.uk/~phyre2/PD2_ca2main/ ). Then we repack side chain atoms 

using the RASP program V1.90 (downloaded from https://sourceforge.net/projects/raspv180/files/) and the SCWRL 

program V4.0 (downloaded from: http://dunbrack.fccc.edu/SCWRL3.php/). Since RASP runs faster than SCWRL, 

the latter is only used when RASP fails. We have tried various programs for reconstructing backbones and sidechains 

from coarse-grained C models (see a review 30), and have chosen the above options based on considerations of 

computing speed and structural completeness.  

 

Pocket detection and scoring 

 

The conformations generated by sampling are pooled into a structure ensemble for subsequent binding pocket 

detection by two state-of-the-art programs (fpocket and concavity, downloaded from: http://fpocket.sourceforge.net/ 

and http://compbio.cs.princeton.edu/concavity/). Both programs 1,2 combine physical/chemical and geometrical 

features to identify ligand binding pockets in a given protein conformation. Following Cimermancic et al. 7, we 

define the fpocket score as the maximum druggability score among the alpha spheres within 5 Å of the residue, and 

the concavity score is generated by concavity directly on a per-residue basis. Each pocket score is then averaged 

over the conformational ensemble generated above. We also explored other ways of summarizing the ensemble 

http://www.sbg.bio.ic.ac.uk/~phyre2/PD2_ca2main/
https://sourceforge.net/projects/raspv180/files/
http://dunbrack.fccc.edu/SCWRL3.php/
http://fpocket.sourceforge.net/
http://compbio.cs.princeton.edu/concavity/
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distribution of the pocket scores (e.g., computing the percentage of conformations with the pocket score greater than 

a cutoff value like 0.5), which did not improve over the simple average score.   
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Results and Discussion 

 

Crypto-Site datasets and initial analysis by NMA  

 

From the CryptoSite paper 7, we obtain a representative dataset of 84 known examples of cryptic sites 

including pairs of protein structures (i.e. one unbound and the other ligand-bound) in which the unbound structures 

have low pocket scores. This dataset is used as the training set for evaluating various predictive features and training 

ML protocols that combine these features. A separate test set of 14 pairs of protein structures and their cryptic sites 

are reserved for final testing (for details, see Table S1 of Supporting Information, and Table S1 & S5 in Cimermancic 

et al. 7). By using the same datasets as CryptoSite, we can objectively assess our performance relative to CryptoSite. 

 

The CryptoSite dataset covers a diversity of conformational changes dominated by various types of backbone 

motions (e.g. 45% loop motion, 17% domain motion, 16% motion of secondary structural elements, and 4% N/C-

terminal flexibility, see ref 7). Only 18% of these cryptic sites are formed solely by the movement of side chains, 

which are thought to have limited use for drug discovery due to low ligand binding affinity 8. These diverse and slow 

backbone motions are challenging for all-atom MD simulation to explore but potentially accessible to C-based 

coarse-grained modeling. Most of these changes (77/84) are relatively small with C RMSD <5 Å (see Fig 1a), and 

only 3 of them show very large structural changes (RMSD >10 Å). Therefore, we will limit conformational sampling 

within a maximal RMSD of 5 Å by default to cover most of these cases.  

 

To assess how well ENM-based NMA captures these observed conformational changes, we calculated the 

cumulative overlaps (CO) which gives the fraction of the observed changes as described by the lowest 30 modes 

(see Fig 1b). The average CO is only about 30%, and it varies widely from case to case: the lowest 30 modes only 

explain <50% of the observed changes in most cases (68/84). This seemingly discouraging finding, however, does 
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not necessarily invalidate NMA’s application in cryptic site prediction because: our goal is to sample not global 

conformations but local conformations near an unknown cryptic site, so that the cryptic site is exposed and deformed 

(e.g., from flat to concave) to allow fpocket and concavity to detect it with high pocket score. This is potentially a 

less challenging task than to accurately predict the local conformation of a cryptic site, and could be achieved via 

optimization of NMA-guided sampling to improve subsequent performance of the pocking finding programs. To our 

knowledge, no prior study has explored this possibility.   

