REFERENCES
  1. Sanders J, Monogue M, Tomasz Z. Jodlowski, Cutrell J. Pharmacologic Treatments for Coronavirus Disease 2019 (COVID-19) A Review JAMA. doi:10.1001/jama.2020.6019
  2. Fedson DS, Jacobson JR, Rordam OM, Opal SM. 2015. Treating the host response to Ebola virus disease with generic statins and angiotensin receptor blockers. mBio 6:e00716-15. https://doi.org/10.1128/mBio.00716-15.
  3. Fedson D.S. 2016. Treating the host response to emerging virus diseases: lessons learned from sepsis, pneumonia, influenza and Ebola. Ann Transl Med 4:421. https://doi.org/10.21037/atm.2016.11.03
  4. Fedson D.S.. Observational studies help us understand how to treat pandemic influenza and other emerging virus diseases J Emerg Crit Care Med 2017;1:10
  5. Fedson DS, Opal SM, Rordam OM. 2020. Hiding in plain sight: an approach to treating patients with severe COVID-19 infection. mBio 11:e00398-20. https://doi.org/ 10.1128/mBio.00398-20.
  6. Yan Y, Liu Q, Li N, Du JC, Li X, Li C, Jin NY, Jiang CY. Angiotensin II receptor blocker as a novel therapy in acute lung injury induced by avian influenza A H5N1 virus infection in mouse. Sci China Life Sci, 2015, 58: 208–211, doi: 10.1007/s11427-015-4814-7.
  7. Martin and Bowden. https://www.mja.com.au/journal/2020/drug-repurposing-era-covid-market-failure-needing-leadership-and-government-investment Print June 6, 2020. Online, accessed May 30, 2020.
  8. Martin JH, Clark J, Head R. Buying time: Drug repurposing to treat the host in COVID-19H Pharmacol Res Perspect. 2020;00:e00620. https://doi.org/10.1002/prp2.620
  9. Pirofski L, and Casadevalli A. The Damage–Response Framework as a Tool for the Physician-Scientist to Understand the Pathogenesis of Infectious Diseases JID 2018:218 (Suppl 1): S7
  10. Pushpakom S, Iorio F, Eyers PA, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019;18(1):41‐58. doi:10.1038/nrd.2018.168
  11. Kreutz R, Algharably E, Azizi M, et al. Hypertension, the renin–angiotensin system, and the risk of lower respiratory tract infections and lung injury: implications for COVID-19 European Society of Hypertension COVID-19 Task Force Review of Evidence Cardiovascular Research (2020) 0, 1–12 REVIEW doi:10.1093/cvr/cvaa097
  12. Verdecchiaa P, Cavallinia C, Spanevellob A, et al The pivotal link between ACE2 deficiency and SARS-CoV-2 infection. European Journal of Internal Medicine, https://doi.org/10.1016/j.ejim.2020.04.037.
  13. Danser J, Epstein M, Batlle D. Renin-Angiotensin System Blockers and the COVID-19 Pandemic. At Present There Is No Evidence to Abandon Renin-Angiotensin System Blockers. Hypertension. 2020;75:00-00. DOI: 10.1161/HYPERTENSIONAHA.120.15082.
  14. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003;426:450–454. doi:10.1038/nature02145.
  15. Brandon M H, Jens V, Giuseppe L. Response to the emerging novel coronavirus outbreak. BMJ 2020;368:m406.
  16. Kuba K, Imai Y, Rao S, Gao H et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS-coronavirus-induced lung injury. Nat Med,2005, 11: 875–879.
  17. Imai Y, Kuba K and Penninger J. The discovery of angiotensin-converting enzyme 2 and its role in acute lung injury in mice Exp Physiol 2008 93.5 pp 543–548 543.
  18. Veerappan A, Reid, A, Estephan R, O’Connor N, Thadani-Mulero M, Salazar-Rodriguez M, Levi R, and Silver R. Mast cell renin and a local renin–angiotensin system in the airway: Role in bronchoconstriction PNAS; January 29, 2008; vol.105(4):1315–1320.
  19. Jonas S, Erjefa J. Mast cells in human airways: the culprit? Eur Respir Rev 2014; 23: 299–307. DOI: 10.1183/09059180.00005014.
