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Abstract 17 

Restoring river connectivity is a global conservation priority but quantifying river 18 

fragmentation has proved difficult due to the paucity of good barrier records, duplicate 19 

entries, and other sources of biases. Here we present some tools to help overcome some of 20 

these challenges and illustrate their application with case studies drawn across different 21 

spatial scales. We begin by proposing a classification of artificial instream barriers that 22 

harmonises disparate barrier types into six functional types, and present a binary 23 

classification key for ease of use.  We then introduce a method for excluding duplicate barrier 24 

records that retains most genuine barriers and illustrate its practical use. Sampling bias is a 25 

pervasive problem in barrier inventories and we show how to detect and correct for it via 26 

bootstrapping of data obtained from standardised field surveys, ad-hoc records provided by 27 

citizens, and modelling.  Finally, we show how to assess fragmentation when barriers cannot 28 

be aligned with the river network, and how to estimate barrier impacts from barrier height 29 

and when information on barrier passability or permeability is not known. Collectively, our 30 

toolbox will help generate more realistic estimates of river fragmentation and help inform 31 

more efficient restoration of river connectivity.  32 
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1. Introduction: The challenges of addressing river fragmentation 39 

Improving river connectivity is a pre-requisite for more efficient river restoration (Palmer and 40 

Ruhi, 2019) and addressing the causes and consequences of river fragmentation is a key target 41 

of national and international policies, such as the Water Framework Directive (Water 42 

Framework Directive 2000/60/EC) and the Habitats Directives of the European Union (Council 43 

Directive 92/43/EEC). However, there is a striking paucity of guidance on how to assess river 44 

fragmentation (Kristensen et al., 2018). In comparison to terrestrial ecosystems, the 45 

fragmentation of rivers has received less attention, and as consequence many of the metrics 46 

of river fragmentation represent adaptations of methods used to assess habitat patchiness 47 

that have met with varying success (Fuller et al., 2015).  48 

 49 

Assessing river fragmentation, however, poses particular problems. Compared to terrestrial 50 

ecosystems, rivers are more dependent on local scale processes due to the dendritic 51 

configuration of river networks, the unidirectional nature of river flow, and the strong 52 

seasonality of the hydrological regime (Ver Hoef et al., 2006). Another limitation is the 53 

difficulty of defining and identifying barriers, and the pervasive influence of sampling bias 54 

(Garcia de Leaniz et al., 2019; Jones et al., 2019) which underestimates the abundance of 55 

small barriers.  56 

 57 

Whilst recent research has started to address these conceptual and methodological gaps (Grill 58 

et al., 2019; Schmitt et al., 2018), the data necessary for estimating river fragmentation – the 59 

number, location and characteristics of barriers (type, height) – are often incomplete 60 

(Januchowski-Hartley et al., 2019). Global estimates of river fragmentation are based on the 61 

location of large dams (typically, above 15-30 m in height) detected through remote sensing 62 



(Lehner et al., 2011; Mulligan et al., 2020; World Commision on Dams, 2000; Zhang and 63 

Urpelainen, Johannes Schlenker, 2018) but these constitute a very small proportion of all 64 

barriers (Garcia de Leaniz et al., 2019). Even national barrier inventories typically miss 60-90% 65 

of instream barriers (Jones et al., 2019; Sun et al., 2020) and cannot be used for accurate 66 

estimation of river fragmentation.  67 

 68 

Another limitation arises from the scarcity of harmonised barrier records that prevent global 69 

comparisons. For example, although high quality data on smaller dams exists at various local 70 

scales, the databases are incompatible – for example local and national databases across 71 

Europe use >50 different definitions of river barriers (Entec UK Ltd, 2010; “LST Biotopkartering 72 

vandringshinder,” 2020; ONEMA, 2010; SEPA, 2018).  73 

 74 

More generally, the assessment of river fragmentation is challenged by three main sources of 75 

errors and biases: (1) biases caused by problems of semantics, definitions and metrics; (2) 76 

errors caused by poor quality of barrier data, and (3) errors caused by sampling bias and poor 77 

representativeness of existing barrier data (Table 1).  To overcome these problems it is 78 

necessary to integrate and compare existing barrier databases, and estimate fragmentation 79 

in a way that accounts for the limitations of existing barrier data. This will enable improved 80 

assessment of barrier impacts and a more effective restoration of river connectivity.  To this 81 

end, we developed a suite of novel tools, and adapted existing ones, to estimate river 82 

fragmentation from barrier records across multiple scales using free open-source software 83 

QGIS, R and a free mobile phone app. We illustrate the application of our approach with the 84 

help of case studies, from local catchment scales (tens of km) to national and continental 85 



scales. It is hoped that addressing these difficulties will help to unlock new data sources, 86 

previously deemed unsuitable, and result in more realistic estimates of river fragmentation.  87 

 88 

2. Methods: Description of Tools 89 

 90 

We illustrate below the development of eight tools that address the challenges outlined in 91 

Table 1; these require different sources of data and generate various outputs (Table 2) to 92 

enable users to classify barriers into coherent, homogenous functional groups (T1); exclude 93 

duplicate barrier records (T2); correct for sampling bias and under-reporting via ground-94 

truthed field surveys (T3), citizen science (T4) and machine learning (T5), generate various 95 

metrics of connectivity (T6, T7), and estimate barrier impacts across large scales (T8). 96 