 

Optimization of NMA-guided conformational sampling 

 

If the location of a ligand binding site is known (or predicted by other means), this information can be used 

to select a few relevant modes to focus conformational sampling at the binding site for favorable ligand binding 19,20, 

or introduce local perturbations and then assess their effects on dynamics 31. However, without knowing where the 

binding site is, one must consider all low-frequency modes and their numerous combinations which may be highly 

challenging to sample. To establish the feasibility of NMA in cryptic site prediction, we must answer two key 

questions: How many modes need to be sampled? How should they be sampled (individually or in combination)?   

 

We have tested two NMA-based sampling protocols. The first (single-mode exploration) samples along each 

of the M lowest modes separately without mixing them, making it computationally cheap (scales as O(M)). The 

second (multi-modes combination) linearly and randomly combines the lowest M modes, so it is computationally 

more expensive (scales as O(sM) where s is the number of samples per mode).   

 

To assess the sampling performance, we averaged fpocket and concavity scores per residue over the 

ensembles generated by NMA-guided sampling for the full training set, and predicted cryptic-site residues as those 

with high average pocket scores. Then we plotted a Receiver operating characteristic (ROC) curve to relate the 

sensitivity (true-positive rate) and the specificity (1 - false-positive rate) of prediction based on the selection of 
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pocket scores with a varying threshold (set to 0.05 by default as in ref 7). We summarized the prediction performance 

by calculating the area under the ROC curve (AUC). 

 

To determine the optimal number of modes needed for the single-mode exploration scheme, we plotted the 

AUC of pocket scores for the full training set vs. number of modes ranging from 10 to 100. The performance of both 

fpocket and concavity scores is satisfactory with high AUC ~0.8. Both AUC curves peak near 30 modes, although 

concavity seems to perform slightly better and is less dependent on the number of modes (see Fig 2a). This 

encouraging finding relieves the concern of sampling hundreds of modes to cover the few modes relevant to ligand 

binding 19. In this work, we use 30 modes by default.  

 

Another key parameter for sampling is the maximal displacement (measured in C RMSD) explored along 

each mode. Given the observation of small RMSD values for most cases (see Fig 1a), one might expect the optimal 

RMSD to be small as well. To see this, we plotted the AUC of pocket scores for the full training set vs. five RMSD 

levels used for sampling (see Fig 2b). Surprisingly, the AUC increases steadily as RMSD increases to 5 Å. This 

finding highlights the distinction in sampling objective between accurate prediction of the ligand-bound 

conformation (with matching RMSD) and adequate displacement/deformation of the cryptic sites (with relatively 

large RMSD). It seems that the over-sampling of large conformational changes, despite causing large structural 

distortions, is advantageous for cryptic site prediction. Consistent with this, when we tried to filter out those 

conformations with high structural distortion, the prediction performance went down.  

 

Next we test the multi-modes combination sampling protocol (using the lowest M=30 modes) to see if 

combining modes enhances sampling and improves cryptic site prediction. To this end, we plotted the AUC of pocket 

scores for the full training set vs. number of conformations sampled (up to 900). Compared to the single-mode 

exploration (with 300 conformations sampled along each of 30 modes), the performance of multi-modes exploration 

is very similar and insensitive to the number of conformations between 200 and 900 (see Fig 2c). We further 



13 
 

compared the average pocket scores calculated based on the two sampling schemes and found they are highly 

correlated (with cross-correlation coefficient (CC) >0.98), which explains their similar performance in cryptic site 

prediction. Therefore, combining modes to enhance conformational sampling does not improve cryptic site 

prediction. It seems that favorable local changes in cryptic sites do not require specific combinations of multiple 

modes which largely act independently (because they are orthogonal to each other). This finding relieves the burden 

of sampling and ensures a very fast execution of NMA-guided sampling.  

 

In sum, sampling along each of the lowest 30 modes with large RMSD (≤5Å) is a near-optimal sampling 

scheme with both satisfactory accuracy (AUC~0.8) and low computing cost (only ~300 conformations sampled). 

Contrary to general belief, using many more modes or linearly combining modes, although enlarging the conformal 

space for sampling, does not seem to improve the prediction of cryptic sites. Owning to low-cost sampling, our 

method runs very fast (e.g., 1-2 hours of CPU time is needed for an average-size protein of ~400 residues). In 

comparison, same calculation takes 1-2 days on the CryptoSite server.       