  20. Becker BF. All because of the mast cell: blocking the angiotensin receptor-1 should be better than inhibiting ACE (theoretically) Cardiovascular Research (2011) 92, 7–9; doi:10.1093/cvr/cvr214
  21. Bernstein K, Khan Z, Giani J, Cao D-Y, Bernstein E, Shen X. Angiotensin-converting enzyme in innate and adaptive immunity Nat Rev Nephrol. 2018 May ; 14(5): 325–336. doi:10.1038/nrneph.2018.15
  22. Coperchinia F, Chiovatoa L, Crocea, L, et al. The cytokine storm in COVID-19: An overview of the involvement of the chemokine/chemokine-receptor system. Cytokine and Growth Factor Reviews, https://doi.org/10.1016/j.cytogfr.2020.05.003
  23. McGonagle D, O’Donnell J.S., Sharif K, Emery P, Bridgewood C. Immune mechanisms of pulmonary intravascular coagulopathy in COVID-19 pneumonia. www.thelancet.com/rheumatology Published online May 7, 2020 https://doi.org/10.1016/S2665-9913(20)30121-1.
  24. Teuwen L-A, Geldhof V, Pasut A and Carmeliet P. COVID-19: the vasculature unleashed Nature Reviews/Immunology 2020https://doi.org/10.1038/s41577-020-0343-0.
  25. Wei Cao and Taisheng Li Research highlight COVID-19: towards understanding of pathogenesis Cell Research (2020) 30:367–369; https://doi.org/10.1038/s41422-020-0327-4
  26. Hemnes A, Rathinasabapathy A, Austin E, et al. A potential therapeutic role for Angiotensin Converting Enzyme 2 in human pulmonary arterial hypertension Eur Respir J. 2018 June ; 51(6). doi:10.1183/13993003.02638-2017.
  27. Dyer S, Frewin D, Head R. The Influence of Chronic Captopril Treatment and Its Withdrawal on Endothelium-Dependent Relaxation. Blood Press.1992 Dec;1(4):247-53. doi: 10.3109/08037059209077670
  28. Freund-Michel V, Cardoso Dos Santos M, Guignabert C, et al. Role of Nerve Growth Factor in Development and Persistence of Experimental Pulmonary Hypertension. Am J Respir Crit Care Med Vol 192, Iss 3, pp 342–355, Aug 1, 2015.
  29. S. Jeffreson R. Rush C. Zettler D. B. Frewin R. J. Head THE INFLUENCE OF THE RENIN ANGIOTENSIN SYSTEM ON ABNORMAL EXPRESSION OF NERVE GROWTH FACTOR IN THE SPONTANEOUSLY HYPERTENSIVE RAT Volume22, Issue6‐7July 1995 Pages 478-480 https://doi.org/10.1111/j.1440-1681.1995.tb02050.x
  30. Gonzalez‑Jaramillo N, Low N, Franco O. The double burden of disease of COVID‑19 in cardiovascular patients: overlapping conditions could lead to overlapping treatments. European Journal of Epidemiology (2020) 35:335–337 https://doi.org/10.1007/s10654-020-
  31. Pachetti M, Marini B, Benedetti F, et al. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 2020;18(1):179. Published 2020 Apr 22. doi:10.1186/s12967-020-02344-6
  32. Kai H, Kai M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors—lessons from available evidence and insights into COVID-19. Hypertens Res (2020). https://doi.org/10.1038/s41440-020-0455-8.
  33. South A, Diz D, and Chappell M. PERSPECTIVES Integrative Cardiovascular Physiology and Pathophysiology COVID-19, ACE2, and the cardiovascular consequences Am J Physiol Heart Circ Physiol 318: H1084–H1090, 2020. doi:10.1152/ajpheart.00217.2020.
  34. Wu K, Lang Chen L, G, et al. A Virus-Binding Hot Spot on Human Angiotensin-Converting Enzyme 2 Is Critical for Binding of Two Different Coronaviruses. J Virol. 2011 Jun; 85(11): 5331–5337. doi: 10.1128/JVI.02274-10
  35. Shahid Z, Kalayanamitra R, McClafferty B et al. COVID-19 and Older Adults: What We Know J Am Geriatr Soc 68:926-929, 2020.
  36. Vajapey R, Rini D, Walston J and Abadir P. The impact of age-related dysregulation of the angiotensin system on mitochondrial redox balance. Frontiers in Physiology | Mitochondrial Research November 2014; Volume5; Article439, page 2.