 97 

Tool 1. A key for defining and classifying barrier types  98 

The first challenge for addressing river fragmentation is the lack of an agreed definition of 99 

instream barrier in relation to river connectivity (Wohl, 2017),  and the many meanings and 100 

types of barriers (Belletti et al., 2018; Garcia de Leaniz et al., 2018; Jones et al., 2019). We 101 

therefore define a barrier as “any built structure that interrupts or modifies the flow of water, 102 

the transport of sediments, or the movement of organisms and can result in longitudinal 103 

discontinuity” (Belletti et al., 2020).  We exclude from our definition natural features (such as 104 

waterfalls) or artificial processes (such as thermal or pollution barriers) that are not built but 105 

that can also result in longitudinal discontinuity. We also exclude structures that only result 106 

in vertical or lateral discontinuity, as these are difficult to identify and are rarely surveyed in 107 

barrier inventories (Atkinson et al., 2020; Buddendorf et al., 2019; Jones et al., 2019).  Unlike 108 

many barrier inventories that only consider large dams (Grill et al., 2019) or consider the 109 



needs of few target species (Atkinson et al., 2020; Buddendorf et al., 2019), we place no 110 

restriction on the type or height of barriers, or on the taxa or process impacted by barriers.   111 

 112 

We propose a functional classification of barriers (Figure 1) that considers six broad barrier 113 

types that impact on longitudinal connectivity (Figure 2).  Structures that do not fit these 114 

criteria such as groynes or debris screens are labelled “Other”.  115 

 116 

Tool 2. Barrier Duplicate Excluder  117 

Barrier duplicates occur when barrier databases are merged or expanded. These can be 118 

ubiquitous (Jones et al, 2019; Belletti et al 2020) and overestimate the extent of 119 

fragmentation. To identify and exclude duplicates, a decision tree and consistent protocol 120 

must be followed, consisting of various steps, as shown in Figure 3.  Barriers are considered 121 

to be true records if they meet stringent criteria and represent unique entries as defined by 122 

visual checks against satellite imagery. An exclusion radius is then calculated that maximizes 123 

the exclusion of false positives (i.e. duplicates) and retains most true records.  124 

 125 

First, to identify potential duplicates, pairwise distances between barrier records within 1,000 126 

m of one another (Euclidean distance), regardless of source data, are selected (Jones et al., 127 

2019). This search is performed for each record in the database before proceeding to the 128 

next, and is constrained to the same watershed, as it is assumed that barriers that lie in 129 

different watershed are not duplicates. Records located within 1,000 m are excluded from 130 

further searches as it is assumed that a barrier cannot be the duplicate of more than one 131 

point.  Secondly, to assess the true status of potential duplicates (duplicate or true record), 132 

two or more independent raters assess a sub-sample as well as a common sample of potential 133 



duplicates using GIS and satellite imagery. The distance between potential duplicates is used 134 

to define the exclusion radius that excludes the 80th percentile of the cumulative distribution, 135 

when agreement between raters is >75% on the shared data sample according to Fleiss’ kappa 136 

(Fleiss, 2003).  If the comparison between raters results in <75% agreement, the exclusion 137 

distance is increased by the standard error of the distance to the duplicated points, and the 138 

visual assessment criteria is repeated until >75% agreement is achieved.  In those cases when 139 

no true records are found within the 80% exclusion radius, the exclusion radius can be 140 

increased to remove a greater number of duplicates. This can be done using the greatest 141 

difference between the cumulative distribution of the duplicate records from the cumulative 142 

distribution of true records. The exclusion radius is then increased if there is a positive 143 

difference between the two cumulative distributions, i.e. if additional duplicates can be 144 

removed without removing any true records.  145 

 146 

Confidence intervals on the exclusion radii are calculated by bootstrapping (Chao et al., 2013; 147 

Efron and Tibshirani, 1994). Bootstrapping is also employed to assess the influence of the 148 

number of duplicates that need to be checked visually on the precision of the radius that 149 

excludes 80% of potential duplicates, and hence estimate the sample size required to derive 150 

robust exclusion values. For this, samples are randomly resampled with replacement (e.g. 151 

10,000 times each). To demonstrate the use of the barrier duplicate excluder tool, we 152 

examined records from five barrier databases for France: 62,340 barriers from the French 153 

National Agency for Water and Aquatic Environments (http://www.onema.fr/le-roe), 260 154 

barriers from the GlObal geOreferenced Database of Dams (GOODD; Mulligan et al., 2020), 155 

111 barriers from Global Reservoir and Dam Database (GRanD; Lehner et al., 2011), 586 156 

barriers from the European Catchment River Information System (Ecrins; European 157 



Environment Agency, 2012) and 128 barriers from OSM (OpenStreetMap contributors, 2019). 158 

We selected all potential duplicates identified by the pairwise distance comparion. 159 

Identification of duplicates and bootstrapping were conducted using R 3.6 (R Core Team, 160 

2018), and QGIS 3.10 (QGIS Development Team, 2018) was used for visual assessment using 161 

satellite imagery from Google and Bing. 162 

 163 

Tool 3. Bootstrapped Field Corrector.  Ground truthing barrier records to correct for 164 

sampling bias  165 

The existence of sampling bias means that some barriers are more likely to be detected and 166 

included in barrier inventories than others. To correct for such bias, and collect new data in 167 

cases where no barrier data are available, we developed a simple surveying and monitoring 168 

protocol. Previous studies have indicated that surveyed reaches should represent at least 169 

0.1% of the total river network for the area of interest (Jones et al., 2019) using a river network 170 

consistent across all areas being studied, e.g. Ecrins  (European Environment Agency, 2012) 171 

or HydroSHEDS (Lehner et al., 2008). To reduce sampling bias, contiguous 20 km reaches 172 

should be surveyed in each test river to avoid missing the more inaccessible barriers, typically 173 

located in the headwaters. Surveying should be conducted at low flow conditions (~Q80-Q95) 174 

to avoid missing low head barriers that may disappear at high flows. These reaches should be 175 

representative of the area being surveyed in terms of altitude, slope, stream order (Strahler, 176 

