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Abstract
Nitrogen use efficiency (NUE) is an important and complex crops trait and its improvement represents a strategy to maintain high yield reducing N-supply. We report the genome-wide transcriptomic analysis of four eggplants contrasting for NUE to identify key genes related to the NUE pathway, after short- and long-term low-N exposure, in both root and shoot. Co-expression Gene Networks (CGN) analysis permitted to identify up-regulated differential expressed genes (DEGs) involved in the light reaction pathway, the biological processes response to inorganic substance, abiotic stimulus and cellular response to nitrogen starvation in high NUE genotypes. Some transcription factor (TF) were up-regulated in the N-use efficient genotypes, in particular, WRKY33 showed a significant up-regulation triggering the higher expression of 21 genes cluster including other TFs, many of which associated to N-metabolism. 

To validate our results, an independent de novo experiment including two other NUE-contrasting genotypes, at both low and high N supply, was carried out. Interestingly, the high significant WRKY33 expression and its cluster were confirmed in the high NUE genotypes at low-N supply.

Moreover, the WRKY33 role was confirmed in Arabidopsis as the 35S::AtWRKY33 over expressing line showed a more competitive root system able to uptake more efficiently N from the soil.
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Introduction
Eggplant (Solanum melongena L.) belonging to the Solanaceae family, is the third economically important vegetable crop, after potato and tomato. It is cultivated worldwide, mainly in China and India, with 54.1 million tons of agricultural production in 2018 (http://faostat.fao.org). 
Eggplant breeding has been focused on the improvement of the main agronomic traits such as yield potential, biotic stress tolerance, post-harvest processing-related traits (Lo Scalzo et al., 2016; Portis et al., 2014; Prohens et al., 2013; Rotino et al., 2014; Toppino et al., 2016). By contrast, scarce efforts have been addressed towards breeding programs for improving Nitrogen Use Efficiency (NUE), albeit eggplant requires large amount of nitrogenous fertilizers for growth (Pal, Saimbhi & Bal, 2002). 
Nitrogen (N) fertilization has been an essential tool to maximize crop yields and quality, mainly for vegetables (Greenwood, Stone & Dravcott, 1990). However, the excessive N fertilizers provided to the soil (Nosengo, 2003) caused environmental and economic problems, such as fresh water and air pollution, and consequently human health damage (West et al., 2014). Thus, a strategy to preserve environmental quality and human health is the selection and the use of improved NUE crop genotypes. A first key approach for breeding high NUE crops is to exploit available genetic variation in germplasm collection, including older varieties and landraces (Abenavoli et al., 2016; Chardon, Barthélémy, Daniel-Vedele & Masclaux-Daubresse, 2010; Hawkeford, 2012).
NUE is a complex trait defined as the total biomass or yield per N supplied (Moll, Kamprath & Jackson, 1982), regulated by an intricate gene networks, involved in N uptake, assimilation, remobilization and affected by different environmental. It is frequently dissected in two main components: Nitrogen Uptake Efficiency (NUpE) and Nitrogen Utilization Efficiency (NUtE), the plant ability to take up, assimilate and utilize N from soil to grain (Good, Shrawat & Muench, 2004; Xu, Fan & Miller, 2012). 
NUpE could be improved by an efficient root system including important traits such as depth, proliferation, lateral root, able to increase the exploration of deeper soil and to respond to local and systemic N signals, mainly under low N supply (Garnett, Conn & Kaiser, 2009; Lynch, 2013; Qin et al., 2019). A competitive root architecture associated with efficient functional mechanisms for N uptake, including nitrate and ammonia transporters (NRTs and AMTs), will be able to confer a higher NUpE (Xu, Fan & Miller, 2012; Ferrante, Nocito, Morgutti & Sacchi, 2017). 
NUtE is even a much more complex task including signaling and regulation of N metabolism, translocation, remobilization, C/N balance and organ senescence (Chardon, Noël & Masclaux-Daubresse,  2012; McAllister, Betty & Good, 2012; Good, Shrawat & Muench, 2004; Xu, Fan & Miller, 2012; Tegeder & Masclaux-Daubresse, 2018). Therefore, understanding the biochemical, physiological and molecular mechanisms regulating NUE and its components will be also useful for breeding purposes (Good, Shrawat & Muench, 2004; Xu, Fan & Miller, 2012; He et al., 2015; Ferrante, Nocito, Morgutti & Sacchi, 2017).
