Literature Cited:
Berger, L., Speare, R., Daszak, P., Green, D. E., Cunningham, A. A., Goggin C. L.,…Parkes, H. (1998). Chytridiomycosis causes amphibian mortality associated with population declines in the rain forests of Australia and Central America. Proc Natl Acad Sci USA, 95: 9031−9036
Boyle, D. G., Boyle, D. B., Olsen, V., Morgan, J. A. T., Hyatt, A. D. (2004). Rapid quantitative detection of chytridiomycosis (Batrachochytrium dendrobatidis) in amphibian samples using real-time Taqman PCR assay. Diseases of Aquatic Organisms, 60: 141–148
Bradford, D. F., Graber, D. M. (1993). Isolation of remaining populations of the native frog, Rana muscosa , by introduced fishes in Sequoia and Kings Canyon National Parks, California. Conservation
Biology, 7:882–888
California Department of Fish and Wildlife. (2020). Mountain Yellow-legged Frog threats and Status. https://wildlife.ca.gov/Regions/6/Conservation/Amphibians/Threats-and-Status, [accessed 30 April 2020]
Chestnut, T., Anderson, C., Popa, R., Blaustein, A. R., Voytek, M., Olson, D. H, Kirshtein, J. (2014). Heterogeneous occupancy and density estimates of the pathogenic fungus Batrachochytrium dendrobatidis in waters of North America. PLOS ONE, 9: e106790
Dunker, K. J., Sepulveda, A. J., Massengill, R. L., Olsen, J. B., Russ, L., Wenburg, J. K., Antonovich, A. (2016). Potential of environmental DNA to evaluate Northern Pike (Esox lucius ) eradication efforts: an experimental test and case study. PLOS ONE, 11:1–21
Ellison, S. L. R., English, C. A., Burns, M. J., Keer, J. T. (2006). Routes to improving the reliability of low level DNA analysis using real-time PCR. BMC. Biotechnologies, 6:33
Fellers, G. M., Green, D. E., Longcore, J. E. (2001). Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa ). Copeia, 2001:945–953
Goldberg C. S., Pilliod, D. S., Arkle, R. S., Lisette, P. W. (2011). Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLOS ONE, 6: e22746
Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J., Waits, L. P. (2013). Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum ). Freshwater Science, 32:792–800
Goldberg, C. S., Turner, C. R., Deiner, K., Klymus, K. E., Thomsen, P. F., Murphy, M. A.,…Taberlet, P. (2016). Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution, 7(11): 1299-1307
Harris, R. N., Brucker, R. M., Walke, J. B., Becker, M. H., Schwantes, C. R., Flaherty, D. C.,… Minbiole, K. P. C. (2009). Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME, J 3: 818−824
Hunter, M. E., Oyler-McCance, S. J., Dorazio, R. M., Fike, J. A., Smith, B. J., Hunter, C. T.,…Hart, K.M. (2015). Environmental DNA (eDNA) sampling improves occurrence and detection estimates of invasive Burmese pythons. PlOS ONE, 10 (4)
Hyman, O. J., Collins, J. P. (2012). Evaluation of a filtration-based method for detecting Batrachochytrium dendrobatidis in natural bodies of water. Disease of Aquatic Organisms, 97: 185−195
Jerde, C. L., Mahon, A. R., Chadderton, W. L., Lodge, D. M. (2011). “Sight-unseen” detection of rare aquatic species using environmental DNA. Conservation Letters, 4, 150-157
Johnson, M. L., Berger, L., Philips, L., Speare, R. (2003). Fungicidal effects of chemical disinfectant, UV light, desiccation and heat on the amphibian chytrid Batrachochytrium dendrobatidis. Diseases of Aquatic Organisms, 57: 255−260
IUCN. (2020). IUCN Red List of Threatened Species v. 2020-1. https://www.iucnredlist.org, [accessed 30 April 2013]
Kamoroff, C., Goldberg, C. S. (2017). Using environmental DNA for early detection of amphibian chytrid fungus Batrachochytrium dendrobatidis prior to a ranid die-off. Diseases of Aquatic Organisms, 127(1): 75-79
Kamoroff, C., Goldberg, C. S. (2018). An issue of life or death: using eDNA to detect viable individuals in wilderness restoration. Freshwater Science, 37 (3), 685-696
Kamoroff, C., Daniele, N., Grasso, R. L., Rising, R., Espinoza, T., Goldberg, C. S. (2019). Effective removal of the American bullfrog (Lithobates catesbeianus ) on a landscape level: long term monitoring and removal efforts in Yosemite Valley, Yosemite National Park. Biological Invasions, 1-10
