Acknowledgements
This study was supported in part by the Faculty of Medicine, University
of Oslo
Conflicts of interest
Both the authors declare no conflict of interest.
References
1. Kahn JS, McIntosh K. History and Recent Advances in Coronavirus
Discovery. Pediatr Infect Dis J. 2005;
2. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DK, et al.
Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR.
Euro Surveill. 2020;
3. Wang D, Hu B, Hu C, Zhu F, Liu X, Zhang J, et al. Clinical
Characteristics of 138 Hospitalized Patients with 2019 Novel
Coronavirus-Infected Pneumonia in Wuhan, China. JAMA - J Am Med Assoc.
2020;
4. (WHO) (Press release). WHO Director-General’s opening remarks at the
media briefing on COVID-19 -11 March 2020 [Internet]. World Health
Organization. 2020. Available from:
https://www.who.int/dg/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19—11-march-2020
5. WHO. Naming the coronavirus disease (COVID-19) and the virus that
causes it [Internet]. World Health Organization. 2020 [cited 2020
Apr 1]. Available from:
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/technical-guidance/naming-the-coronavirus-disease-(covid-2019)-and-the-virus-that-causes-it
6. De Wit E, Van Doremalen N, Falzarano D, Munster VJ. SARS and MERS:
Recent insights into emerging coronaviruses. Nature Reviews
Microbiology. 2016.
7. https://www.worldometers.info/coronavirus/. COVID-19 CORONAVIRUS
OUTBREAK [Internet]. https://www.worldometers.info/coronavirus/.
2020 [cited 2020 Apr 23]. Available from:
https://www.worldometers.info/coronavirus/
8. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel
coronavirus from patients with pneumonia in China, 2019. N Engl J Med.
2020;
9. Su S, Wong G, Shi W, Liu J, Lai ACK, Zhou J, et al. Epidemiology,
Genetic Recombination, and Pathogenesis of Coronaviruses. Trends in
Microbiology. 2016.
10. Cui J, Li F, Shi ZL. Origin and evolution of pathogenic
coronaviruses. Nature Reviews Microbiology. 2019.
11. Perlman S, Netland J. Coronaviruses post-SARS: Update on replication
and pathogenesis. Nature Reviews Microbiology. 2009.
12. Coronaviridae Study Group of the International Committee on Taxonomy
of Viruses. The species Severe acute respiratory syndrome-related
coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat
Microbiol. 2020;
13. Nextstrain. Phylogeny of SARS-like betacoronaviruses including novel
coronavirus SARS-CoV-2 [Internet]. nextstrain. 2020. Available from:
https://nextstrain.org/groups/blab/sars-like-cov?p=full
14. GISAID EpifluDB. Newly emerging coronavirus, hCoV-19 [Internet].
GISAID EpifluDB. 2020. Available from:
https://platform.gisaid.org/epi3/frontend#1ea49f
15. Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic
characterisation and epidemiology of 2019 novel coronavirus:
implications for virus origins and receptor binding. Lancet. 2020;
16. Wang C, Liu Z, Chen Z, Huang X, Xu M, He T, et al. The establishment
of reference sequence for SARS‐CoV‐2 and variation analysis. J Med
Virol. 2020;
17. Xu X, Chen P, Wang J, Feng J, Zhou H, Li X, et al. Evolution of the
novel coronavirus from the ongoing Wuhan outbreak and modeling of its
spike protein for risk of human transmission. Science China Life
Sciences. 2020.
18. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of
therapeutic targets for SARS-CoV-2 and discovery of potential drugs by
computational methods. Acta Pharm Sin B. 2020;
19. Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, et al. Epidemiological
and clinical characteristics of 99 cases of 2019 novel coronavirus
pneumonia in Wuhan, China: a descriptive study. Lancet. 2020;
20. Li X, Geng M, Peng Y, Meng L, Lu S. Molecular immune pathogenesis
and diagnosis of COVID-19. J Pharm Anal. 2020;
21. Fehr AR, Perlman S. Coronaviruses: An overview of their replication
and pathogenesis. In: Coronaviruses: Methods and Protocols. 2015.