 

Individual evaluation of cryptic-site predicting features  

 

After establishing the sampling scheme for generating structural ensembles, we then evaluate each of the 

following scores/features for predicting cryptic sites based on the structural ensembles. To this end, we plotted the 

ROC curve of each feature for all residues in the full training set and calculated the area under the ROC curve (AUC) 

to summarize its performance (see Fig 3a). 

 

Pocket scores: fpocket vs concavity 

In CryptoSite, the most powerful features for cryptic site prediction are ensemble-averaged pocket scores 

from fpocket and concavity 7. Indeed, we found both scores (used separately) can accurately predict cryptic sites 

(AUC=0.80 for fpocket and 0.81 for concavity, see Fig 3a). Because the fpocket and concavity scores are only 
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moderately correlated (with CC=0.5), it is sensible to combine them (along with the other ancillary features, see 

below) through ML to optimize the performance (see below).   

To further assess the performance of these pocket scores on a case-by-case basis, we separately plotted the 

ROC curves and calculated the AUC for each of the 84 cases in the training set (see Fig 3b). While concavity 

(AUC=0.81±0.19) performs slightly better than fpocket (AUC=0.80 ±0.14) on average, it exhibits more variation 

from case to case (see Fig 3b). Using a threshold of 0.05, both pocket scores can achieve an average sensitivity of 

~0.8 and average specificity of ~0.6 (see Fig 3b). This is comparable to CryptoSite (average AUC = 0.77, sensitivity 

= 0.75, specificity = 0.66 based on the same training set).  

 

B factors 

Local flexibility is well known to be a key factor in ligand binding. In X-ray crystallography, protein 

structural flexibility is routinely characterized by the B factors which can also be calculated from MD simulation or 

NMA (see Methods). Cimermancic et al found a cryptic site is more flexible than a binding pocket with significantly 

higher normalized B-factors 7, and such conformational flexibility may enable them to readily convert from flat into 

concave shape. However, because binding pockets are rigid with low B factors, cryptic sites are still more rigid than 

non-binding-site residues. Indeed, we found B factors to be a weak negative predictor of cryptic site residues (i.e., 

selection of residues with low B factors can predict cryptic sites with AUC~0.59, see Fig 3a). Therefore, B factors 

cannot effectively exploit the local flexibility of cryptic sites for their prediction. To explain its weakness, B factors 

cannot distinguish global motions of the entire site and local/relative motions within the site, and only the latter are 

relevant to ligand binding.  

 

Dynamic importance 

As an alternative metric for measuring local flexibility/distortion in the context of ENM, we previously 

introduced the dynamic importance score based on site-specific perturbation of ENM (see Methods). It has been 

used to predict dynamically important hot-spot residues in previous studies 32-34. The validity of this score assumes 
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the lowest M modes accurately capture functional motions. We found this score is slightly better than B factors (with 

AUC=0.65, see Fig 3a) in predicting cryptic site residues, which can be attributed to its focusing on local/relative 

motions of a residue relative to its neighbors. Interestingly, the dynamic importance scores are weakly (yet 

significantly) correlated with both pocket scores (CC=0.26±0.01 for fpocket, 0.32±0.01 for concavity), supporting a 

possible causal linkage between NMA-enhanced local flexibility and higher pocket scores.      

 

Residue conservation 

Cimermancic et al. found that cryptic site residues are evolutionarily as conserved as those of binding pockets, 

and residue conservation is among the top three most effective features in CryptoSite7. By using residue conservation 

scores from the CONSURF webserver35, we confirm that residue conservation is useful in predicting cryptic site 

residues (AUC=0.71, see Fig 3a).   

  

In sum, based on our individual feature assessment, the performance of the above features is ranked in the 

following order: fpocket ~ concavity >> conservation > dynamic importance > B factor. While each pocket score 

can already achieve satisfactory performance by itself, it is potentially useful to combine them through ML so they 

complement each other and further improve the performance.   

 

Optimal combination of features through machine learning 

 

To optimally combine the above scores, we train ML to predict cryptic sites in the training set of proteins 

with 84 known cryptic sites 7.  Unlike CryptoSite which used 58 features for ML, we only use a small set of features 

(i.e. two pocket scores plus three additional scores, see above), so there is no need to select features to avoid 

overfitting. Instead, we input all scores and let the ML algorithm decide how they should be optimally weighted.  