Kirshtein, J. D., Anderson, C. W., Wood, J. S., Longcore, J. E., Voytek, M. A. (2007). Quantitative PCR detection of Batrachochytrium dendrobatidis DNA from sediments and water. Diseases of Aquatic Organisms, 77: 11−15
Knapp, R. A., Matthews, K. R. (2000). Non-native mountain fish introductions and the within decline of the yellow-legged frog from within protected areas. Conservation Biology, 14: 428–438
Knapp, R. A., Fellers, G. M., Kleeman, P. M., Miller, D. A. W., Vredenburg, V. T., Rosenblum, E. B., Briggs, C. J. (2016). Large-scale recovery of an endangered amphibian despite ongoing exposure to multiple stressors. Proceedings of the National Academy of Sciences, 113(42): 11889-11894
Kriger, K. M., Hines, H. B., Hyett, A. D., Boyle, D. G., Hero, J. M. (2006). Techniques for detecting chytridiomycosis in wild frogs: comparing histology with real-time Taqman PCR. Diseases of Aquatic Organisms, 71: 141−148
Kuznetsova, A., Brockhoff, P. B., Christensen, R. H. B. (2015). Package ‘lmerTest’. R package, version 2.0. R Project for Statistical Computing. Vienna, Austria
Minamoto, T., Naka, T., Mji, K., Maruyama, A. (2016). Techniques for the practical collection of environmental DNA: filter selection, preservation, and extraction. Limnology, 17:23-32
Longcore, J. E., Pessier, A. P., Nichols, D. K. (1999).Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia, 91:219–227
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
Rachowicz, L. J., Hero, J. M., Alford, R. A., Tayon, J. W., Morgan, J. A. T., Vredenburg, V. T.,…Briggs, C. J. (2005). The novel and endemic pathogen hypotheses: competing explanations for the origin of emerging infectious diseases of wildlife. Conservation Biology, 19: 1441−1448
Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M., Gough, K. C. (2014). The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology. Journal of Applied Ecology, 51:1450–1459
Sepulveda, A. J., Hutchins, P. R., Massengill, R. L., Dunker, K. J., Barnes, M. A. (2018). Tradeoffs of a portable, field-based environmental DNA platform for detecting invasive northern pike (Esox lucius ) in Alaska. Management of Biological Invasions, 9 (3), 253-258
Skerratt, L. F., Berger, L., Speare, R., Cashins, S., McDonald, K. R., Phillott, D.,… Kenyon, N. (2007). Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth, 4: 125−134
Stuart, S. N., Chanson, J. S., Cox, N. A., Young, B. E., Rodrigues, A. S. L., Fischman, D. L., Waller, R. W. (2004). Status and trends of amphibian declines and extinctions worldwide. Science, 306:1783–1786
Taberlet, P., Coissac, E., Hajibabaei, M., Rieseberg, L. H. (2012). Environmental DNA. Molecular Ecology, 21:1789–1793
U.S. Fish and Wildlife Service. (2014). Endangered species status for Sierra Nevada yellow-legged frog and northern distinct population segment of the mountain yellow-legged frog, and threatened species status for Yosemite toad: Final Rule. Fed Regist, 79(82):24256–24310
Vredenburg, V. T., Knapp, R. A., Tunstall, T. S., Briggs, C. J. (2010). Dynamics of an emerging disease drive large-scale amphibian population extinctions. Proc Natl Acad Sci, USA 107: 9689−9694
Walker, S. F., Salas, M. B., Jenkins, D., Garner, T. W. J., Cunningham, A. A., Hyatt, A. D.,…Fisher, M. C. (2007). Environmental detection of Batrachochytrium dendrobatidis in a temperate climate. Disease of Aquatic Organisms, 77:105−112
Yosemite National Park (2019) Unpublished data
Table 1. Sample collection meta-data and results across all 3 sites and sample types: control sample (Blank), environmental DNA sample (eDNA), and frog swab (Swab). “# of Samples Collected” refers to number of frogs swabbed, eDNA samples collected, and eDNA blanks collected for PCR analysis of Batrachochytrium dendrobatidis (Bd)DNA. Bd DNA detection and quantification results for field and lab methods are indicated by “Field:” or “Lab:” respectively. MeanBd DNA quantification is the average number of Bd DNA copies found across all samples and technical replicates with standard deviation (SD) across all samples. – indicates not applicable for respected cell type. DNA below the level of the standard curve is marked by “<100”.