22. Báez-Santos YM, St. John SE, Mesecar AD. The SARS-coronavirus
papain-like protease: Structure, function and inhibition by designed
antiviral compounds. Antiviral Research. 2015.
23. Woo PCY, Huang Y, Lau SKP, Yuen KY. Coronavirus genomics and
bioinformatics analysis. Viruses. 2010.
24. Coutard B, Valle C, de Lamballerie X, Canard B, Seidah NG, Decroly
E. The spike glycoprotein of the new coronavirus 2019-nCoV contains a
furin-like cleavage site absent in CoV of the same clade. Antiviral Res.
2020;
25. Hoffmann M, Kleine-Weber H, Schroeder S, Mü MA, Drosten C, Pö S, et
al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by
a Clinically Proven Protease Inhibitor Article SARS-CoV-2 Cell Entry
Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven
Protease Inhibitor. Cell [Internet]. 2020;181:1–10. Available from:
https://doi.org/10.1016/j.cell.2020.02.052
26. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. The Proximal
Origin of SARS-CoV-2. Virological. 2020;
27. Walls AC, Park Y-J, Tortorici MA, Wall A, McGuire AT, Veesler D.
Structure, Function, and Antigenicity of the SARS-CoV-2 Spike
Glycoprotein. Cell. 2020;
28. Wang K, Chen W, Zhou Y-S, Lian J-Q, Zhang Z, Du P, et al. SARS-CoV-2
invades host cells via a novel route: CD147-spike protein. bioRxiv
(preprint). 2020;
29. Li F. Evidence for a Common Evolutionary Origin of Coronavirus Spike
Protein Receptor-Binding Subunits. J Virol. 2012;
30. Schwegmann-Weßels C, Herrler G. Sialic acids as receptor
determinants for coronaviruses. Glycoconjugate Journal. 2006.
31. Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of
spike glycoprotein of 2019- nCoV on virus entry and its immune cross-
reactivity with spike glycoprotein of SARS-CoV. Nat Commun
[Internet]. 2020;(2020):1–38. Available from:
http://dx.doi.org/10.1038/s41467-020-15562-9
32. Lu G, Wang Q, Gao GF. Bat-to-human: Spike features determining
“host jump” of coronaviruses SARS-CoV, MERS-CoV, and beyond. Trends in
Microbiology. 2015.
33. Seidah NG, Chretien M. Proprotein and prohormone convertases: A
family of subtilases generating diverse bioactive polypeptides. Brain
Res. 1999;
34. Bagdonaite I, Wandall HH. Global aspects of viral glycosylation.
Glycobiology. 2018.
35. Zhang T, Wu Q, Zhang Z. Probable pangolin origin of 2019-nCoV
associated with outbreak of COVID-19. SSRN eLibrary. 2020.
36. Cyranoski D. Did pangolins spread the China coronavirus to people?
Nature. 2020;
37. Barr JN, Fearns R. How RNA viruses maintain their genome integrity.
Journal of General Virology. 2010.
38. Cheng VCC, Lau SKP, Woo PCY, Kwok YY. Severe acute respiratory
syndrome coronavirus as an agent of emerging and reemerging infection.
Clinical Microbiology Reviews. 2007.
39. Graham RL, Baric RS. Recombination, Reservoirs, and the Modular
Spike: Mechanisms of Coronavirus Cross-Species Transmission. J Virol.
2010;
40. Alam I, Kamau A, Kulmanov M, Arold ST, Arnab P, Gojobori T, et al.
Functional pangenome analysis provides insights into the origin,
function and pathways to therapy of SARS-CoV-2 coronavirus. bioRxiv
(preprint) [Internet]. 2020; Available from:
https://www.biorxiv.org/content/10.1101/2020.02.17.952895v1.full.pdf
41. Nieto-Torres JL, Verdiá-Báguena C, Jimenez-Guardeño JM, Regla-Nava
JA, Castaño-Rodriguez C, Fernandez-Delgado R, et al. Severe acute
respiratory syndrome coronavirus E protein transports calcium ions and
activates the NLRP3 inflammasome. Virology. 2015;
42. Schoeman D, Fielding BC. Coronavirus envelope protein: Current
knowledge. Virology Journal. 2019.