The hyper-parameters of each ML algorithm is tuned by maximizing the cross-validated AUC of ROC using five-

fold cross validation: the training set of 27648 residues from 84 cases are roughly evenly divided into five subsets 
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(with 5426, 5677, 5523, 5653, and 5369 residues, respectively), and four subsets are used for training while the fifth 

subset is used for validation and calculating AUC. For later comparison, the five-fold AUC for each pocket score 

was also calculated: AUC = 0.79±0.07 (fpocket), 0.81±0.09 (concavity) 

  

After experimenting with various ML methods, we have achieved satisfactory and comparable performance 

using the following three methods: 

 

1. Logistic regression with LASSO regularization:  

Using the Glmnet package of R, we found the hyper-parameter lambda = 0.02 attained a maximal cross-

validated AUC=0.83. The LASSO regularization removed B factors and dynamic importance while the remaining 

three scores were kept with coefficients 2.66 (fpocket), 3.47 (concavity), and 0.38 (conservation). This is consistent 

with our individual assessment of these scores which ranked the pocket scores higher than the conservation score. If 

only the two pocket scores are used, logistic regression can still achieve a similar performance (with cross-validated 

AUC=0.83 and lambda=0.005). 

  

2. Random forest:  

Using the RandomForest package of R (with 2000 trees), we found the hyper-parameter mtry = 1 attained a 

maximal cross-validated AUC=0.81. The relative importance of scores was ranked by Mean Decrease in Gini as 

follows: concavity (597) > fpocket (579) > conservation (527) > dynamic importance (475) > B factors (465). This 

is fully consistent with our individual assessment of the scores. If only the two pocket scores are kept, the random 

forest performance would go down (with cross-validated AUC=0.76). 

 

3. Neural net:  

Using the Neuralnet package of R (with a single hidden layer), we found the hyper-parameter of number of 

nodes in the hidden layer = 3 attained a maximal cross-validated AUC=0.83. The relative importance of scores is 



17 
 

ranked by Garson’s algorithm as follows: concavity (0.37) > fpocket (0.28) > conservation (0.24) > B factors (0.07) 

~ dynamic importance (0.05). If only the two pocket scores are kept, the neural net can still achieve similar 

performance (with cross-validated AUC=0.83) using just one hidden node.  

 

In sum, our training of ML that combined the scores has achieved slightly better performance on the training 

set than single pocket scores (with AUC increasing from 0.80 to 0.83). The combination of two pocket scores seems 

to be sufficient for the optimal performance of logistic regression and neural net, while the random forest requires 

the addition of other axillary scores.   

  

Final performance assessment on the test set 

  

So far, we have only used the training set of 84 known cryptic sites and associated protein structures for 

optimization of sampling, evaluation of individual scores, and ML training. To rigorously assess the general 

performance of our method, we applied it to a held-out test set of 14 unbound structures with known cryptic sites 

(see Table S5 of ref7). For performance assessment, we plotted the ROC curves using the pocket scores calculated 

for all residues in 14 test cases, and calculated the AUC as a summary score. Encouragingly, we obtained an AUC 

of 0.83 for the fpocket score, and 0.77 for the concavity score. This is comparable to AUC=0.83 by CryptoSite on 

the same test set7. Using a threshold of 0.05, we attained a false positive rate (FPR) of 0.35 (fpocket) and 0.37 

(concavity), and a true positive rate (TPR) of 0.87 (fpocket) and 0.83 (concavity), which are higher than CryptoSite 

7 (FPR = 0.29 and TPR = 0.79). Therefore, our method can find more cryptic-site residues than CryptoSite, which 

implies that our NMA-guided sampling is more effective in promoting concave pocket formation at both cryptic 

sites (true positives) and nonbinding sites (false positives).   

 

Next, we applied the above three cross-validated ML protocols to the test set (see Fig 4a), and obtained AUC 

= 0.84 (logistic regression), 0.84 (neural net), and 0.83 (random forest), which are comparable to the cross-validated 
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AUC on the training set. Although our trained ML protocols generalize well, their performance does not improve 

markedly than simply using the fpocket score for prediction (see Fig 4a). After comparing the ROC curves (see Fig 

4a), we found the most improvement was on the region of ROC curve with low sensitivity (~40%) and high 

specificity (~90%). 