1957), and land-use cover.   177 

 178 

To assess the influence of distance surveyed on barrier discovery rate, the bootstrap approach 179 

described in Jones et al. (2019) can be used. Briefly, this involves resampling survey barrier 180 

data every km to increase resolution. This also accommodates survey reaches that are shorter 181 



than the target 20 km reach length, making the method suitable for a range of spatial scales, 182 

from local catchments to broader regional assessments. The ground-truthed bootstrapped 183 

density of new barriers/km can then be used to correct barrier density estimates derived from 184 

existing inventories and confidence intervals can be calculated.  185 

 186 

Tool 4. Barrier Tracker. Using citizen Science to fill data gaps  187 

Citizen science is increasingly being used in conservation and environmental science to fill 188 

data gaps and complement existing information (Merenlender et al., 2016). Engaging with 189 

citizens has also become a priority for many funding bodies (Warin and Delaney, 2020). 190 

Surveying rivers and recording barriers is very time consuming but can be greatly aided with 191 

the help of volunteers. For this reason, a smart phone app - the Barrier Tracker (Figure 4), was 192 

developed as part of the AMBER project (www.amber.international).  The Barrier Tracker 193 

harnesses the power of citizen science to provide a more complete picture of barrier 194 

abundance. It enables users to locate all types of barriers (classified into 6 main types), take 195 

a photograph, and assess their main features, including height, current use and conservation 196 

status. The latter information is essential for identifying obsolete barriers and prioritize 197 

efforts for mitigation or removal. The information is uploaded it into the cloud where it can 198 

used to build a better picture of stream fragmentation. The app has two levels (entry and 199 

advanced), depending on skills, that enable users to enter additional information on barrier 200 

characteristics. Users can record barriers without any need to register, as well as in remote 201 

places without telephone signal (typical of many heavily wooded headwaters). Users can 202 

download their data own and barrier records contributed by others.  The app is free to use 203 

and can be downloaded for Android (Google Play) and IoS (Apple Store), as well as from 204 

AMBER website (https://portal.amber.international/). It is currently available in 12 languages: 205 



English, Danish, Dutch, French, German, Italian, Polish, Portuguese, Slovenian, Spanish, 206 

Ukrainian, Welsh.  207 

 208 

Tool 5. Barrier Modeler. Modelling missing barriers 209 

Modelling through machine learning (ML) can be used to correct for sampling bias and under-210 

reporting of small barriers if high quality datasets are available for use as training datasets. 211 

This can complement ground-truthed field estimates of barrier density (Tool 6) and identify 212 

where the data gaps may lie. Predictors of barrier abundance and attributes that have been 213 

found to be useful include various anthropic and environmental predictors that are typically 214 

associated with river discontinuities. These include the type of land-cover, population density, 215 

elevation, slope, dendricity, drainage density, road crossings, and average flow, amongst 216 

others (Belletti et al., 2020; Januchowski-Hartley et al., 2019). For modelling, Boosted 217 

Regression Trees (Januchowski-Hartley et al. 2019) or nonparametric Random Forest 218 

Regressor have been used (Belletti et al., 2020).   219 

 220 

Tool 6.  Barrier Free Length (BFL), a taxon-free metric of river connectivity   221 

Two common constraints of existing methods for assessing river connectivity (Table 3) are  222 

that they are often (1) taxa specific, requiring information on the “passability” for each barrier 223 

and target species, and (2) that barriers must be “snapped” or aligned to the correct river 224 

reach, or the resulting metric of connectivity would be in error. While it is possible to meet 225 

these constraints at small spatial scales, or when dealing with a limited number of barriers 226 

(Cote et al., 2009; Grill et al., 2019, 2015, 2014), this is impractical when a large number of 227 

barriers are being considered or - as is often the case, passability is unknown for most species. 228 

Two alternatives to the above shortcomings are the calculation of (1) barrier-free length 229 



(Grizzetti et al., 2017; Jones et al., 2019) and (2) barrier density at the sub-catchment or 230 

catchment scale (Belletti et al., 2020; Jones et al., 2019). Barrier free length (BFL) can be 231 

calculated as the average length between consecutive barriers (Jones et al., 2019). If 232 

information is missing for some barrier types, BFL can be calculated using the dominant 233 

barrier types only.   234 

 235 

Tool 7. Barrier Density (BD), a metric of connectivity that does not require reach alignment  236 

Unlike most other metrics of river connectivity that require accurate knowledge of barrier 237 

coordinates, and precise alignment of barrier position to the correct river reach (Grill et al., 238 

2019), barrier density is largely invariant to barrier location, or to the resolution of the 239 

underlying river network. All that is required is that barriers are assigned to the correct 240 

catchment or basin.  Barrier density can be expressed as barrier per unit of stream length 241 

(No/km) or per catchment area (No/km2). The former is preferred as rivers can differ widely 242 

in dendricity (i.e. river length/No. river segments) and drainage density (i.e. river 243 

length/catchment area) that would introduce spurious errors if this variation is ignored 244 

(Kristensen and Globevnik, 2014; Vogt et al., 2008). One useful feature of barrier density is 245 

that it can be used to predict barrier free length as BFL decreases with the power function  246 

1/density if barriers are assumed to be distributed at random, which is a good starting 247 

approximation (Figure 5).  248 

 249 

Tool 8. Barrier Impact Modeler 250 

Barrier impacts on fish passage are traditionally estimated using protocols that take into 251 

account the topographical and hydraulic features of a barrier and the swimming performance 252 

of one or more target species. This information is used to derive estimates of “passability” 253 