43. Chang CK, Hou MH, Chang CF, Hsiao CD, Huang TH. The SARS coronavirus
nucleocapsid protein - Forms and functions. Antiviral Research. 2014.
44. Zebin L, Qian F, Jinlian M, Lishi Z, Yu Q, Tian C, et al. The
Nucleocapsid Protein of SARS-CoV-2 Abolished Pluripotency in Human
Induced Pluripotent Stem Cells. bioRxiv (preprint). 2020;
45. Minakshi R, Padhan K, Rani M, Khan N, Ahmad F, Jameel S. The SARS
coronavirus 3a protein causes endoplasmic reticulum stress and induces
ligand-independent downregulation of the Type 1 interferon receptor.
PLoS One. 2009;
46. Siu KL, Yuen KS, Castano-Rodriguez C, Ye ZW, Yeung ML, Fung SY, et
al. Severe acute respiratory syndrome Coronavirus ORF3a protein
activates the NLRP3 inflammasome by promoting TRAF3-dependent
ubiquitination of ASC. FASEB J. 2019;
47. McBride R, Fielding BC. The role of severe acute respiratory
syndrome (SARS)-coronavirus accessory proteins in virus pathogenesis.
Viruses. 2012;4(11):2902–23.
48. Lokugamage KG, Hage A, Schindewolf C, Rajsbaum R, Menachery VD.
SARS-CoV-2 is sensitive to type I interferon pretreatment. bioRxiv.
2020;
49. Chan JFW, Kok KH, Zhu Z, Chu H, To KKW, Yuan S, et al. Genomic
characterization of the 2019 novel human-pathogenic coronavirus isolated
from a patient with atypical pneumonia after visiting Wuhan. Emerg
Microbes Infect. 2020;
50. Schaecher SR, Mackenzie JM, Pekosz A. The ORF7b Protein of Severe
Acute Respiratory Syndrome Coronavirus (SARS-CoV) Is Expressed in
Virus-Infected Cells and Incorporated into SARS-CoV Particles. J Virol.
2007;
51. Pfefferle S, Krähling V, Ditt V, Grywna K, Mühlberger E, Drosten C.
Reverse genetic characterization of the natural genomic deletion in
SARS-Coronavirus strain Frankfurt-1 open reading frame 7b reveals an
attenuating function of the 7b protein in-vitro and in-vivo. Virol J.
2009;
52. Baltimore D. Expression of animal virus genomes. Bacteriol Rev.
1971;
53. Cohen J. Wuhan seafood market may not be source of novel virus
spreading globally. Science (80- ). 2020;
54. Aylward, Bruce (WHO); Liang W (PRC). Report of the WHO-China Joint
Mission on Coronavirus Disease 2019 (COVID-19). WHO-China Jt Mission
Coronavirus Dis 2019. 2020;
55. Zhou P, Yang X-L, Wang X-G, Hu B, Zhang L, Zhang W, et al. A
pneumonia outbreak associated with a new coronavirus of probable bat
origin. Nature. 2020;
56. Wong MC, Cregeen SJJ, Ajami NJ, Petrosino JF. Evidence of
recombination in coronaviruses implicating pangolin origins of
nCoV-2019. bioRxiv. 2020;2013:2020.02.07.939207.
57. Centers for Disease Control and Prevention. How COVID-19 Spreads
[Internet]. U.S. Centers for Disease Control and Prevention (CDC).
2020. Available from:
https://www.cdc.gov/coronavirus/2019-ncov/prepare/transmission.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019-ncov%2Fabout%2Ftransmission.html
58. Bourouiba L. Turbulent Gas Clouds and Respiratory Pathogen
Emissions: Potential Implications for Reducing Transmission of COVID-19.
JAMA - Journal of the American Medical Association. 2020.
59. Morawska L, Cao J. Airborne transmission of SARS-CoV-2 : The world
should face the reality. Environ Int [Internet]. 2020;139. Available
from: https://doi.org/10.1016/j.envint.2020.105730
60. Santarpia JL, Rivera DN, Herrera V, Morwitzer MJ, Creager H,
Santarpia GW, et al. Transmission Potential of SARS-CoV-2 in Viral
Shedding Observed at the University of Nebraska Medical Center. medRxiv.
