References and Notes
  1. D. Kosenkov, J. Comp. Chem.  2016 , 37, 1847-1854.
  2. Y. Kholod, M. DeFilippo, B. Reed, D. Valdez, G. Gillan, and D. Kosenkov, J. Comp. Chem. 2018 , 39, 438-449.
  3. Y. K. Kosenkov and D. Kosenkov, J. Chem. Phys.  2019 , 151, 144101.
  4. G. Linden, L. Zhang, F. Pieck, U. Linne, D. Kosenkov, R. Tonner, and O. Vazquez, Angew. Chem. Int. Ed.  2019 , 58, 12868-12873.
  5. R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Science, 2011 , 332, 805-809.
  6. C. Curutchet, B. Mennucci, Chem. Rev. 2017 , 117, 294–343.
  7. G. D. Scholes, G. R. Fleming, A. Olaya-Castro, R. van Grondelle,Nat. Chem. 2011 , 3, 763–774.
  8. A. Chenu, G. D. Scholes, Annu. Rev. Phys. Chem. 2015 , 66, 69-96.
  9. O. G. Reid, G. Rumbles, J. Phys. Chem. C , 2016 , 120, 87–97.
  10. G. S. Engel, T. R. Calhoun, E. L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R. E. Blankenship, G. R. Fleming, Nature , 2007 , 446, 782–786.
  11. G. Li, R. Zhu, Y. Yang Nat. Photonics,  2012 , 6, 153–161.
  12. M. Kaltenbrunner, M. S.White, E. D. Głowacki, T. Sekitani, T. Someya, N. S. Sariciftci, S. Bauer, Nat. Commun. 2012 , 770.
  13. M. B. Schubert, J. H.Werner, Mater. Today, 2006 , 9, 42–50.
  14. M.S. Gordon, M.W. Schmidt, In Theory and Applications of Computational Chemistry: the first forty years. C.E. Dykstra, G. Frenking, K.S. Kim, G.E. Scuseria, (Eds.), Elsevier: Amsterdam, 2005 , 1167-1189.
  15. Gaussian 16, Revision B.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V. Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V. Ortiz, A. F. Izmaylov, J. L. Sonnenberg, D. Williams-Young, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2016 .
  16. T. Förster, Naturwissenschaften, 1946 , 33, 166−175.
  17. Th. Förster, Delocalized Excitation and Excitation Transfer,1965 , Florida State University, Tallahassee, Florida.
  18. E. K. Irish, R. Gómez-Bombarelli, B. W. Lovett, Phys. Rev. A ,2014 , 90, 012510.
  19. RCSB Protein Data Bank https://www.rcsb.org/ (Accesses Apr 8, 2020)
  20. J. C. Gower, G. B. Dijksterhuis, Procrustes Problems; Oxford University Press: Oxford, 2004 .
  21. .J. Wen, J. Harada, K. Buyle, K. Yuan, H. Tamiaki, H. Oh-oka, R.A. Loomis, R.E. Blankenship, Biochemistry, 2010 , 49, 5455-63.
  22. E. L. Read, G. S. Schlau-Cohen, G.S. Engel, J. Wen, R.E. Blankenship, G.R. Fleming, Biophys. J. 2008 , 95 , 847-856.
  23. T. Renger, Photosynth. Res. 2009 , 102, 471-485.
  24. C. Curutchet, G. D. Scholes, B. Mennucci, R. Cammi, J. Phys. Chem. B. 2007 , 111, 13253- 13265.
  25. G. D. Scholes, Annu. Rev. Phys. Chem. 2003 , 54, 57-87.
  26. O’Neil, M.J. (ed.). The Merck Index - An Encyclopedia of Chemicals, Drugs, and Biologicals. Cambridge, UK: Royal Society of Chemistry, 2013., p. 14 https://pubchem.ncbi.nlm.nih.gov/compound/acetonitrile#section=Spectral-Properties(Accessed Apr 8, 2020)
  27. H-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems; Oxford Univ. Press: Oxford 2002 .
  28. The Python Standard Library https://docs.python.org/2.7/library/ (Accessed Apr 8, 2020)
  29. NumPy https://numpy.org/ (Accessed Apr 8, 2020)
  30. SciPy https://www.scipy.org/ (Accessed Apr 8, 2020)
  31. cubegen https://gaussian.com/cubegen/ (Accessed Apr 8, 2020
  32. Jmol: an open-source Java viewer for chemical structures in 3D http://jmol.sourceforge.net/ (Accessed Apr 8, 2020)
  33. PyAudio 0.2.11 https://pypi.org/project/PyAudio/ (Accessed Apr 8, 2020)
  34. P. Virtanen, R. Gommers, Nat. Methods , 2020 , 17, 261–272.
  35. urllib2 — extensible library for opening URL https://docs.python.org/2/library/urllib2.html#module-urllib2 (Accessed Apr 8, 2020)
  36. NetworkX Software for complex networks https://networkx.github.io/ (Accessed Apr 8, 2020)
  37. Shields, G. C., Twenty Years of Exceptional Success: The Molecular Education and Research Consortium in Undergraduate computational chemistRY (MERCURY). Int. J. Quantum Chem.2020,  under review .
  38. C.-P. Hsu. J. Chem. Phys. 2001 , 114, 3065.
  39. J. Frenkel, J. Phys. Rev. 1931 , 37, 17−44.
  40. A. Davydov, Theory of Molecular Excitons, 1971, Springer US: New York,1971 .