 

To assess the usefulness of our method for drug design, we adopt the following criterion for accurate 

prediction of the cryptic site in a given protein: at least one-third of cryptic-site residues are identified (i.e. sensitivity 

≥33%, following ref 7).  Reassuringly, all 14 proteins in the test set and all but 4 cases in the training set have met 

this accuracy criterion if residues are selected with either fpocket or concavity score >0.05. This gives an overall 96% 

success rate which is comparable to CryptoSite 7.   

 

Examples of successful cryptic site prediction  

 

To illustrate our cryptic site prediction results (see Table S1 for full details), we discuss the following three 

examples from the test set which were also discussed by CryptoSite 7: 

 

TEM1 β-lactamase 

This is a classical example of cryptic sites extensively studied by MD simulations and Markov state models 

36,37. In the unbound structure (PDB id: 1JWP), an allosteric cryptic site is buried by a short helix 11 and a long helix 

12 (see Fig 4b). In the bound structure (PDB id: 1PZO), helix 11 moves by >3 Å to open a crevice for ligand binding. 

No such opening of the cryptic site is seen in any unbound structure despite its flexibility 8 . After NMA-guided 

sampling (see supplemental movie in Supporting Information), fpocket accurately identified this site 

(sensitivity=77%) with AUC=0.80 (compared to AUC=0.72 by CryptoSite). The predicted site includes three 

residues (A232, S249, and L286) validated by the thiol-labeling experiment 37.  
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Exportin 1  

Exportin 1 is a large multi-domain protein with 1017 residues. In the unbound structure (PDB id: 4HB2), two 

helices (residues 52-541 and 570-585) form the ligand binding site but are too close to each other (see Fig 4b). In 

the bound structure (PDB id: 4HAT) they move slightly apart. The global conformational changes are small 

(RMSD=0.7 Å) with slight helix reorientation and sidechain rearrangements. After NMA-guided sampling, fpocket 

predicted the cryptic site (sensitivity=73%) with AUC=0.83 (compared to AUC=0.85 by CryptoSite).  

 

Interleukin-2 

This is a prototype example of cryptic sites at the difficult-to-drug protein–protein interaction interfaces. Near 

the main site is a disordered loop (residues 74-80) 8, which may contribute to high flexibility of the main site. The 

global conformational changes from the unbound structure (PDB id: 1Z92) to the bound structure (PDB id: 1PY2) 

are small (RMSD=1.4 Å). After NMA-guided sampling, fpocket predicted the cryptic site (sensitivity=80%) with 

AUC=0.67 (compared to AUC=0.65 by CryptoSite). 

 

We next review more examples from the training set to cover various types of cryptic sites with different 

conformational changes. 

 

PTP1B  

Protein tyrosine phosphatase 1B (PTP1B) has only a single known cryptic allosteric site close to its C-

terminus (Fig S1). The unbound structure (PDB id: 2F6V) has a well-resolved C-terminal helix (residues 285-299) 

that covers the allosteric site. In the bound structure (PDB id: 1T49) this helix is absent, so the allosteric site is 

accessible to ligand binding. After NMA-guided sampling, fpocket predicted the known cryptic site (sensitivity=71%) 

with AUC=0.75 (compared to AUC=0.56 by CryptoSite). Additionally, we also found another possible cryptic site 

(same as the CryptoSite-predicted site in Fig 3B of ref 7), which is relatively close to the main active site (Fig S1). 

This new site was experimentally validated 7 and offers a promising target for drug design.  
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GluR2 

Glutamate receptor subunit 2 (GluR2) has a cryptic site within a cleft between two domains. In the unbound 

structure (PDB id: 1MY1), several loops protrude into the cryptic site (Fig S1), but they move away upon ligand 

binding in the bound structure (PDB id: 1FTL). Therefore, binding to the cryptic site of GluR2 requires domain 

opening (RMSD=1.9Å) which is well described by NMA (CO=0.45). After NMA-guided sampling, fpocket 

predicted the cryptic site (sensitivity=100%) with AUC=0.90 (compared to AUC=0.89 by CryptoSite). 

 

MAP p38 kinase 

In the unbound structure of MAP p38 kinase (PDB id: 2ZB1), a helix (residue 253-261) closes down the 

cryptic site which would clash with a bound ligand (Fig S1) 8. In the bound structure (PDB id: 2NPQ), this helix 

moves outward to accommodate the ligand. After NMA-guided sampling, fpocket predicted the cryptic site 

(sensitivity=87%) with AUC=0.81 (compared to AUC=0.67 by CryptoSite). 