2020;
61. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A,
Williamson BN, et al. Aerosol and Surface Stability of SARS-CoV-2 as
Compared with SARS-CoV-1. N Engl J Med. 2020;
62. Chin AWH, Chu JTS, Perera MRA, Hui KPY, Yen H-L, Chan MCW, et al.
Stability of SARS-CoV-2 in different environmental conditions. The
Lancet Microbe. 2020;
63. Wang J, Tang K, Feng K, Lv W. High Temperature and High Humidity
Reduce the Transmission of COVID-19. SSRN Electron J. 2020;
64. DutchWaterSector. Sewage water as indicator for spreading of
COVID-19 [Internet]. Dutch Water Sector. 2020. Available from:
https://www.dutchwatersector.com/news/sewage-water-as-indicator-for-spreading-of-covid-19?fbclid=IwAR3G2QNSnpRkdd7mGfs_WwWu4Ka4jM7KVNffu4NyZ-tCT_jdB622natAuWU
65. Kupferschmidt K. Study claiming new coronavirus can be transmitted
by people without symptoms was flawed. Science (80- ). 2020;
66. Li R, Pei S, Chen B, Song Y, Zhang T, Yang W, et al. Substantial
undocumented infection facilitates the rapid dissemination of novel
coronavirus (SARS-CoV2). Science. 2020;
67. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al.
The Incubation Period of Coronavirus Disease 2019 (COVID-19) From
Publicly Reported Confirmed Cases: Estimation and Application. Ann
Intern Med. 2020;
68. Xia S, Liu M, Wang C, Xu W, Lan Q, Feng S, et al. Inhibition of
SARS-CoV-2 infection (previously 2019-nCoV) by a highly potent
pan-coronavirus fusion inhibitor targeting its spike protein that
harbors a high capacity to mediate membrane fusion. Cell Res
[Internet]. 2020; Available from:
https://www.nature.com/articles/s41422-020-0305-x
69. Cheng H, Wang Y, Wang G-Q. Organ-protective Effect of
Angiotensin-converting Enzyme 2 and its Effect on the Prognosis of
COVID-19. J Med Virol. 2020;
70. Xu H, Zhong L, Deng J, Peng J, Dan H, Zeng X, et al. High expression
of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa.
Int J Oral Sci. 2020;
71. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P,
Mardinoglu A, et al. Tissue-based map of the human proteome. Science
(80- ). 2015;
72. Ren X, Glende J, Al-Falah M, de Vries V, Schwegmann-Wessels C, Qu X,
et al. Analysis of ACE2 in polarized epithelial cells: Surface
expression and function as receptor for severe acute respiratory
syndrome-associated coronavirus. J Gen Virol. 2006;
73. Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-cell RNA
expression profiling of ACE2, the putative receptor of Wuhan 2019-nCov.
bioRxiv [Internet]. 2020;2:2020.01.26.919985. Available from:
https://www.biorxiv.org/content/10.1101/2020.01.26.919985v1
74. Xin P. Binding action between SARS-CoV S666 protein and ACE2
receptor in eyes. Recent Adv Ophthalmol. 2007;
75. Doobay MF, Talman LS, Obr TD, Tian X, Davisson RL, Lazartigues E.
Differential expression of neuronal ACE2 in transgenic mice with
overexpression of the brain renin-angiotensin system. Am J Physiol -
Regul Integr Comp Physiol. 2007;
76. Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data
analysis on the receptor ACE2 expression reveals the potential risk of
different human organs vulnerable to 2019-nCoV infection. Front Med.
2020;
77. Zheng J. SARS-CoV-2: an Emerging Coronavirus that Causes a Global
Threat. Int J Biol Sci. 2020;
78. Gu J, Han B, Wang J. COVID-19: Gastrointestinal manifestations and
potential fecal-oral transmission. Gastroenterology. 2020;
79. WHO. First data on stability and resistance of SARS coronavirus
compiled by members of WHO laboratory network [Internet]. WHO. 2003.