(Cote et al. 2009), that can range from 0 (passage impossible) to 1 (unimpeded passage). 254 

Examples of such protocols include SNIFFER (SNIFFER, 2010), ICE (Baudoin et al., 2015), and 255 

ICF (Solà et al., 2011) in Europe.  However, all these approaches require detailed knowledge 256 

of every barrier in a catchment to assess fragmentation, which is labour intensive and not 257 

always possible. They also rely on having information on swimming performance to derive 258 

passabilities, but that is not available for all species (Furniss et al., 2006; Mahlum et al., 2014) 259 

and can vary a lot depending on the method being used. Finally, they do not consider barrier 260 

impacts on sediment transport or other river processes. As barrier impacts on animal 261 

movement (Baudoin et al., 2015; Bourne et al., 2011; Kemp and O’Hanley, 2010) and 262 

sediment and water storage (Ramos-Diez et al., 2016; Stephens, 2010) are typically a function 263 

of barrier height, we propose a simple impact function that considers that barrier impacts 264 

increase with barrier height according to a sigmoid function. The function consists of three 265 

distinct phases: an initial exponential phase, an approximately linear phase with an inflexion 266 

point where the slope is greatest, and an asymptotic phase (Figure 6).  We have set the 267 

asymptotic maximum impact (1.0) to barriers of 4.0 m in height, which is close to the 268 

maximum head drop that can be overcome by Atlantic salmon (3.7 m, Mills, 1989),  the 269 

strongest fish swimmer in Europe (Baudoin et al., 2015). This asymptotic value is also 270 

consistent with the observation that small dams (<5 m) cause only limited sediment retention 271 

(MacBroom, 2005). We therefore consider that any barrier greater than 4 m causes essentially 272 

the same (maximum) impact. However, other slopes and asymptotes can be used and a 273 

sensitivity analysis carried out to see how this changes the estimates of river fragmentation. 274 

The parameterisation of various sigmoidal curves (e.g. logistic, Gompertz, log-logistic, 275 

Weibull) can be achieved with the aomisc R package (Onofri, 2020). 276 

 277 



To model barrier height, various approaches are possible. If, as is often the case, barrier type 278 

is known, the easiest approach is to assign to each barrier with missing height the mean (or 279 

mode, or median) height for that barrier type. Another potential approach to model barrier 280 

height is to use machine learning and take into account not just barrier type, but also their 281 

location in the stream, as well as some height covariates. For example, Januchowski-Hartley 282 

et al. (2019) used Boosted Regression Trees to model the height of 20,077 barriers with 283 

missing heights in France. The most important predictors of barrier height were stream reach 284 

length, elevation, gradient, average flow, and agricultural land cover, contributing 68% of the 285 

variance explained.  A third approach that might be useful is based on the fact that barriers 286 

with missing heights are more likely to be small than large due to the nature of sampling bias 287 

(Januchowski-Hartley et al. 2019), and that complete barrier inventories are only available for 288 

structures (typically dams) beyond a certain height. The distribution of barrier heights is 289 

therefore left truncated, or under-reported for small heights. It might be possible to 290 

reconstruct the abundance and height of missing barriers from knowledge of the abundance 291 

and height of existing ones using the Cullen and Frey approach in the fitdistrplus R package 292 

(Delignette-Muller et al., 2020). 293 

 294 

  295 

3. Results & Discussion 296 

We have identified some of the main challenges for quantifying stream fragmentation and 297 

developed some tools (T) that can be used for filling data gaps, quantifying uncertainty, and 298 

reduce bias in river connectivity estimates. These are illustrated with real case studies and 299 

examples below.   300 

 301 



Harmonising barrier type definitions (T1) 302 

The lack of an agreed definition of barrier has made it difficult to compare studies that 303 

consider different barrier heights, or barrier types. Our barrier identification key does not 304 

impose any restriction on barrier height and was able to classify more than 290 different types 305 

of longitudinal instream barriers present in Europe into six functional types (Belletti et al., 306 

2020). These differ in use, size, and location within the watershed. They are also easy to 307 

recognise and can be used as part of a citizen science programme. Our results suggest that 308 

barrier types differ significantly in height, and thus likely also in impact, and that this is a field 309 

that is known in most databases. For example, in Spain barrier type is known for 93% of 310 

barriers. The application of the barrier classification key to a large database of barrier heights 311 

in Spain (N = 18,935) indicates that barrier types differ considerably in height (F7,18927= 511.4, 312 

P<0.001) and that it is hence possible to estimate missing heights if barrier type is known, 313 

albeit with some uncertainty (R2adj. = 0.156).  314 

  315 

Data cleaning and exclusion of duplicate records (T2) 316 

Data cleaning typically takes 30-80% of the time in big data applications before it can be used 317 

(Wang and Wang, 2019). Barrier data management is no exception. Excluding barrier 318 

duplicates is an essential aspect of data cleaning, and as an example we applied the barrier 319 

exclusion tool to the analysis of five barrier databases with information for France. This 320 

identified 1,497 duplicated barriers using a radius of 302 m that excluded 80% of duplicates 321 

and only 14 true records. The analysis of 190 potential duplicates by three independent 322 

observers indicated that 136 barriers (72%) were duplicates and 54 barriers (28%) were true 323 

records. Agreement between observers on a common sample of 50 barriers was high (Fleiss’s 324 

kappa = 0.88, 95CI: 0.83-0.92, P < 0.001), indicating that the procedure we developed was 325 



robust and the decision tree used to identify duplicates repeatable. This yielded 61,960 326 

unique barriers in France (Belletti et al., 2020), which is ~19% fewer than the 76,292 structures 327 

listed in the French National Agency for Water and Aquatic Environments which includes 328 

records listed as destroyed, planned, under construction, invalid, or duplicated 329 