 

Beta-secretase 1 protease     

In the unbound structure of beta-secretase 1 protease (PDB id: 1W50), the pocket is too open for binding 

ligand (Fig S1). In the bound structure (PDB id: 3IXJ), a loop (residues 71-74) closes down on the ligand. After 

NMA-guided sampling, fpocket predicted the cryptic site (sensitivity=94%) with AUC=0.80 (compared to 

AUC=0.69 by CryptoSite). 

  

cAMP-dependent protein kinase  

In the unbound structure of cAMP-dependent protein kinase (PDB id: 2GFC), an activation loop (residues 

51-56) protrudes into the cryptic site and would clash with a bound ligand (Fig S1). In the bound structure (PDB id: 

2JDS), as well as many unbound structures, the loop is farther from the site, leaving it wide open 8. After NMA-
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guided sampling, fpocket predicted the cryptic site (sensitivity=96%) with AUC=0.96 (compared to AUC=0.97 by 

CryptoSite). 

 

1-deoxy-D-xylulose-5-phosphate reductoisomerase   

In the unbound structure of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (PDB id: 1K5H), a loop 

(residues 208-215) is highly flexible and open at the cryptic site (Fig S1). In the bound structure (PDB id: 2EGH), it 

closes down on the bound ligand8. After NMA-guided sampling, fpocket predicted the cryptic site (sensitivity=100%) 

with AUC=0.83 (compared to AUC=0.80 by CryptoSite). 

 

Kynurenine/alpha-aminoadipate aminotransferase  

In the unbound structure of kynurenine/alpha-aminoadipate aminotransferase (PDB id: 2QLR, a 

homotetramer), the ligand binding site is between two chains. In the bound structure (PDB id: 3DC1, a homodimer), 

binding causes a large conformational change of the N-terminal loop (residues 15-33) to accommodate the bound 

ligand. After NMA-guided sampling (using only chain C of 2QLR), fpocket predicted the cryptic site 

(sensitivity=100%) with AUC=0.92 (compared to AUC=0.56 by CryptoSite).  

 

Hepatitis C virus RNA polymerase 

There are two known cryptic sites for inhibitor binding in Hepatitis C virus RNA polymerase. In one unbound 

structure (PDB id: 3CJ0, see Fig S1), the 1st site is occluded by a loop (residues 22-35). This loop becomes partially 

disordered in an inhibitor-bound structure (PDB: 2BRL), with slight opening between the thumb and fingers domains. 

The 2nd site is near the polymerase active site between a loop (residues 364-369) and the core palm domain. Upon 

binding to an inhibitor in a bound structure (PDB: 3FQK), this loop slightly moves outward to accommodate the 

inhibitor. After NMA-guided sampling, fpocket predicted the 1st site with AUC=0.59 (sensitivity=50%) and the 

second site with AUC=0.82 (sensitivity=91%) (compared to AUC=0.73 for both sites by CryptoSite). 
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As shown by the above examples, our method successfully predicted various types of cryptic sites with an 

accuracy better than or comparable to CryptoSite. In particular, our method worked well on three false-negative 

cases of CryptoSite (kynurenine aminotransferase II, HCV RNA polymerase, and PTP1B, see Fig. S9 of ref 7). 

 

Examples of unsuccessful cryptic site predictions  

 

Despite general success, there are a few false negative cases in which our sampling method did not help to 

locate the cryptic sites.  

 

In the first case (Ca-ATPase), ligand binding is associated with large conformational changes (RMSD=13.5 

Å) beyond by our NMA-guided sampling (RMSD < 5Å). In the unbound structure (PDB id: 1SU4), the cryptic site 

is split between two distant domains (Fig S1), which move closer in the bound structure (PDB: 3FGO).   

 

In the second case (Exodeoxyribonuclease I), ligand binding is associated with small local changes 

(RMSD=1.2Å) instead of global inter-domain motions (Fig S1). The cryptic site is distant from the flexible hinge 

region between two domains where most high-score residues are located.  

 

The above negative cases expose limitations of NMA-guided sampling in describing some conformational 

changes required to form or expose cryptic sites. On the other hand, the ‘false-positive’ predictions in those cases 

may suggest new binding sites for further study.   

