References
1. J. E. Campbell, et al. , Large historical growth in global
terrestrial gross primary production. Nature 544 , 84–87
(2017).
2. Y. Zheng, et al. , Improved estimate of global gross primary
production for reproducing its long-term variation, 1982-2017.Earth Syst. Sci. Data Discuss. (2019).
3. G. Lasslop, et al. , Terrestrial Gross Carbon Dioxide Uptake:
Global Distribution and Covariation with Climate. Science (80-.).329 , 834–838 (2010).
4. J. Xia, et al. , Joint control of terrestrial gross primary
productivity by plant phenology and physiology. Proc. Natl. Acad.
Sci. U. S. A. 112 , 2788–2793 (2015).
5. Wang, H., Prentice, I.C., Keenan, T.F. et al. Towards a universal
model for carbon dioxide uptake by plants. Nature Plants 3 ,
734–741 (2017).
6. G. B. Bonan, et al. , Model Structure and Climate Data
Uncertainty in Historical Simulations of the Terrestrial Carbon Cycle
(1850–2014). Global Biogeochem. Cycles 33 , 1310–1326
(2019).
7. X. Xiao, et al. , Satellite-based modeling of gross primary
production in an evergreen needleleaf forest. Remote Sens.
Environ. 89 , 519–534 (2004).
8. W. Yuan, et al. , Deriving a light use efficiency model from
eddy covariance flux data for predicting daily gross primary production
across biomes. Agric. For. Meteorol. 143 , 189–207
(2007).
9. W. Yuan, et al. , Deriving a light use efficiency model from
eddy covariance flux data for predicting daily gross primary production
across biomes. 143 , 189–207 (2007).
10. Z. Xiao, et al. , Long-Time-Series Global Land Surface
Satellite Leaf Area Index Product Derived From MODIS and AVHRR Surface
Reflectance. 1–18 (2016).
11. S. W. Running, M. Zhao, Daily GPP and Annual NPP (MOD17A2/A3)
products NASA Earth Observing System MODIS Land Algorithm - User’s guide
V3. 28 (2015).
12. P. Wagle, P. H. Gowda, X. Xiao, K. C. Anup, Parameterizing ecosystem
light use efficiency and water use efficiency to estimate maize gross
primary production and evapotranspiration using MODIS EVI. Agric.
For. Meteorol. 222 , 87–97 (2016).
13. Y. Zheng, et al. , Agricultural and Forest Meteorology Sources
of uncertainty in gross primary productivity simulated by light use
efficiency models: Model structure, parameters, input data, and spatial
resolution. Agric. For. Meteorol. 263 , 242–257 (2018).
14. W. Yuan, et al. , Estimating crop yield using a
satellite-based light use efficiency model. Ecol. Indic.60 , 702–709 (2016).
15. S. W. RUNNING, et al. , A Continuous Satellite-Derived Measure
of Global Terrestrial Primary Production. Bioscience 54 ,
547 (2006).
16. X. Xie, et al. , Assessments of gross primary productivity
estimations with satellite data-driven models using eddy covariance
observation sites over the northern hemisphere. Agric. For.
Meteorol. 280 , 107771 (2020).
17. W. Yuan, et al. , Agricultural and Forest Meteorology
Uncertainty in simulating gross primary production of cropland ecosystem
from satellite-based models. Agric. For. Meteorol. 207 ,
48–57 (2015).
18. H. Wang, et al. , Deriving maximal light use efficiency from
coordinated flux measurements and satellite data for regional gross
primary production modeling. Remote Sens. Environ. 114 ,
2248–2258 (2010).
19. J. Xiao, K. J. Davis, N. M. Urban, K. Keller, N. Z. Saliendra,
Upscaling carbon fluxes from towers to the regional scale: Influence of
parameter variability and land cover representation on regional flux
estimates. 116 , 1–15 (2011).
20. G. Badgley, L. D. L. Anderegg, J. A. Berry, C. B. Field, Terrestrial
gross primary production: Using NIRV to scale from site to globe.Glob. Chang. Biol. 25 , 3731–3740 (2019).
21. S. Kang, et al. , A regional phenology model for detecting
onset of greenness in temperate mixed forests, Korea: an application of
MODIS leaf area index. 86 , 232–242 (2003).
22. T. Sasai, K. Okamoto, T. Hiyama, Y. Yamaguchi, Comparing terrestrial
carbon fluxes from the scale of a flux tower to the global scale.Ecol. Modell. 208 , 135–144 (2007).
23. J. Gomis-cebolla, J. C. Jimenez, J. A. Sobrino, Remote Sensing of
Environment LST retrieval algorithm adapted to the Amazon evergreen
forests using MODIS data. Remote Sens. Environ. , 0–1 (2017).
24. S. Foga, et al. , Cloud detection algorithm comparison and
validation for operational Landsat data products. Remote Sens.
Environ. 194 , 379–390 (2017).
25. Stillinger, T., Roberts, D. A., Collar, N. M., & Dozier, J. Cloud
masking for Landsat 8 and MODIS Terra over snow‐covered terrain: Error
analysis and spectral similarity between snow and cloud. Water Resources
Research, 55 , 6169 – 6184 (2019).
26. S. J. Cheng, Z. Butterfield, G. Keppel-aleks, A. L. Steiner, The
Global Influence of Cloud Optical Thickness on Terrestrial Carbon
Uptake. 23 (2019).
27. L. Gu, et al. , Response of a Deciduous Forest to the Mount
Pinatubo Eruption: Enhanced Photosynthesis. 299 , 2035–2038
(2003).
