References
1. GBD 2015 Disease and Injury Incidence and Prevalence Collaborators. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet (London, England) . 2016;388(10053):1545-1602. doi:10.1016/S0140-6736(16)31678-6
2. Villarreal MF, Huerta-Gutierrez R, Fregni F. Parkinson’s disease.Neuromethods . 2018;138(9):139-181. doi:10.1007/978-1-4939-7880-9_5
3. Miller DB, O’Callaghan JP. Biomarkers of Parkinson’s disease: present and future. Metabolism . 2015;64(3 Suppl 1):S40-6. doi:10.1016/j.metabol.2014.10.030
4. Movement Disorder Society Task Force on Rating Scales for Parkinson’s Disease. The Unified Parkinson’s Disease Rating Scale (UPDRS): status and recommendations. Mov Disord . 2003;18(7):738-750. doi:10.1002/mds.10473
5. Goetz CG, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Process, format, and clinimetric testing plan.Mov Disord . 2007;22(1):41-47. doi:10.1002/mds.21198
6. Goetz CG, Tilley BC, Shaftman SR, et al. Movement Disorder Society-Sponsored Revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): Scale presentation and clinimetric testing results.Mov Disord . 2008;23(15):2129-2170. doi:10.1002/mds.22340
7. Kalia L V, Kalia SK, Lang AE. Disease-modifying strategies for Parkinson’s disease. Mov Disord . 2015;30(11):1442-1450. doi:10.1002/mds.26354
8. Ueckert S. Modeling Composite Assessment Data Using Item Response Theory. CPT Pharmacometrics Syst Pharmacol . 2018;7(4):205-218. doi:10.1002/psp4.12280
9. Ueckert S, Plan EL, Ito K, et al. Improved utilization of ADAS-cog assessment data through item response theory based pharmacometric modeling. Pharm Res . 2014;31(8):2152-2165. doi:10.1007/s11095-014-1315-5
10. Novakovic AM, Krekels EHJ, Munafo A, Ueckert S, Karlsson MO. Application of Item Response Theory to Modeling of Expanded Disability Status Scale in Multiple Sclerosis. AAPS J . 2017;19(1):172-179. doi:10.1208/s12248-016-9977-z
11. Krekels EHJJ, Novakovic AM, Vermeulen AM, Friberg LE, Karlsson MO. Item response theory to quantify longitudinal placebo and paliperidone effects on PANSS scores in schizophrenia. CPT pharmacometrics Syst Pharmacol . 2017;(July):543-551. doi:10.1002/psp4.12207
12. Gottipati G, Karlsson MO, Plan EL. Modeling a Composite Score in Parkinson’s Disease Using Item Response Theory. AAPS J . 2017;(2). doi:10.1208/s12248-017-0058-8
13. Wilson M, Masters GN. Polytomous Item Response Theory Models . Vol 58.; 1993. doi:10.1007/BF02294473
14. Lei P-W, Zhao Y. Effects of Vertical Scaling Methods on Linear Growth Estimation. Appl Psychol Meas . 2012;36(1):21-39. doi:10.1177/0146621611425171
15. O’Hagan A, Stevens JW, Campbell MJ. Assurance in clinical trial design. Pharm Stat . 2005;4(3):187-201. doi:10.1002/pst.175
16. Keizer RJ, Karlsson MO, Hooker A. Modeling and Simulation Workbench for NONMEM: Tutorial on Pirana, PsN, and Xpose. CPT pharmacometrics Syst Pharmacol . 2013;2:e50. doi:10.1038/psp.2013.24