Recently, many transcription factors (TF) and protein kinases (PK) were identified in crops as key genes able to arrange N-uptake, assimilation, translocation and remobilization (Kant, Bi & Rothstein, 2011; Masclaux-Daubresse et al., 2010; Simons et al., 2014; Xu, Fan & Miller, 2012). Among others, the WRKY family is an important TF class harbored a highly conserved domain of 60 amino acid residues (Eulgem, Rushton, Robatzek & Somssich, 2000), whose members are involved in physiological and developmental processes, as well as in plant response to biotic (Eulgem, Rushton, Robatzek & Somssich, 2000; Rushton, Somssich, Ringler & Shen, 2010) and abiotic stress (Shen et al., 2012; Viana, Busanello, da Maia, Pegoraro, & de Oliveira, 2018). 
Today, the Next-generation sequencing (NGS) opened intriguing chances for life sciences, by improving the efficiency and speed of gene discovery (Ansorge, 2009). Many studies on crops grown under different N conditions were carried out to identify the expression patterns of N-reactive genes through transcriptomic (Amiour et al., 2012; Simons et al. 2014). Recently, NUE-genotypic differences were addressed on several plant species (Gelli et al., 2014; Hao et al., 2011), but until now few reports, none about NUE, on differential transcriptomic profiling in eggplant have been reported (Li, Hu & Chu, 2018; Li et al., 2019). 
We recently investigated several eggplant accessions from different origins grown in both hydroponic system and soil pot, under low and high N supply, identifying four contrasting NUE genotypes (Mauceri et al., 2020). 
The aim of the current study was to identify key genes involved in the ability to cope N-stress under limited N supply at short and long-term using those contrasting NUE eggplants. Throughout a RNAseq approach, eggplant transcriptomic profiles were compared to pinpoint the main molecular players involved in plant responses to low nitrate aiming to identify novel target NUE-related genes. More interestingly, the transcription factor WRKY33 seemed a key player triggering genes network associated to low N response in eggplant. 

Materials and methods
Plant materials and experimental design
Four eggplants (Solanum melongena L.) named AM22, AM222, 67-3 and 305E40 contrasting for many morphological traits (Cericola et al., 2013) including NUE behavior (Mauceri et al., 2020) were employed. In detail, AM222 and AM22 were the NUE efficient and inefficient genotypes in both hydroponic and glasshouse experiments, respectively; while 305E40 and 67-3, female and male parents of a segregating F2 and RIL populations (Toppino et al., 2016; Barchi et al., 2019), showed an intermediate response to low-N, with 67-3 more efficient then 305E40 (Mauceri et al., 2020). 
The hydroponic experiment for RNA-seq was performed as described by Mauceri et al., (2020). After two days of N deprivation, 0.5 mM Ca (NO3)2 was added and seedlings were grown until 16 days. The growing units were transferred to a growth chamber at 24°C, 65% relative humidity and 14 h photoperiod with 350 µmol m2 s-1 light intensity for 18 days. The nutrient solution was renewed every three days and pH was adjusted to 5.8 with 1 N KOH. Each genotype and tissue (root and shoot) were collected at T0 (before N supply), T1 and T2 (24 h and 16 days after N supply). Three biological replicates, consisting of eight bulked plants for replicate, were collected for each sample.
RNA sequencing and data analysis
Total RNA was isolated and purified using the Mini RNeasy Plant kit (QIAGEN) and Kit Precision DNase (Primer Design). RNA degradation and contamination were monitored on 1% agarose gel; the samples were quantified using the Nanodrop. Five-hundred ng of total RNA per sample were used to construct cDNA libraries, following the Transeq approach single-end 60 bp reads reported in Tzfadia et al. (2018). Libraries were sequenced on six lanes of HiSeq 2500 System (Illumina), using the SR60 protocol. The output was ~3 million reads per sample, as recommended by Tzfadia et al., (2018).
Bioinformatics data analysis 
The bioinformatics service was provided by the “Mantoux Bioinformatics Institute of Nancy and the Stephen Grand Israel National Center for Personalized Medicine”, Weizmann Institute of Science for all the downstream analysis. The sequencing data were subjected to quality control (QC) with FastQC, a tool for high throughput sequence data (Andrews 2010. FastQC: a quality control tool for high throughput sequence data. http://www.bioinformatics.babraham.ac.uk/projects/fastqc). 
