References
[1]Yorgancioğlu A, Kalayci O, Kalyoncu AF, Khaltaev N, Bousquet J.
Allerjikrinitveastimüzerineetkisigüncelleme (ARIA 2008). TuberkToraks.
2008;56(2):224-231.
[2]Zhang Y, Zhang L. Prevalence of allergic rhinitis in china.
Allergy Asthma Immunol Res. 2014;6(2):105-113.
[3]Zheng M, Wang X, Bo M, Wang K, Zhao Y, He F, Cao F, Zhang L,
Bachert C. Prevalence of allergic rhinitis among adults in urban and
rural areas of china: a population-based cross-sectional survey. Allergy
Asthma Immunol Res. 2015;7(2):148-157.
[4]Skoner DP. Allergic rhinitis: definition, epidemiology,
pathophysiology, detection, and diagnosis. J Allergy Clin Immunol.
2001;108(1 Suppl):S2-S8.
[5]Dordal MT, Lluch-Bernal M, Sánchez MC, Rondón C, Navarro A,
Montoro J, Matheu V, Ibáñez MD, Fernández-Parra B, Dávila I, Conde J,
Antón E, Colás C, Valero A. Allergen-specific nasal provocation testing:
review by the rhinoconjunctivitis committee of the Spanish Society of
Allergy and Clinical Immunology. J InvestigAllergol Clin Immunol.
2011;21(1):1-12.
[6]Chinoy B, Yee E, Bahna SL. Skin testing versus
radioallergosorbent testing for indoor allergens. Clin Mol Allergy.
2005;3(1):4. Published 2005 Apr 15.
[7]Lloyd GA, Lund VJ, Scadding GK. CT of the paranasal sinuses and
functional endoscopic surgery: a critical analysis of 100 symptomatic
patients. J Laryngol Otol. 1991;105(3):181-185.
[8]Cheng L, Chen J, Fu Q, He S, Li H, Liu Z, Tan G, Tao Z, Wang D,
Wen W, Xu R, Xu Y, Yang Q, Zhang C, Zhang G, Zhang R, Zhang Y, Zhou B,
Zhu D, Chen L, Cui X, Deng Y, Guo Z, Huang Z, Huang Z, Li H, Li J, Li W,
Li Y, Xi L, Lou H, Lu M, Ouyang Y, Shi W, Tao X, Tian H, Wang C, Wang M,
Wang N, Wang X, Xie H, Yu S, Zhao R, Zheng M, Zhou H, Zhu L, Zhang L.
Chinese Society of Allergy Guidelines for Diagnosis and Treatment of
Allergic Rhinitis. Allergy Asthma Immunol Res. 2018;10(4):300-353.
[9]Schwalbe N, Wahl B. Artificial intelligence and the future of
global health. Lancet. 2020;395(10236):1579-1586.
[10]Kaliner MA, Berger WE, Ratner PH, Siegel CJ. The efficacy of
intranasal antihistamines in the treatment of allergic rhinitis. Ann
Allergy Asthma Immunol. 2011;106(2 Suppl):S6-S11.
[11]Yan J, Zhang Z, Lin K, Yang F, Luo X. A hybrid scheme-based
one-vs-all decision trees for multi-class classification tasks.
Knowledge-Based Systems. 2020;198:105922.
[12]Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic
minority over-sampling technique. Journal of Artificial Intelligence
Research. 2002;16(1):321-357.
[13]Zhao J, Jin J, Chen S, Zhang R, Yu B, Liu Q. A weighted hybrid
ensemble method for classifying imbalanced data. Knowledge-Based
Systems. 2020;203:106087.
[14]Zhang L, Shah SK, Kakadiaris IA. Hierarchical Multi-label
Classification using Fully Associative Ensemble Learning. Pattern
Recognition. 2017;70:89-103.
[15]Zhang H, Liu CT, Mao J, Shen C, Xie RL, Mu B. Development of
novel in silico prediction model for drug-induced ototoxicity by using
naïve Bayes classifier approach. Toxicol In Vitro. 2020;65:104812.
[16]Kumar S, Ong SH, Ranganath S, Ong TC, Chew FT. Classification of
airspora using support vector machines (SVM). Journal of Allergy and
Clinical Immunology. 2003;111(2):S91.
[17]Gao X, Hou J. An improved SVM integrated GS-PCA fault diagnosis
approach of Tennessee Eastman process. Neurocomputing. 2016;174:906-911.
[18]Mondal P, Dey D, Chandra Saha N, Moitra S, Saha GK, Bhattacharya
S, Podder S. Investigation of house dust mite induced allergy using
logistic regression in West Bengal, India. World Allergy Organ J.
2019;12(12):100088. Published 2019 Nov 27.
[19]Heidari M, Shamsi H. Analog programmable neuron and case study
on VLSI implementation of Multi-Layer Perceptron (MLP). Microelectronics
Journal. 2019;84:36-47.
[20]Zhu G, Hu Q, Gu R, Yuan C, Huang Y. ForestLayer: Efficient
training of deep forests on distributed task-parallel platforms. Journal
of Parallel and Distributed Computing. 2019;132:113-126.
[21]Wang C, Deng C, Wang S. Imbalance-XGBoost: leveraging weighted
and focal losses for binarylabel-imbalanced classification with XGBoost.
Pattern Recognition Letters. 2020;136:190-197.
[22]Izquierdo-Verdiguier E, Zurita-Milla R. An evaluation of Guided
Regularized Random Forest for classification and regression tasks in
remote sensing. International Journal of Applied Earth Observation and
Geoinformation. 2020;88:102051.
[23]Greiner AN, Hellings PW, Rotiroti G, Scadding GK. Allergic
rhinitis. Lancet. 2011;378(9809):2112-2122.
[24]Wang X, Du K, She W, Ouyang Y, Sima Y, Liu C, Zhang L. Recent
advances in the diagnosis of allergic rhinitis. Expert Rev Clin Immunol.
2018;14(11):957-964.
[25]Ullah R, Khan S, Ali H, Chaudhary II, Bilal M, Ahmad I. A
comparative study of machine learning classifiers for risk prediction of
asthma disease. PhotodiagnosisPhotodynTher. 2019;28:292-296.
[26]Segura-Bedmar I, Colón-Ruíz C, Tejedor-Alonso MÁ, Moro-Moro M.
Predicting of anaphylaxis in big data EMR by exploring machine learning
approaches. J Biomed Inform. 2018;87:50-59.
[27]Wide L, Bennich H, Johansson SG. Diagnosis of allergy by an
in-vitro test for allergen antibodies. Lancet. 1967;2(7526):1105-1107.
[28]Waring J, Lindvall C, Umeton R. Automated machine learning:
Review of the state-of-the-art and opportunities for healthcare.
ArtifIntell Med. 2020;104:101822.
[29]Kalaiselvi B, Thangamani M. An efficient Pearson correlation
based improved random forest classification for protein structure
prediction techniques. Measurement. 2020;162:107885.
[30]Kadkhodaei HR, Moghadam AME, Dehghan M. HBoost: A heterogeneous
ensemble classifier based on the Boosting method and entropy
measurement. Expert Systems with Applications. 2020;157:113482.
[31]Bhardwaj R, Hooda N. Prediction of Pathological Complete
Response after Neoadjuvant Chemotherapy for breast cancer using ensemble
machine learning. Informatics in Medicine Unlocked. 2019;16:100219.
Table 1 classification labels of diseases