Available from:
https://www.who.int/csr/sars/survival_2003_05_04/en/?fbclid=IwAR2tORhSZ2_YDCDI-w8NjcAWc5z_BTzgVha-8kIc8dzbt_BbXDTJfKTDC8Q
80. Shen LW, Mao HJ, Wu YL, Tanaka Y, Zhang W. TMPRSS2: A potential
target for treatment of influenza virus and coronavirus infections.
Biochimie. 2017.
81. Simmons G, Zmora P, Gierer S, Heurich A, Pöhlmann S. Proteolytic
activation of the SARS-coronavirus spike protein: Cutting enzymes at the
cutting edge of antiviral research. Antiviral Research. 2013.
82. El Najjar F, Lampe L, Baker ML, Wang LF, Dutch RE. Analysis of
cathepsin and furin proteolytic enzymes involved in viral fusion protein
activation in cells of the bat reservoir host. PLoS One. 2015;
83. Mille JK, Whittaker GR. Host cell entry of Middle East respiratory
syndrome coronavirus after two-step, furin-mediated activation of the
spike protein. Proc Natl Acad Sci U S A. 2014;
84. Belouzard S, Chu VC, Whittaker GR. Activation of the SARS
coronavirus spike protein via sequential proteolytic cleavage at two
distinct sites. Proc Natl Acad Sci U S A. 2009;
85. Pasquato A, Dettin M, Basak A, Gambaretto R, Tonin L, Seidah NG, et
al. Heparin enhances the furin cleavage of HIV-1 gp160 peptides. FEBS
Lett. 2007;
86. Wang S, Qi C, Liu Z, Xu T, Yao C. Endogenous Heparin-Like Substances
May Cause Coagulopathy in a Patient with Severe Postpartum Hemorrhage.
Transfus Med Hemotherapy. 2019;
87. Guo Y-R, Cao Q-D, Hong Z-S, Tan Y-Y, Chen S-D, Jin H-J, et al. The
origin, transmission and clinical therapies on coronavirus disease 2019
(COVID-19) outbreak – an update on the status. Mil Med Res. 2020;
88. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological
findings of COVID-19 associated with acute respiratory distress
syndrome. Lancet Respir Med. 2020;
89. Gu J, Gong E, Zhang B, Zheng J, Gao Z, Zhong Y, et al. Multiple
organ infection and the pathogenesis of SARS. J Exp Med. 2005;
90. Liu Q, Wang R, Qu G, Wang Y, Liu P, Zhu Y, et al. Anatomy of a New
Coronavirus Pneumonia Death Corpse System (Chinese). J forensic Med
China. 2020;36(1):21–3.
91. Poyiadji N, Shahin G, Noujaim D, Stone M, Patel S, Griffith B.
COVID-19–associated Acute Hemorrhagic Necrotizing Encephalopathy: CT
and MRI Features. Radiology. 2020;
92. Brann DH, Tsukahara T, Weinreb C, Logan DW, Datta SR. Non-neural
expression of SARS-CoV-2 entry genes in the olfactory epithelium
suggests mechanisms underlying anosmia in COVID-19 patients. bioRxiv
(preprint) [Internet]. 2020; Available from:
file:///C:/Users/rahulma/Downloads/Non-neural expression of SARS-CoV-2
entry genes in the olfactory epithelium suggests mechanisms underlying
anosmia in COVID-19 patients .pdf
93. Wosen JE, Mukhopadhyay D, MacAubas C, Mellins ED. Epithelial MHC
class II expression and its role in antigen presentation in the
gastrointestinal and respiratory tracts. Frontiers in Immunology. 2018.
94. Hansen TH, Bouvier M. MHC class i antigen presentation: Learning
from viral evasion strategies. Nature Reviews Immunology. 2009.
95. Austin Nguyen, David JK, Maden SK, Wood MA, Weeder BR, Nellore A, et
al. Human leukocyte antigen susceptibility map for SARS-CoV-2. medRxiv
(preprint) [Internet]. 2020; Available from:
https://www.medrxiv.org/content/10.1101/2020.03.22.20040600v1
96. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, et al. Profiling
Early Humoral Response to Diagnose Novel Coronavirus Disease (COVID-19).