 

Concluding Remarks 

We have developed a fast and accurate method for predicting cryptic sites based on a given unbound structure, 

which can be readily applied at high-throughput to explore the druggable proteome space. This has been done in ref 
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7 by CryptoSite (but using a faster and less accurate version of their ML model) on 4421 human proteins, and cryptic 

sites were predicted in ~3300 (74%) proteins. Given the finding that our method obtained higher FPR and TPR than 

CryptoSite, we expect an even larger number of crypto sites to be identified by our method. Therefore, small 

molecules might be used to target significantly more proteins than previously thought to be druggable. However, to 

exploit those numerous predicted sites, it will be critical yet challenging to distinguish true binding sites from false 

positives, which requires low-throughput experimental/computational characterization of the predicted sites. We 

envision future applications of our method focusing on a few high-priority target proteins rather than exploring the 

proteome space.  

 

In the induced fit model, the presence of ligand is required to induce conformational changes that expose/form 

a cryptic site. As an alternative model, conformational selection postulates that unbound proteins can transiently 

sample bound conformations given adequate sampling time. Our method supports the merit of conformational 

selection, and points to a fast and simple way of sampling by exploring coarse-grained normal modes individually. 

While such sampling may be too crude to accurately describe the detailed conformational changes, it seems to be 

sufficient in deforming/exposing potential ligand binding sites so other pocket detection programs can discover them. 

This method can be applied to difficult cases involving large/flat interfaces between interacting proteins and 

unknown allosteric sites.   

 

A caveat of the CryptoSite dataset was raised recently that about half of the cases have already formed binding 

sites in at least one unbound structure so they are no longer qualified as cryptic sites 8. To address this caveat, we 

focused on a subset (46 cases) of the CrypticSite set after excluding those cases with only side chain motions and 

cases that do not qualify for cryptic site based on the more strict criterion (i.e. there exists at least one unbound 

structure that could accommodate the ligand without any conformational change 8). The performance of our method 

on this reduced dataset is virtually unchanged (with AUC~0.8). So our method is applicable to more strictly defined 

cryptic sites. 
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Thanks to fast growing computing powers, all-atom MD simulation has been increasingly employed in 

exploring transient pockets3. However, it remains computationally infeasible to scale it up. Another caveat of MD 

simulation is its focusing on relatively small conformational changes rich in side chain motions, resulting in mostly 

weak-affinity ligand binding sites unsuitable for drug design 9. It may be advantageous to incorporate our NMA-

guided sampling into the ensemble docking 38 pipeline (e.g. as a preprocessing step prior to MD simulation).  
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Figure Legends 

 

Figure 1. Analysis of unbound-to-bound conformational changes in the training set: (a) Histogram of RMSD of 

C atoms from the unbound to the bound structures dominated by small backbone motions (< 5 Å). (b) Histogram 

of cumulative overlap (CO) which gives the fraction of observed conformational changes as described by the 

lowest 30 modes calculated for the unbound structures.  

 

Figure 2. Optimization of NMA-guided sampling assessed by the AUC of ROC for the average pocket scores 

from fpocket (blue) and concavity (red). (a) AUC peaks when ~ 30 modes are used in the single-mode exploration; 

(b) AUC increase as the maximal RMSD increases in the single-mode exploration; (c) AUC saturates after more 

than 200 conformations are sampled by the multi-modes combination.   

 

Figure 3. Assessment of individual predictive scores on the training set. (a). ROC curves for pocket scores from 

fpocket (blue) and concavity (red), residue conservation scores from CONSURF server (green), dynamical 

importance (cyan) and B factors (magenta) calculated from NMA of ENM. (b). Histograms of AUC of ROC, 

sensitivity, and specificity for pocket scores from fpocket (blue) and concavity (red), which were calculated for 84 

individual cases of the training set. The sensitivity/specificity values were determined at a score threshold of 0.05.  
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Figure 4. Assessment of cryptic site predictions on the test set. (a). ROC curves from three machine learning 

protocols: linear regression (red), random forest (green), and neural net (blue), in comparison with the pocket score 

from fpocket (black). (b) Examples from the test set (TEM1 β-lactamase, Exportin 1, and Interleukin-2), where the 

unbound structure is colored by average fpocket score (blue for low score and red for high score), the cryptic-site 

residues are shown as C spheres and boxed.  
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