(http://www.onema.fr/le-roe).  330 

 331 

The spatial distribution of duplicate and true barrier records can be characterised by plotting 332 

the distances to nearest barrier against the cumulative proportion of duplicates (Figure 7A) 333 

and true records (Figure 7B). In the case of the French example, this follows a rectangular 334 

hyperbola that can be described by the Michaelis-Menten two-parameter equation:  335 

 336 

𝑌 =  
𝑎𝑋

(𝑏 + 𝑋)
 337 

 338 

The proportion of duplicates that are excluded (Y) increases rapidly as the exclusion radius (X) 339 

increases and reaches a plateau given by the asymptote a. The second parameter (b) 340 

represents the radius that excludes 50% of the duplicate records.  These can be easily 341 

parametrised with the nlstools R package (Baty et al., 2015) and can be used to derive  342 

exclusion radii for different geographical areas. 343 

Bootstrapping was used to estimate the sample size required to obtain precise estimates of 344 

exclusion radii. In this example, the optimal duplicate exclusion radius is reached after 345 

detecting ~100 duplicates, although the variance does not stabilize until ~120 duplicates have 346 

been classified (Figure 8). 347 

 348 



Detecting and correcting for sampling bias and barrier under-reporting (T3-T5) 349 

Sampling bias occurs when more accessible or more conspicuous items are more likely to be 350 

detected (Araujo and Guisan, 2006).  It is a pervasive problems in species distribution 351 

modelling (Araujo and Guisan, 2006),  in conservation (Reddy and Dávalos, 2003), and also in 352 

barrier inventories, where small barriers tend to be under-reported  (Belletti et al., 2020; 353 

Jones et al., 2019).  To detect and account for barrier sampling bias, systematic field surveys 354 

can be used to ground-truth barrier records. For example, standardised barrier surveys 355 

conducted across 2,715 km of rivers in 26 European countries (Belletti et al., 2020) indicate 356 

that barrier densities range more than 10-fold (Table 4) and reveal widespread under-357 

reporting (Belletti et al., 2020).  358 

 359 

As with the estimation of optimal exclusion radius, bootstrapping can also be used to estimate 360 

the minimum length of river that needs to be sampled to derive precise estimates of barrier 361 

density (Figure 9).  For example, in Great Britain the barrier discovery rate (i.e. those barriers 362 

not recorded in existing databases) reaches an asymptote after 68 km of river length, but at 363 

least 200–250 km need to be surveyed to obtain a precise estimate of barrier density (Jones 364 

et al., 2019). Across Europe, the sample mean tends to overestimate the bootstrapped 50% 365 

barrier discovery rate (mean difference: 0.027 barriers/km , SE = 0.01), while the sample 366 

median underestimates it (mean difference= -0.11 barriers/km, SE = 0.04; Table 4, Figure 9). 367 

The bootstrapped median barrier discovery rate tends to stabilise after ~100 km of surveying 368 

in most countries, and 100 km can therefore be taken as an adequate survey stream length 369 

for barrier density estimates in most cases.  370 

 371 



Results from standardised barrier surveys carried by trained personnel tend to produce the 372 

most accurate barrier density estimates (Atkinson et al., 2020; Buddendorf et al., 2019; Jones 373 

et al., 2019; Sun et al., 2020), but field work is expensive and time consuming. Barriers can 374 

also be located by citizens using a smartphone app, and this can help to fill data gaps on an 375 

ad-hoc basis. For example, using the Barrier Tracker app, 5,530 barriers have been uploaded 376 

into the AMBER barrier database by +2,000 users from 36 countries (Figure 10). Duplicates 377 

and sampling bias can be an issue with records provided by citizens, but the duplicate 378 

exclusion tool described above could be used to automate the filtering out of duplicates 379 

before they are added to the database. Barrier locations generated by an app are collected in 380 

a uniform way and are immediately publicly available. Also, because photographic records of 381 

barriers are stored these can be reanalysed at a later stage, and additional data can be 382 

obtained using image recognition.  As barrier records are date stamped and can be generated 383 

by multiple users, these can be used to monitor changes in barrier use, and be used to initiate 384 

the decommissioning of abandoned structures. 385 

 386 

Modelling through machine learning can also be used to estimate the number, and possibly 387 

also the characteristics and location, of missing barriers, although this depends on having 388 

good training datasets and suitable predictors (Januchowski-Hartley et al., 2019, 2013). 389 

Modelling cannot be a substitute for field work, but it can complement it and direct sampling 390 

efforts where the biggest data gaps lie (Belletti et al., 2020).  391 

 392 

Estimating river fragmentation when accurate barrier-to-reach alignment is not possible 393 

(T6), or when barrier passability is unknown (T7) 394 

 395 



Most river connectivity metrics are overly restrictive for use at large spatial scales because 396 

they require that both barrier location and stream reach are well aligned, and measured 397 

without error (Grill et al., 2019). Barrier density is largely invariant to these constraints and 398 

can also be computed for basin area.  This is useful when there are errors in barrier 399 

coordinates, but also when the underlying river networks are not detailed enough, or differ 400 

in resolution and quality, as is often the case across large spatial scales (Kristensen and 401 