17. Team RC. R: A Language and Environment for Statistical ComputingNo Title. 2017.
18. Chalmers RP. mirt : A Multidimensional Item Response Theory Package for the R Environment. J Stat Softw . 2012;48(6). doi:10.18637/jss.v048.i06
19. Chalmers RP. Generating Adaptive and Non-Adaptive Test Interfaces for Multidimensional Item Response Theory Applications. J Stat Softw . 2016;71(5). doi:10.18637/jss.v071.i05
20. Venuto CS, Potter NB, Ray Dorsey E, Kieburtz K. A review of disease progression models of Parkinson’s disease and applications in clinical trials. Mov Disord . 2016;31(7):947-956. doi:10.1002/mds.26644
21. Vu TC, Nutt JG, Holford NHG. Disease progress and response to treatment as predictors of survival, disability, cognitive impairment and depression in Parkinson’s disease. Br J Clin Pharmacol . 2012;74(2):284-295. doi:10.1111/j.1365-2125.2012.04208.x
22. Buatois S, Retout S, Frey N, Ueckert S. Item Response Theory as an Efficient Tool to Describe a Heterogeneous Clinical Rating Scale in De Novo Idiopathic Parkinson’s Disease Patients. Pharm Res . 2017;34(10):2109-2118. doi:10.1007/s11095-017-2216-1
23. Holden SK, Finseth T, Sillau SH, Berman BD. Progression of MDS-UPDRS Scores Over Five Years in De Novo Parkinson Disease from the Parkinson’s Progression Markers Initiative Cohort. Mov Disord Clin Pract . 5(1):47-53. doi:10.1002/mdc3.12553
24. Latourelle JC, Beste MT, Hadzi TC, et al. Large-scale identification of clinical and genetic predictors of motor progression in patients with newly diagnosed Parkinson’s disease: a longitudinal cohort study and validation. Lancet Neurol . 2017;16(11):908-916. doi:10.1016/S1474-4422(17)30328-9
25. Prasad S, Saini J, Yadav R, Pal PK. Motor asymmetry and neuromelanin imaging: concordance in Parkinson’s disease. Parkinsonism Relat Disord. 2018;53:28-32
26. Heldmann M, Heeren J, Klein C, et al. Neuroimaging abnormalities in individuals exhibiting Parkinson’s disease risk markers. Mov Disord 2018;33(9):1412-1422
27. van der Hoorn A, Burger H, Leenders KL, de Jong BM. Handedness correlates with the dominant Parkinson side: A systematic review and meta-analysis. Mov Disord 2012;27: 206-210
28. Gottipati G, Berges A, Yang S, Chen C, Karlsson M, Plan E. Item response model adaptation for analysing data of different versions of a Parkinson’s disease endpoint. Pharm Res 2019; doi.org/10.1007/s11095-019-2668-6
29. Vong C, Bergstrand M, Nyberg J, Karlsson MO. Rapid sample size calculations for a defined likelihood ratio test-based power in mixed-effects models. AAPS J. 2012;14(2):176-186; doi.10.1208/s12248-012-9327-8
30. Ahamadi M, Conrado DJ, Macha S, Sinha V, Stone J, Burton J, Nicholas T, Gallagher J, Dexter D, Bani M, Boroojerdi B, Smit H, Weidemann J, Chen C, Yang M, Maciuca R, Lawson R, Burn D, Marek K, Venuto C, Stafford B, Akalu M, Stephenson D, Romero K; Critical Path for Parkinson’s (CPP) Consortium. Development of a disease progression model for leucine-rich repeat kinase 2 in Parkinson’s disease to inform clinical trial designs. Clinical Pharmacology and Therapeutics 2020; 107:553-562; doi.org/10.1002/cpt.1634
31. Forjaz MJ, Ayala A, Testa CM, Bain PG, Elble R, Haubenberger D, Rodriguez-Blazquez C, Deuschl G, Martinez-Martin P. Proposing a Parkinson’s disease-specific tremor scale from the MDS-UPDRS. Mov Disord. 2015;30(8):1139-43; doi.10.1002/mds.26271
32. Regnault A, Boroojerdi B, Meunier J. et al. Does the MDS-UPDRS provide the precision to assess progression in early Parkinson’s disease? Learnings from the Parkinson’s progression marker initiative cohort. J Neurol 2019;266:1927–1936
33. Jonsson S, Yang S, Chen C, Plan EL, Karlsson MO. Sample size for detection of drug effect using item level and total score models for Unified Parkinson’s Disease Rating Scale data, PAGE 27 (2018) Abstr 8638 [www.page-meeting.org/?abstract=8638]
34 Sheng Y, Yang S, Ma P, Chen C. Item response theory modelling of motor scores to investigate feasibility of reducing proof-of-concept trial for Parkinson’s disease. PAGE 27 (2018) Abstr 8545 [www.page-meeting.org/?abstract=8545]
35. de Siqueira Tosin MH, Goetz CG, Luo S, Choi D, Stebbins GT. Item Response Theory Analysis of the MDS-UPDRS Motor Examination: Tremor vs. Nontremor Items [published online ahead of print, 2020 May 29]. Mov Disord. 2020;10.1002/mds.28110
36. Štochl J, Croudace TJ, Brožová H, Klempíř J, Roth J, Růžička E. Changes of hand preference in Parkinson’s disease. J Neural Transm (Vienna). 2012;119(6):693-696.