Poly A/T tails, Illumina sequencing adapters and GGG bases at the start of the read (Transeq protocol) were trimmed from the sequenced reads using Cutadapt (Martin, 2011). Resulting reads shorter than 30bp were discarded and mapped to eggplant reference genome SMEL_V3.2016_11_01 from the Italian Consortium (Barchi et al., 2019) using STAR vers. 2.4.2a (with EndToEnd option and outFilterMismatchNoverLmax was set to 0.04) (Dobin et al., 2013). Counting proceeded over the TES (Transcript End Site) region of each gene (TES region is defined as 200 bp downstream from the end of each gene, and at least 500 bases upstream to the end of gene), annotated in SMEL_V3.2016_11_01, using HTSeq-count (intersection-strict mode) (Anders, Pyl, & Huber, 2015). 
Differential expression analysis was performed using DESeq2 R package (1.10.1) (Love, Huber & Anders, 2014; Robinson & Oshlack, 2010) with the betaPrior, cooksCutoff and independentFiltering parameters set to False. Raw P values were adjusted for multiple testing using the procedure of Benjamini and Hochberg. Pipeline was constructed using Snakemake. The threshold levels for DEGs detection were set at FDR-corrected p-value < 0.05 and log2FC >|1| using the method by Benjamini & Hochberg, (1995).
Principal component analysis (PCA) was carried out with PCAGO, an interactive web service to analyze RNA-Seq data to get initial characterization of biological samples clustering and first insights into the biological background experiment (Gerst & Hölzer, 2019). 
Metabolism pathway overview
Pathway analysis was based on the MapMan ontology (Thimm et al., 2004) and figures were defined by mercator tool (http://mapman.gabipd.org/web/guest/mercator), with the default parameters assigned by the MapMan bin to the eggplant transcripts. Log2 fold changes obtained from the DESeq2 output were used for inputting the software to depict expression changes among the N-use efficient genotype AM222, the intermediate 67-3 and 305E40, and the inefficient AM22.
Gene Ontology (GO) and enrichment analysis
Gene Ontology (GO) classifies genes and their products, according to the corresponding biological processes (BP), cellular components (CC) and molecular functions (MF). The GO enrichment analysis was performed with the topGO bioconductor package Release (Version 3.8) (Alexa & Rahnenfuhrer, 2018).
Comparative Co-Expression Networks Construction and Visualization
CoExpNetViz tool allows to construct a gene co-expression network able to identify correlations between genes resulting up-/down-regulated at the same time, in the same biological process and in one or more genotypes. The analysis was performed by a set of queries or "bait" genes as input (chosen by the user) and a minimum set of gene expression data (Tzfadia et al., 2016). Based on Pearson's correlation, the relationships among genes were calculated and co-expressed genes were identified.
Thus, co-expressed genes were considered when the correlation felt below 1° or above 99° percentile of expression distribution based on the expression profiles similarity of 4,000 random genes and Correlation thresholds lower percentile rank 5 and Upper percentile rank 95. After calculating correlation matrices, positive and negative cut-off values (Vandepoele, Quimbaya, Casneuf, De Veylder & Van de Peer, 2009) were used to translate r values into a graph in which nodes and edges represented genes and co-expression relationships, respectively. Family nodes were displayed as circles, each of these representing a partition by a specific color, while bait genes were displayed in white.
NUE-related genes expression analysis by qRT-PCR
To validate the results, RNA samples, previously utilized for RNA-seq experiment, were employed for gene expression analysis of the most important DEGs by real time PCR (qRT-PCR) as described in Mauceri et al., (2020). Furthermore, an independent hydroponic experiment was performed adding the genotypes AM241 and AM194, previously characterized as contrasting for N use efficiency (Mauceri et al., 2020), together with the four genotypes already analyzed. On these three genotype pairs, DEGs expression, using two technical and two biological replicates, was assessed after long exposure (T2) to low and high N levels (0.5 and 10 mM). The high N supply was included to compare the trend of gene expression at both N-levels. 