Globevnik, 2014; Vogt et al., 2008).  Our results for Great Britain (Jones et al., 2019) indicate 402 

that BFL decreases approximately as a power function of 1/density, as would be predicted if 403 

barriers were distributed at random through the catchments (Figure 11). This has two 404 

practical implications. First, it shows that BFL can be predicted from linear barrier density, 405 

which makes comparisons of river connectivity across catchments possible. Secondly, and 406 

more importantly, it shows that connectivity drops rapidly with the first few barriers as a 50% 407 

reduction in BFL is predicted to occur with just 5% of barriers. From a barrier management 408 

perspective, this means that removing or mitigating a few barriers in heavily fragmented 409 

rivers (density > 1.0 barriers/km) is not effective as no significant increase in connectivity is 410 

likely to occur until density is decreased to ~0.25 barriers/km (Figure 11).  This assumes that 411 

barriers are removed or mitigated at random, which will seldom be the case, but it provides 412 

a useful baseline against which the connectivity gain predicted by more targeted prioritization 413 

approaches (Erős et al., 2018; Kemp and O’Hanley, 2010; King et al., 2017; King and O’Hanley, 414 

2016; O’Hanley, 2015; O’Hanley et al., 2011; Roni et al., 2002) can be gauged.  415 

 416 

Estimating barrier impacts (T8) 417 

Barrier height is missing from many barrier records (Atkinson et al., 2020; Januchowski-418 

Hartley et al., 2019; Jones et al., 2019), or has often been estimated via remote sensing which 419 



can be inaccurate (Jones et al., 2019). This precludes an analysis of barrier impacts and a more 420 

in depth estimate of river fragmentation. However, barrier height can be estimated via 421 

modelling through machine learning (Januchowski-Hartley et al., 2019) or, more easily (but 422 

only approximately) from knowledge of barrier type. Analysis of a large barrier database from 423 

Spain (N= 30,677) indicates that barrier height was missing from 61% of records, but barrier 424 

type was known in 88% of cases. This is typical of many barrier databases.  As shown in a 425 

previous study (Jones et al. 2019), barrier types differed considerably in height (F7,18927= 511.4, 426 

P<0.001) which makes it possible to estimate missing heights if barrier type is known, albeit 427 

with some uncertainty (R2adj. = 0.156).  428 

 429 

Some measure of impact or passability for each barrier is also required for the assessment of 430 

longitudinal river connectivity at the catchment scale (Cote et al., 2009), but this information 431 

is difficult to obtain for most species and barriers, particularly when barrier height is 432 

unknown. We illustrate how the application of the tools outlined above can be used to 433 

overcome these difficulties and estimate barrier impacts using the Spanish case study. This 434 

consists of six steps (Figure 12): (1) we first harmonised all the barrier types into six coherent 435 

functional groups using Tool 1; (2) we then used Tool 2 to clean the data and exclude 436 

duplicates when different databases were merged. (3) field surveys were then used to 437 

ground-truth the existing barrier inventory (Tool 3) and derive correction factors to estimate 438 

the abundance of different barriers while accounting for under-reporting (Figure 12A); (4) the 439 

mean height of each barrier (Figure 12B) was used to fill data gaps in those cases where height 440 

was missing; (5) we then used the height-impact function (Tool 6), to calculate the barrier-441 

specific (per capita) impact for each barrier type (Figure 12C); (6) finally, we combined 442 



information on the corrected abundance of each barrier type with their per capita impact to 443 

estimate net barrier impacts (Figure 12D).  444 

 445 

The results show that, by far, the biggest impact on connectivity in Spain is caused by a large 446 

number of relatively small weirs (mean height = 1.91 m), and that the impact of large dams is 447 

essentially the same as that of much smaller (but much more abundant) ramps built to control 448 

channel scouring and bank erosion. Although we illustrate this approach with an example at 449 

a relatively large (country) scale, the same approach can be used at the catchment scale. 450 

  451 

Concluding remarks  452 

Reconnecting rivers is a priority in river restoration (European Union, 2020; Grizzetti et al., 453 

2017; Hering et al., 2010) but efforts have been hampered by the paucity of good barrier 454 

records (Kristensen et al., 2018). Other than at small spatial scales, researches have typically 455 

been unable to fully assess river fragmentation because they cannot take advantage of a large 456 

number of disparate, duplicate and incomplete records. As a consequence, global estimates 457 

of river  fragmentation have tended to be based on large dams only (Barbarossa et al., 2020; 458 

Grill et al., 2019, 2015, 2014; Zarfl et al., 2019), despite the fact that these are the least 459 

common type of barriers (Garcia de Leaniz, 2008; Garcia de Leaniz et al., 2019; Jones et al., 460 

2019). This presents a mismatch between the needs of river managers, who require estimates 461 

of connectivity based on complete barrier inventories, and what science has so far been able 462 

to offer.  463 

 464 

The data management and modelling tools presented here bridge this information gap. We 465 

show how to clean and ground truth existing barrier records and estimate barrier impacts 466 



more efficiently. For example, we derive robust rules to exclude duplicated barrier records 467 

using only a small sample of records (<1%). This means that large scale analysis of thousands, 468 

or even tens of thousands of barrier records, can remove 80% of duplicates and retain most 469 

genuine records with minimal effort. Likewise, the completeness of barrier records can be 470 

assessed and accounted for by a combination of targeted surveying, citizen science and 471 

modelling. Collectively, our toolbox will help generate more realistic estimates of river 472 

fragmentation and result in more efficient restoration of river connectivity.  473 
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Table 1.  Main challenges for estimating river fragmentation, consequences, and potential solutions illustrated with the application of eight barrier tools 491 

developed in this work.  492 

 493 

Problem or Challenge  Consequences Reference examples  Potential Solutions Illustrated Tool 
     