28. Keppel‐Aleks, G., and Washenfelder, R. A., The effect of atmospheric
sulfate reductions on diffuse radiation and photosynthesis in the United
States during 1995–2013, Geophys. Res. Lett., 43 , 9984– 9993,
(2016).
29. M. S. Lee, D. Y. Hollinger, T. F. Keenan, A. P. Ouimette, S. V
Ollinger, Agricultural and Forest Meteorology Model-based analysis of
the impact of di ff use radiation on CO 2 exchange in a temperate
deciduous forest. Agric. For. Meteorol. 249 , 377–389
(2018).
30. V. Haverd, et al. , Higher than expected CO 2 fertilization
inferred from leaf to global observations. 1–13 (2020).
31. Z. Sun, et al. , Science of the Total Environment Evaluating
and comparing remote sensing terrestrial GPP models for their response
to climate variability and CO 2 trends. Sci. Total Environ.668 , 696–713 (2019).
32. A. Bastos, P. Ciais, F. Chevallier, C. Rödenbeck, A. P. Ballantyne,
Contrasting effects of CO 2 fertilization, land-use change and warming
on seasonal amplitude of Northern Hemisphere CO 2 exchange. 12361–12375
(2019).
33. W. Yuan, et al. , Agricultural and Forest Meteorology Global
comparison of light use efficiency models for simulating terrestrial
vegetation gross primary production based on the LaThuile database.Agric. For. Meteorol. 192 –193 , 108–120
(2014).
34. S. A. Kurc, E. E. Small, Dynamics of evapotranspiration in semiarid
grassland and shrubland ecosystems during the summer monsoon season,
central New Mexico. 40 , 1–15 (2004).
35. Y. Chen, et al. , Comparison of satellite-based
evapotranspiration models over terrestrial ecosystems in China.Remote Sens. Environ. 140 , 279–293 (2014).
36. H. Y. Ma, et al. , CAUSES: On the Role of Surface Energy
Budget Errors to the Warm Surface Air Temperature Error Over the Central
United States. J. Geophys. Res. Atmos. 123 , 2888–2909
(2018).
37. B. Gao, NDWI-A Normalized Difference Water Index for Remote Sensing
of Vegetation Liquid Water From Space. Remote Sens. Environ.266 , 257–266 (1996).
38. Z. Liu, L. Wang, S. Wang, Comparison of different GPP models in
China using MODIS image and ChinaFLUX data. Remote Sens.6 , 10215–10231 (2014).
39. C. Wu, J. W. Munger, Z. Niu, D. Kuang, Remote Sensing of Environment
Comparison of multiple models for estimating gross primary production
using MODIS and eddy covariance data in Harvard Forest. Remote
Sens. Environ. 114 , 2925–2939 (2010).
40. Morton, D., Nagol, J., Carabajal, C. et al. Amazon forests maintain
consistent canopy structure and greenness during the dry season. Nature506 , 221–224 (2014).
41. E. Borbas, G. Hulley, R. Knuteson, M. Feltz, S. Science, MEaSUREs
Unified and Coherent Land Surface Temperature and Emissivity (LST & E)
Earth System Data Record ( ESDR ): The Combined ASTER and MODIS
Emissivity database over Land ( CAMEL ) Version 2 Users ’ Guide (2019).
42. C. Jin, et al. , Agricultural and Forest Meteorology Effects
of in-situ and reanalysis climate data on estimation of cropland gross
primary production using the Vegetation Photosynthesis Model.Agric. For. Meteorol. 213 , 240–250 (2015).
43. X. Wang, J. M. Chen, W. Ju, Photochemical reflectance index (PRI)
can be used to improve the relationship between gross primary
productivity (GPP) and sun-induced chlorophyll fluorescence (SIF).Remote Sens. Environ. 246 , 111888 (2020).
44. M. Chiesi, et al. , Testing the applicability of BIOME-BGC to
simulate beech gross primary production in Europe using a new
continental weather dataset. Ann. For. Sci. 73 , 713–727
(2016).
45. M. M. Rienecker, et al. , MERRA: NASA’s modern-era
retrospective analysis for research and applications. J. Clim.24 , 3624–3648 (2011).
46. David W. Kicklighter, Michele Bruno, Silke DZönges et al. , A
first-order analysis of the potential rôle of CO2 fertilization to
affect the global carbon budget: a comparison of four terrestrial
biosphere models, Tellus B: Chemical and Physical Meteorology,51 :2, 343-366 (1999).
47. A. J. W. Raich, et al. , Potential Net Primary Productivity in
South America: Application of a Global Model Published by : Ecological
Society of America Stable URL : http://www.jstor.org/stable/1941899 .
POTENTIAL NET PRIMARY PRODUCTIVITY IN SOUTH AMERICA: APPLICATION OF A
GLOB. 1 , 399–429 (2013).
48. R. J. Murphy, B. Whelan, A. Chlingaryan, S. Sukkarieh, Quantifying
leaf ‑ scale variations in water absorption in lettuce from
hyperspectral imagery: a laboratory study with implications for
measuring leaf water content in the context of precision agriculture.Precis. Agric. (2018).
49. C. Ding, X. Liu, F. Huang, Y. Li, X. Zou, Onset of drying and
dormancy in relation to water dynamics of semi-arid grasslands from
MODIS NDWI. Agric. For. Meteorol. 234 –235 ,
22–30 (2017).
50. Y. Zhang, N. C. Parazoo, A. P. Williams, S. Zhou, P. Gentine, Large
and projected strengthening moisture limitation on end-of-season
photosynthesis. Proc. Natl. Acad. Sci. , 201914436 (2020).