AtWRKY33 transgenic lines: root morphological analysis and NUE calculation 
We analyzed SmWRKY33 sequence for finding the best orthologue in the Arabidopsis genome (The Arabidopsis Information Resource – TAIR – www.arabidopsis.org). A dendrogram using the multiple sequence alignment of WRKY genes from Arabidopsis, eggplant SmWRKY33 (from both Kazusa and Italian Consortia) and tomato SlWRKY33 (www.solgenomic.net) sequences was obtained. Furthermore, to discover conserved motifs among SmWRKY33 and the orthologous AtWRKY33, MEME online tool v5.0.5 (Bailey et al., 2009) was utilized. 

Arabidopsis wild-type, wrky33-2 knockdown mutant and 35S::AtWRKY33 overexpressed transgenic line in Col-0 background kindly provided by Prof. S. AbuQamar, Department of Biology, United Arab Emirates University were used (Sham et al., 2017). Seeds were surface sterilized, dispensed in vertical Petri dish and positioned in growth chamber as described by Lupini et al. (2013; 2014). After 5 days, the seedlings were transferred to low (0.5 mM, LN) or high (10 mM, HN) nitrate for further 7 days. Images of seedlings (12 days old) were acquired by scanning (STD 4,800, Régent Instruments Canada Inc.) with a resolution of 1,200 dots per inch (dpi). The Total Root Length (TRL), Primary Root Length (PRL) and Lateral Root Length (LRL) were measured using WinRhizo Pro v. Software. 2016a software 32-Bit (Régent Instruments Canada Inc.) and the Lateral Roots Number (LRN) was visually counted manually from the images (Abenavoli, Nicolò, Lupini, Oliva & Sorgonà, 2008; Lupini, Araniti, Sunseri & Abenavoli, 2014). 
Wild type and Arabidopsis mutant seeds were also germinated in pots (diameter 7 cm, 110 cm3 volume; three seeds per pot), filled with substrate (perlite: peat; 1:1) and every three days sub-irrigated using the same nutrient solution at low and high N level. After 45 days, plants were harvested to further analysis. Total nitrogen content (Nc, mg N) was determined as previously reported (Lupini et al., 2017). Nitrogen Use Efficiency (NUE, SDW N%‐1, where N% is the g N (100 g DW‐1) (Chardon, Barthélémy, Daniel-Vedele & Masclaux-Daubresse, 2010) was calculated. The mean is the average value of three replications.
Results
In a previous study, we investigated several eggplant accessions from different origin in hydroponic under low and high N supply, to identify different NUE genotypes through a morphological, physiological, and molecular approach. Four eggplant accessions selected as NUE‐contrasting were then grown in soil pots under greenhouse until fruit harvests to confirm their different NUE. In detail, AM222 and AM22 genotypes exhibited high and low NUE, respectively, while 67-3 and 305E40, the parents of a RIL population, showed an intermediate NUE with 67-3 significantly more efficient than 305E40 (Mauceri et al., 2020). Here, we analyzed the transcriptomic profiles of these eggplant genotypes adopting the same hydroponic experimental design, including low nitrate supply (0.5 mM), two tissues (shoot and root) and 3-time samplings (T0, before N supply; T1 and T2, 24h and 16 days after N supply, respectively). Three biological replicates of eight bulked plants for each treatment were processed for RNAseq experiment.
PCA analysis and differential expressed genes (DEGs) identification
The PCA was carried out by comparing the eggplant genotypes by time sampling (T0, T1 and T2) and tissues (root and shoot). Gene expression dataset, including the biological replicates for each genotype and tissue, were plotted into the three subsets T0, T1 and T2. Overall, the PCA showed that the main source of variation was mainly attributable to the genotype when the shoot was taken into account (Figure S1).
To detect DEGs, thirty-six pairwise comparisons among all the genotypes within each time sampling, in root and shoot, were carried out (Figure S2, Table S1). In root, the greatest number of DEGs was highlighted in the AM222 vs 305E40 comparison, at T0 and T2, while at T1 was highest in 67-3 vs AM22 comparison (Figure S2a-c). By contrast, in shoot, the highest DEGs number was evidenced in the AM222 vs 67-3 comparison, at T2 (Figure S2f). In addition, a comparative analysis of T1 vs T0 highlighted that AM22 genotype showed the highest number of DEGs both in root and shoot (Figure S2g-h).
The DEGs from all the comparisons were then processed by Pathways analysis (Metabolism Overview) and Gene Ontology classification to identify the up- and down-regulated genes shared by genotypes. 