Definitions      

1. Lack of an agreed 
definition of barrier 

• Difficult to compare 
connectivity estimates that 
consider different types of 
barriers  

Wohl, 2017 • Harmonise barrier 
definitions and 
barrier type 
classification 

Tool 1 
Barrier 
Classification Key 

Data representativeness      
2. Existing barrier records 

may contain duplicates 
• Overestimates fragmentation Grill et al., 2019; 

Martin, 2019; Zhang 
and Urpelainen, 
Johannes Schlenker, 
2018 

• Develop 
algorithms that 
exclude duplicates 

Tool 2  
Barrier Duplicate 
Excluder   

3. Barrier sampling bias & 
under-reporting of small 
barriers 

• Underestimates fragmentation 
• Not all barrier types are equally 

represented in inventories 
• Difficult to compare data from 

different countries & 
catchments if they are collected 
using different criteria 

Jones et al., 2019; Sun 
et al., 2020 

• Ground-truth 
barrier records 
with field work   

• Use citizen science  
• Model barrier 

abundance  

Tool 3 
Bootstrapped 
Field Corrector  
Tool 4 
Barrier Tracker  
Tool 5 
Barrier Modeler 

Data quality & connectivity metrics    
4. Errors in mapping 

barrier coordinates, 
barriers are not aligned 
with topologically 
consistent river 
networks  

• Introduces errors in dendritic 
connectivity indices and other 
metrics of connectivity 

Hoenke et al., 2014; 
Martin, 2019 

• Use basin-based 
methods that do 
not depend on 
having exact 
barrier coordinates  

Tool 6 
Barrier Density 
Estimator  

5. Restrictive nature of 
existing connectivity 
metrics   

• May apply only to some taxa, 
typically large sport fish  

• Require data on ‘passabillity’ for 
each species and barrier   

• Difficult to generalise across 
contexts 

Cooper et al., 2017; 
Díaz et al., 2019; 
Mantel et al., 2010; 
Van Looy et al., 2014 

• Use taxon-free 
metrics 

Tool 7 
Barrier Free 
Length  

6. Height and passability 
data are missing for 
many barriers  

• Precludes calculation of barrier 
impacts and application of 
some dendritic connectivity 
indices  

Jones et al., 2019; 
Rincón et al., 2017; 
Sun et al., 2020 

• Model height  
• Model barrier 

impacts  

Tool 8 
Barrier Impact 
Modeler 

     



Table 2. Data inputs and outputs generated by the application of the eight barrier tools 494 

described in the text.  495 

 496 

 497 

  498 

Barrier Tool Data input Data output 

T1. Barrier Classification Key Barrier characteristics Type of barrier 
T2. Barrier Duplicate Excluder   
 

Location of barriers  
Ground-truthed duplicate  
Ground-truthed unique 
records  

Duplicate exclusion radius 
Number of duplicates  
Duplicate-free barrier abundance  

T3. Bootstrapped Field 
Corrector  
 

Number of barriers 
Location of barriers 
Ground-truthed field data 
River length  

Barrier discovery rate 
Corrected barrier density  

T4. Barrier Tracker  Barrier photograph  
Barrier characteristics 

Barrier location 
Barrier abundance 

T5. Barrier Modeler Number of barriers 
Location of barriers 
Basin covariates  

Predicted barrier abundance 
 

T6. Barrier Density Estimator  Number of barriers 
Location of barriers 
River length or basin area  

Connectivity metric 

T7. Barrier Free Length (BFL) Number of barriers  
Location of barriers 
River length  

Connectivity metric  

   
T8. Barrier Impact Modeler Height-Impact function 

Barrier height  
Barrier abundance  

Per capita barrier impact 
Net barrier impact 
Relative impact share  

   



Table 3. Some common connectivity metrics used to assess the extent of river fragmentation. 499 

 500 

Metric  Barrier 
type 

Constraints  Spatial Scale Reference 

Conservation 
Connectivity Index  
(CCI) 

Dam Barriers must be 
snapped to the 
correct river reach  

Reach Rodeles et al., 
2020 

Local, upstream, 
and downstream 
dam density 

Dam 
and 
weir 

Barriers must be 
snapped to the 
correct river reach 

Reach and 
sub-
catchment 

Cooper et al., 
2017; Mantel et 
al., 2010; Van Looy 
et al., 2014 

Fragmentation 
Index 
(FI) 

Dam Barriers must be 
snapped to the 
correct river reach 

Reach Díaz et al., 2019 

Dendritic 
Connectivity Index 
(DCI) 

Any  Barriers must be 
snapped to the 
correct river reach 
Passability data 
needed  

Catchment Cote et al., 2009 

Free Flowing River 
(FFR) 

Dam Barriers must be 
snapped to the 
correct river reach 

Reach Grill et al., 2019 

Barrier Free Length 
(BFL) 

Any Barriers must be 
snapped to the 
correct river reach  

Reach Jones et al., 2019 

Barrier density Any Barriers must be 
assigned to 
correct catchment   

Sub-
catchment 
and 
catchment  

Jones et al., 2019 

  501 
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 Figure legends  718 

 719 

Figure 1. Decision tree used for classifying longitudinal stream barriers into six main functional 720 

types. Structures that do not meet these criteria are classified as “other”.  721 

 722 

Figure 2.  Definitions and examples of longitudinal instream barriers. 723 

 724 

Figure 3. Decision tree used to identify duplicate barrier records.  725 

 726 

Figure 4.  The Barrier Tracker app for recording barriers and filling data gaps developed as 727 

part of the AMBER citizen science programme in Europe (www.amber.internantional). 728 