  37. Wilson B, Nautiyal M, Tan Ya M. Evidence for a mitochondrial angiotensin-(1–7) system in the kidney. Am J Physiol Renal Physiol 310: F637–F645, 2016. First published December 23, 2015; doi:10.1152/ajprenal.00479.2015
  38. Wang J, Chen S, Bihl J et al. Exosome-Mediated Transfer of ACE2 (Angiotensin-Converting Enzyme 2) from Endothelial Progenitor Cells Promotes Survival and Function of Endothelial Cell. Oxidative Medicine and Cellular Longevity Volume 2020, Article ID 4213541 https://doi.org/10.1155/2020/4213541
  39. Lai C, Jou M, Huang S et al.. Proteomic analysis of up-regulated proteins in human promonocyte cells expressing severe acute respiratory syndrome coronavirus 3C-like protease Proteomics 2007, 7, 1446–1460
  40. de Cavanagh E, Piotrkowski B, Basso N et al. Enalapril and losartan attenuate mitochondrial dysfunction in aged rats The FASEB Journal express article 10.1096/fj.02-0063fje. Published online April 22, 2003
  41. Vaduganathan M, Vardeny O, Michel T, McMurray J, Pfeffer M, Solomon S. Renin–Angiotensin–Aldosterone System Inhibitors in Patients with Covid-19. N Engl J Med 382;17; April 23, 2020
  42. Peng Zhang; Lihua Zhu; Jingjing Cai; et al. Association of Inpatient Use of Angiotensin Converting Enzyme Inhibitors and Angiotensin II Receptor Blockers with Mortality Among Patients With Hypertension Hospitalized With COVID-19 DOI: 10.1161/CIRCRESAHA.120.317134.
  43. Mehra M, Desai S, Kuy, S. Timothy D. Henry and Amit N. Patel. Cardiovascular Disease, Drug Therapy, and Mortality in Covid-19. N Engl J Med 2020; 382:e102. DOI: 10.1056/NEJMoa2007621
  44. Meng J, Xiao G, Zhang J et al. (2020) Renin-angiotensin system inhibitors improve the clinical outcomes of COVID-19 patients with hypertension, Emerging Microbes & Infections, 9:1, 757-760, DOI: 10.1080/22221751.2020.1746200
  45. Bean D,  Kraljevic Z, Searle T. ACE-inhibitors and Angiotensin-2 Receptor Blockers are not associated with severe SARS- COVID19 infection in a multi-site UK acute Hospital Trust medRxiv 2020.04.07.20056788; doi:https://doi.org/10.1101/2020.04.07.20056788
  46. Henry C, Zaizafoun M, Stock E, Shamande S , Arroliga A et al. Impact of angiotensin-converting enzyme inhibitors and statins on viral pneumonia PROC (BAYL UNIV MED CENT) 2018;31(4):419–423 https://doi.org/10.1080/08998280.2018.1499293.
  47. David G. Harrison1, Tomasz J. Guzik, Heinrich Lob1, et al. Hypertension. 2011 February ; 57(2): 132–140. doi:10.1161/HYPERTENSIONAHA.110.163576.
  48. Solak Y, Afsar B, Nosratola D. Hypertension as an autoimmune and inflammatory disease Hypertension Research volume 39, pages567–573(2016).
  49. Marshall  R,  Webb S, Geoffrey J. Bellingan , et al; Angiotensin converting enzyme insertion/deletion polymorphism is associated with susceptibility and outcome in acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 166, 646—650 (2002).
  50. Mortensen EM, Nakashima B, Cornell J, et al. Population-based study of statins, angiotensin II receptor blockers, and angiotensin-converting enzyme inhibitors on pneumonia-related outcomes. Clin Infect Dis. 2012;55(11):1466–1473. doi:10.1093/cid/cis733.
  51. Kim J, Choi S-M, Lee J, Sik Park Y et al. Effect of Renin-Angiotensin System Blockage in Patients with Acute Respiratory Distress Syndrome: A Retrospective Case Control Study Korean J Crit Care Med 2017 May 32(2):154-163 https://doi.org/10.4266/kjccm.2016.00976
  52. Jerng J, Yu-Chiao Hsu, Huey-Dong Wu, et al. Role of the renin-angiotensin system in ventilator-induced lung injury: an in vivo study in a rat model. Thorax. 2007;62:527–535. doi: 10.1136/thx.2006.061945
  53. Zambelli V,  Bellani G, Roberto Borsa R et al. Angiotensin-(1-7) improves oxygenation, while reducing cellular infiltrate and fibrosis in experimental Acute Respiratory Distress Syndrome Intensive Care Medicine Experimental volume 3, Article number: 8 (2015).
  54. Deppe S. , Böger R. H. , Weiss J. , & Benndorf, R. A. (2010). Telmisartan: A review of its pharmacodynamic and pharmacokinetic properties. Expert Opinion on Drug Metabolism & Toxicology, 6(7), 863–871. 10.1517/17425255.2010.494597
  55. McIntyre M, Caffe S. E. , Michalak R. A & Reid J. L. (1997). Losartan, an orally active angiotensin (AT1) receptor antagonist: A review of its efficacy and safety in essential hypertension. Pharmacology & Therapeutics, 74(2), 181–194.