MapMan Metabolic Pathways Analysis 
The metabolic pathways induced by N-treatment both in root and shoot were visualized through MapMan analysis by comparing at each time (T0, T1 and T2) the profiling data set of each other genotype (AM222, 67-3 and 305E40) vs AM22 (N-use inefficient in all the experiments – see Mauceri et al., 2020) (Figure S3).
At T0, the main root profiling changes were observed in cell wall and secondary metabolism transcripts in all the genotype pair comparisons. A prevalent genes up-regulation was observed in AM222 and 67-3 vs AM22 (Figure S3a). At T1, similar root profiling changes were showed with a decrease in DEGs number. A down-regulation in lipid metabolism genes was observed in both AM222 and 67-3 vs AM22 (Figure S3b). Finally, at T2, significant differences for phenol and flavonoid pathways gene expression (up and down regulated) were observed in all the three comparisons (Figure S3c).
In shoot (T0), a down-regulation of genes involved in secondary metabolism transcripts (mainly flavonoid and phenols) was observed in all three genotypes (AM222, 67-3 and 305E40) vs AM22 (Figure S3d). In addition, a significant up-regulation of light reactions, tetra-pyrrole and N metabolism pathways was observed. In particular, the NiR and NR enzymes appeared to be up-regulated in the more N-use efficient genotypes (AM222 and 67-3) vs AM22 (Figure S3d). By contrast, 305E40 confirmed a genes up-regulation in the tetra-pyrrole pathway vs AM22 only (Figure S3d). At T1, a significant up-regulation of the light reaction complex and tetra-pyrrole genes was confirmed in all three genotypes (Figure S3e). Finally, at T2, few DEGs were showed in the same pathways and, in particular AM222 confirmed significant differences in phenols metabolism vs AM22 (Figure S3f). 
In summary, the most significant DEGs from data intersection in the more N-use efficient genotypes AM222 and 67-3 vs AM22, in both root and shoot, were analyzed and then filtered by functional annotation able to reduce redundant results. In particular, five genes showed the highest logarithm to base 2-fold changes (log2FC) values in shoot, four at short-term (T1) and one at long-term (T2). Interestingly, these genes were related to the light-harvesting complex (LHC) and light receptor (at T1) (Figure 1a; Table S2), while an isoform of oxidoreductase activity Ferredoxin--NADP leaf chloroplastic (FNR) was strongly expressed mainly in AM222, the most N-use efficient genotype, at T2 (Figure 1b; Table S3). By contrast, in root, no significant DEGs were shared in the map metabolism overview comparison (data not shown). 
GO classification of plant responses to low-N supply within genotypes
TopGO enrichment analysis for all the comparisons within genotypes is showed in Figure S4. Among the genotypes, the most interesting GO biological process was observed in AM222 root comparing T1 vs T0 (short-term response to nitrate). In particular, a transcripts enrichment related to the GO: 0010167 response to nitrate, underlying a significant up-regulation of the genes NRT1/PTR FAMILY 6.3-like, BTB/POZ and TAZ domain-containing protein 1-like (BTB1) and the chloride channel protein CLC-b-like (CLC-B), ferredoxin--nitrite reductase, chloroplastic (NIR1) was observed. Further, genes belonging to GO:0015698 inorganic anion transport, 1-like molybdate transporter (MOT1), transporter–like sulfate, and phosphate transporter were up-regulated, as well as two isoforms of ferredoxin-chloroplastic-like involved in plant responses to N-stress in the GO:0006124 ferredoxin metabolic process (Table 1a). The comparisons T2 vs T1 and T2 vs T0 (long-term response to nitrate) showed a significant enrichment in the root of all the genotypes into the GO:0009628 response to abiotic stimulus and the GO:0010035 response to inorganic substance (Figure S4e-l), although this latter appeared to be increased only in AM22, 67-3 and 305E40 in T2 vs T0 comparison. In particular, a transcripts enrichment related to the GO:0042128 nitrate assimilation and the GO:0010167 response to nitrate was shown in AM22 (Figure S4j).