  729 

Figure 5. Expected relationship between barrier density (No/km) and Barrier Free Length (%) 730 

when barriers are distributed at random (L = 100 km in the example).   731 

 732 

Figure 6. Proposed sigmoid impact function relating barrier height to barrier impact.  The 733 

asymptotic value is set to near the maximum head drop (3.7 m) that migratory Atlantic 734 

salmon can overcome (Mills, 1987) 735 

 736 

Figure 7. Cumulative distribution of (A) distance to nearest duplicate and non-duplicate 737 

records following a visual assessment of 190 potential duplicate barriers in France, and (B) 738 

distance to the nearest unique barrier along the river network, where 80% of unique barriers 739 

were found to be within 750 m from one another.  740 

 741 

Figure 8. Effect of sample size on estimated bootstrapped exclusion radius in France. The 742 

radius that removes 80% of duplicated barriers is 302 m (95% CI: 293-304m) and this is 743 

reached after detecting ~100 duplicates, although the variance does not stabilize until ~120 744 

duplicates have been classified.  745 

 746 

Figure 9.  Barrier discovery rate based on bootstrapped estimates of barrier density (median ± 747 

95% CI) based on field surveys in 26 countries in Europe (data from Belletti et al 2020).  748 

 749 

Figure 10. Use of the Barrier Tracker by country as of March 2020. The app has been used to 750 

record 5,530 barriers by +2,000 users in 36 countries. 751 

 752 

Figure 11. Relationship between barrier density and (A) median Barrier Free Length, and (B) 753 

mean Barrier Free Length in rivers or Great Britain showing the random expectation (blue 754 

line) under BFL = 1/density (data from Jones et al, 2019).   755 

 756 

Figure 12. Barrier-specific impacts on river connectivity based on (A) corrected abundance 757 

(%), (B) mean height (m), (C) estimated per capita impact, and (D) share of net impact (%). 758 

Error bars represent 95 CI.  Shown are data for Spain described in Belletti et al 2020.  759 
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Figure 1   766 
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Figure 2    771 

 772 

Dam 

A dam is a barrier that 

regulates the flow of 

water and raises the 

water level, forming a reservoir. Dams 

come in many shapes and sizes but water 

does not normally overflow the crest. 

Dams are often used to generate 

hydropower or supply water for irrigation 

or drinking. They cause a significant 

alteration of river flow and disrupt the 

transport of sediments. 

 

Dam (Dora Baltea river, Italy). S. Bizzi (2017) 

Weir 

A weir is a barrier that 

raises the water level and 

regulates the water flow, but unlike a 

dam, water flows freely over its crest. 

Many weirs are old and many may be 

abandoned, revealing their former use 

abstracting water for watermills, 

sawmills, and foundries. They often have 

heights less than 5 m.  

 

Consolidation weir (Arno river, Italy. S. Bizzi 

(2017) 



Sluice  

A sluice is a barrier with 

one or more movable 

gates that are used to 

control water levels and flow rates. By 

opening or closing the sluice gate, water 

levels and flow rates can be altered. 

Sluices are used in river locks and canals, 

to allow boats to navigate over dams or 

overcome sudden changes in channel 

slope. They allow canals to be built over 

uneven landscapes. 

 

 

Tidal sluice gate (Netherlands). J. Van Deelen 

(2017) 

Ford 

A ford is a low-head 

structure typically built in 

shallow streams for 

wading or crossing. Fords do not raise the 

water level or regulate the flow of water. 

 

Ford (Orco river, Italy). M. Micotti (2017) 



Culvert 

A culvert is a structure built 

to carry the stream flow at 

road crossigns. They are 

tipically built in small streams, under 

forest tracks or secondary roads. Unlike 

fords, culverts enclose the stream flow 

fully (pipe) or partially (half-pipe). They 

are often embedded in soil and may vary 

in shape from round and elliptical to box-

shaped. Culverts do not raise the water 

level, but they can block the movement of 

organisms if they are perched, too 

shalow, or have too high water velocities. 

 

Culvert (Afan river, United Kingdom). J Jones 

(2019) 

Ramp and bed-sill 

A ramp or bed-sill is a 

structure designed to 

stabilize the channel bed.  

They are usually built in high energy 

streams to reduce channel erosion caused 

by channel straightening. They often have 

a height of less than 1-2m 

 

A)                                 B) 
A) Bed sill (Marecchia river, Italy). B. Belletti 

(2017) 
B) Rock ramp (Switzerland). R. Bösiger (2018) 



Other 

Other types of barriers that can impact 

on longitudinal connectivity include fish 

traps and lateral groynes or wing dykes 

built perpendicuiar to the river bank to 

divert the flow of water  and reduce 

flooding or bank erosion, such as the one 

shown in the picture. 

 

Other (Dora Baltea river, Italy). B. Belletti 

(2017) 

 773 

 774 

 775 

 776 

 777 

 778 

 779 

 780 

  781 



Figure 3 782 

    783 



Figure 4 784 

 785 

 786 

   787 



Figure 5 788 

789 



Figure 6 790 

791 



Figure 7 792 

 793 

(A) 794 

 795 

 796 

 797 

 798 

 799 

 800 

 801 

 802 

 803 

 804 

 805 

 806 

 807 

(B) 808 

  809 



Figure 8 810 

811 



Figure 9 812 

 813 

814 



Figure 10 815 

 816 

 817 

818 



Figure 11 819 

 820 

(A) 821 

 822 

 823 

 824 

 825 

 826 

 827 

 828 

 829 



 830 

(B) 831 

832 



Figure 12 833 

 834 

 835 

 836 

 837 

 838 

 839 

 840 

 841 

 842 

 843 

 844 

 845 

 846 

 847 

  848 

  849 

 850 