Clin Infect Dis. 2020;
97. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and
potential vaccines: Lessons learned from SARS and MERS epidemic. Asian
Pacific J allergy Immunol. 2020;
98. Shi Y, Wang Y, Shao C, Huang J, Gan J, Huang X, et al. COVID-19
infection: the perspectives on immune responses. Cell Death Differ.
2020;
99. Jensen S, Thomsen AR. Sensing of RNA Viruses: a Review of Innate
Immune Receptors Involved in Recognizing RNA Virus Invasion. J Virol.
2012;
100. Artis D, Spits H. The biology of innate lymphoid cells. Nature.
2015.
101. Lim Y, Ng Y, Tam J, Liu D. Human Coronaviruses: A Review of
Virus–Host Interactions. Diseases. 2016;
102. Chen IY, Moriyama M, Chang MF, Ichinohe T. Severe acute respiratory
syndrome coronavirus viroporin 3a activates the NLRP3 inflammasome.
Front Microbiol. 2019;
103. Knoops K, Kikkert M, Van Den Worm SHE, Zevenhoven-Dobbe JC, Van Der
Meer Y, Koster AJ, et al. SARS-coronavirus replication is supported by a
reticulovesicular network of modified endoplasmic reticulum. PLoS Biol.
2008;
104. Oudshoorn D, Rijs K, Limpens RWAL, Groen K, Koster AJ, Snijder EJ,
et al. Expression and cleavage of middle east respiratory syndrome
coronavirus nsp3-4 polyprotein induce the formation of double-membrane
vesicles that mimic those associated with coronaviral RNA replication.
MBio. 2017;
105. Frieman M, Ratia K, Johnston RE, Mesecar AD, Baric RS. Severe Acute
Respiratory Syndrome Coronavirus Papain-Like Protease Ubiquitin-Like
Domain and Catalytic Domain Regulate Antagonism of IRF3 and NF- B
Signaling. J Virol. 2009;
106. Yang X, Chen X, Bian G, Tu J, Xing Y, Wang Y, et al. Proteolytic
processing, deubiquitinase and interferon antagonist activities of
Middle East respiratory syndrome coronavirus papain-like protease. J Gen
Virol. 2014;
107. Li SW, Wang CY, Jou YJ, Huang SH, Hsiao LH, Wan L, et al. SARS
coronavirus papain-like protease inhibits the TLR7 signaling pathway
through removing Lys63-linked polyubiquitination of TRAF3 and TRAF6. Int
J Mol Sci. 2016;
108. Lui PY, Wong LYR, Fung CL, Siu KL, Yeung ML, Yuen KS, et al. Middle
East respiratory syndrome coronavirus M protein suppresses type I
interferon expression through the inhibition of TBK1-dependent
phosphorylation of IRF3. Emerg Microbes Infect. 2016;
109. Wathelet MG, Orr M, Frieman MB, Baric RS. Severe Acute Respiratory
Syndrome Coronavirus Evades Antiviral Signaling: Role of nsp1 and
Rational Design of an Attenuated Strain. J Virol. 2007;
110. Kopecky-Bromberg SA, Martinez-Sobrido L, Frieman M, Baric RA,
Palese P. Severe Acute Respiratory Syndrome Coronavirus Open Reading
Frame (ORF) 3b, ORF 6, and Nucleocapsid Proteins Function as Interferon
Antagonists. J Virol. 2007;
111. Angeletti S, Benvenuto D, Bianchi M, Giovanetti M, Pascarella S,
Ciccozzi M. COVID-2019: The role of the nsp2 and nsp3 in its
pathogenesis. J Med Virol. 2020;
112. Angelini MM, Akhlaghpour M, Neuman BW, Buchmeier MJ. Severe acute
respiratory syndrome coronavirus nonstructural proteins 3, 4, and 6
induce double-membrane vesicles. MBio. 2013;
Table 1: Prospective functions of SARS-CoV-2 virus
non-structural proteins (NSPs)