In shoot, AM222 showed a significant up-regulation of the chloride channel protein CLC-b-like, the NRT1/PTR FAMILY 6.3-like and the ferredoxin--nitrite chloroplastic-like GO:0010167 genes in response to nitrate by the T1 vs T0 comparison (short-term response to nitrate) (Figure S4m) (Table 1b). Besides, in 67-3 and 305E40, the GO:0097237 cellular response to toxic substance, the GO:1990748 cellular detoxification and the GO:0098869 cellular oxidant detoxification resulted increased; while AM22 showed an enrichment into the GO:0009628 response to abiotic stimulus and the GO:0010035 response to inorganic substance (Figure S4n-p). In both comparison T2 vs T1 and T2 vs T0 (long-term response to nitrate), the GO:0009628 response to abiotic stimulus, and the GO:0050896 response to stimulus were significantly enriched in all the genotypes (Figure S4q-x); while the GO:0042221 response to chemical showed a similar enrichment trend only in T2 vs T1 comparison (Figure S4u-x). Interestingly, from these results, AM222 appeared the most reactive to nitrate supply.
GO classification of plant responses to low-N supply among genotypes
Here, we focused on DEGs enrichment analysis in both root and shoot adopting the same comparisons of MapMan analysis. The GO category biological processes (BP) including the subcategories GO:0010035 response to inorganic substances, GO:0009628 response to abiotic stimulus and GO:0006995 cellular response to nitrogen starvation resulted the most differentially expressed (Figure S5). In the cellular component (CC), significant changes in the transcript levels of genes involved in carbon metabolism and cell wall were observed in many comparisons, while the most interesting variations in the molecular function (MF) were observed in post-translational modifications from farnesyltransferase.
Considering only BP GO terms that were significantly over-represented (p < 0.05) in AM222, 67-3 and 305E40 comparing to AM22, Venn diagrams allowed us to underline a greater number of DEGs shared by the N-use efficient genotypes (AM222 and 67-3) vs AM22, the most inefficient one (Figure 2; Table S4). 
Identification of responsive genes by GO subcategories in root
At T0, the genotypes AM222, 67-3 and 305E40 shared 18 DEGs (10 up- and 8 down-regulated) compared to N-use inefficient genotype AM22, in GO:0010035 response to inorganic substances, five of which appeared involved in N-uptake and metabolism. Besides, AM222 and 67-3 shared 14 DEGs including stress-response genes as a chaperonine heat shock protein and a high-affinity nitrate transporter-like (Figure 2a; Table S4).
After 24h (T1), AM222 and 67-3 shared 14 DEGs vs AM22, some of which were related to multiple stress response as another chaperonine heat shock protein, a plastid-lipid-associated chloroplastic-like and a catalase (CAT) in the subcategory GO:0010035 response to inorganic substances. Interestingly, among twenty exclusives DEGs in AM222, an aquaporin pip2-7-like, a sucrose synthase, a cellulose synthase DNA binding isoform 1 and a NADH-dependent glutamate synthase protein were up-regulated. Among forty-eight exclusive genes found in 67-3 vs AM22, many appeared related to plant stress responses (Figure 2b; Table S4).
Finally, at T2, four DEGs belonging to GO:0010035 response to inorganic substances were shared by all the other genotypes vs AM22, while twenty-one DEGs appeared jointly expressed in the N-use efficient genotypes (AM222 and 67-3) vs AM22. Among these, a putative 33-like isoform of WRKY TF (WRKY33) (Figure 1c; Table S5), a zinc finger protein zat10-like, as well as several calcium binding and responsive to drought and dehydration genes resulted highly up-regulated (Figure 2c; Table S4).
Overall, at T0, AM222 and 67-3 shared fourteen up-regulated genes including a high-affinity nitrate transporter-like. Most interestingly, at T1, an aquaporin pip2-7-like and a NADH-dependent glutamate synthase protein were identified, as well as a zinc finger protein zat10-like and WRKY33 were strongly up-regulated at T2 in AM222 and 67-3 (Figure 2; Table S4).
Identification of responsive genes by GO subcategories in shoot
At T0, the subcategory GO:0009628 response to abiotic stimulus was altered in the N-use efficient genotypes (AM222 and 67-3) vs AM22; by contrast, 305E40 did not show the same behavior. In particular, sixty-four genes were shared between AM222 and 67-3, among which a nitrate reductase orthologue, a ferredoxin--chloroplastic-like, a zinc finger protein zat10-like and a LHCB (Figure 2d; Table S4).
Interestingly, at T1, a significant number of DEGs were shared by all the three genotypes (AM222, 67-3, and 305E40) in the BP subcategory GO:0009628 response to abiotic stimulus compared to AM22. Among these, the light harvesting chlorophyll a/b binding proteins (LHCB) were identified (Figure 2e; Table S4). 
Finally, at T2, a very limited number of DEGs in GO:0042221 response to chemical were observed in the N-use efficient genotypes (AM222 and 67-3), including two up-regulated genes putatively involved in N nutrition, such as CAT, a peroxidase 5-like and the ferredoxin—chloroplastic-like (Figure 2f; Table S4).
Overall, AM222 and 67-3 shared a nitrate reductase orthologue, a ferredoxin--chloroplastic-like, a zinc finger protein zat10-like and a LHCB, which appeared strongly up-regulated at T0 and T1. Interestingly, at T2, a ferredoxin—chloroplastic-like, CAT and a peroxidase 5-like were up-regulated in the N-use efficient genotypes (Figure 1d; Table S6).
Gene co-expression network (GCN)
A Comparative Gene Co-Expression Network Construction and Visualization (CoExpNetViz) was adopted to define independent Genes Co-expression Networks (GCN), based on selected “bait genes”. Four putative LHCBs, a FNR, a putative CAT and a putative orthologue of WRKY33 were employed as “bait genes”. A matrix count reads normalization for all the genotypes and times sampling as non-bait genes were adopted. 
Four independent GCNs starting from the count read matrices are shown in Figure 3. In particular, the network derived from the LHCBs included a cluster of fifty-three genes correlated to all four baits (dark green nodes), while other genes were correlated to three, two or only one bait (Figure 3a; Table S7). Several other LHCBs and a photosystem I chloroplastic-like gene were strongly correlated. The GCN obtained by using FNR as bait showed several correlated genes of which four highly correlated (Figure 3b; Table S7). Interestingly, an auxin-responsive family protein showed a high Pearson Correlation Coefficient (PCC) (0.80202). The GCN by using as bait the CAT showed 13 anti-correlated genes with low PCC values ranging from -0.61 to -0.65 (Figure 3c; Table S7). Finally, the GCN by using as bait the putative WRKY33 showed sixty-two co-expressed genes, 21 of which with a PCC score greater than 0.80 (Figure 3d; Table S7). Among these, a zinc-finger DNA binding protein, a mitogen-activated protein kinase 3 (MAPK3), an auxin-responsive family protein, a stress induced protein and an ethylene-responsive TF 5-like (ERF5) were included.
NUE-related genes expression in eggplant
Ten genes selected from RNA-seq experiment, displaying a higher significant expression (p < 0.05) were analyzed by qRT-PCR. In detail, seven bait genes previously used for GCNs (4 LHCB, FNR, CAT and WRKY33) analysis and other three genes of interest from the WRKY33 GCN (Stress induced protein, Zinc-Finger DNA binding protein and Auxin-responsive family protein) were chosen. Primer sequences, qRT-PCR results and statistical analysis for each genotype are reported in Table S8. Based on the gene expression among genotypes, we defined AM222 and 67-3 as N-use efficient genotypes and AM22 and 305E40 as inefficient ones. Overall, Pearson correlation analysis between RNA-seq and qRT-PCR experiments revealed a very high and significant correlation (r= 0.813) (Figure S6A). 
To further confirm the biological significance of plant responses to low-N, an independent novel experiment was carried out in the same hydroponic condition described above, adding to the four eggplants, a third pair of efficient (AM241) and inefficient (AM194) genotypes (Mauceri et al. 2020) and a high N supply treatment. At low-N supply, qRT-PCR analysis confirmed the significant different expression (p < 0.05) of DEGs between the efficient and inefficient genotypes at T2 (Figure 4; Table S8). In detail, WRKY33 and other three genes of its co-network (Stress-induced protein, Zinc-Finger DNA binding protein and Auxin-responsive family protein), shared the same expression profiles. By contrast, gene expression analysis at high-N supply did not show significant differences among genotypes (Figure 4). More interestingly, Pearson correlation analysis between RNA-seq and qRT-PCR confirmed a very high and significant correlation (r= 0.873) (Figure S6B). 
AtWRKY33 transgenic lines: root traits and NUE
The phylogenetic analysis among eggplant SmWRKY33, tomato SlWRKY33 and all the WRKY family members from Arabidopsis genome outlined the highest similarity between both sequences from Solanaceae and AtWRKY33 (Figure S7a). In addition, structural organization of both WRKY33 from eggplant and Arabidopsis was also analyzed through MEME tool, and the conserved domains are showed in Figure S7b. 
Arabidopsis Col-0 (wild type, WT), wrky33-2 knockout mutant and 35S::AtWRKY33 overexpressed transgenic lines responses to low and high N supply showed that 35S:WRKY33 mutant exhibited a significant (P < 0.05) higher Total Root Length (TRL), Primary Root Length (PRL), Lateral Root Length (LRL) and Lateral Root Number (LRN) at low-N by an increase of 95%, 14%, 293% and 84% compared to WT, respectively. By contrast, no differences in root morphology were observed between WT and wrky33-2 mutant. The differences were less marked and not significant at high-N (Figure 5a-d). NUE values showed significant differences among genotypes (Figure 5e). In particular, 35S::WRKY33 transgenic line exhibited a higher NUE compared to the control at low-N; by contrast, WT showed a significant higher NUE compared to the 35S::AtWRKY33 overexpressed transgenic line at high-N. The wrky33-2 knockout mutant showed intermediate NUE values at both N level (Figure 5e).
Discussion
The massive use of N-fertilizer, applied for maximizing crop yield, is already recognized as an expensive and environmental damaging practice (Ding et al., 2015). Therefore, reducing N-input and breeding plants with high NUE are among the main goals in plant nutrition research (Hirel, Le Gouis, Ney & Gallais, 2007), and for a sustainable and environment safe agriculture (Masclaux-Daubresse et al., 2010). To understand the mechanisms underlying NUE, many molecular and physiological approaches were utilized in several species throughout the omics (Xu, Fan & Miller, 2012). Among these, transcriptomics may allow the dissection of N-dependent gene networks by looking at changes in transcript levels, including transcription factors (Fukushima & Kusano, 2014), mainly when the study is carried out on contrasting NUE genotypes (Zamboni et al., 2014). In this study, transcriptomic analysis was used to identify key genes in response to low-N supply, considering both short- and long-term exposure, in four previously identified NUE contrasting eggplants (Mauceri et al., 2020).
Differential expressed genes and PCA
The PCA analysis allowed us to assemble gene expression profiles of the genotypes, confirming their high diverse responses to low-N, mainly in shoot and after long-term N exposure. Furthermore, the profiling of N-efficient and inefficient genotypes was clearly separated by PCA, suggesting that they harbor a DEG landscape. These observations were confirmed by the detection a high number of DEGs among NUE contrasting genotypes, in both shoot and root, at all the sampling times. Similar results were observed comparing low-N tolerant and sensitive soybean and sorghum genotypes (Gelli et al., 2014; Hao et al., 2011). Recently, many DEGs including N-transporters, transcription factors (TFs), kinases, antioxidant stress and hormone signaling related genes were observed in two contrasting low-N tolerant barley genotypes under N stress (Quan et al., 2016). All these studies opened to a clarification of the complex plant nitrate regulatory network at the transcriptional level, and the development of pipelines for analyzing large biological data through network analysis has become a key approach (Tzfadia et al., 2016).
Through the MapMan Metabolic Pathways Analysis, a differential pattern of light reaction pathway was observed between the more N-use efficient genotypes (AM222 and 67-3) and the inefficient ones (AM22 and 305E40). In particular, the Light-harvesting complexes (LHC, localized generally in chloroplast thylakoid membrane) and the Ferredoxin--NADP leaf chloroplastic (FNR) appeared the most remarkable gene clusters involved in NUE. Interestingly, our previous results showed that the N-use efficiency of AM222 and 67-3 was mainly determined by NUtE component (Mauceri et al., 2020). This suggests that the uptaken nitrogen supports mostly photosynthesis as evidenced by the upregulation of LHC in AM222 and 67-3 compared to AM22. It has been already highlighted that, in plants, LHC triggers a coordinated response to N: at low light and for a given N availability, more proteins are allocated to LHC for increasing light capture (Kumar, Parry, Mitchell, Ahmad & Abrol, 2002). Furthermore, these complexes are involved in the energy transduction (for photosynthetic reactions) and the reactive oxygen species (ROS) production, confirming their key role in photosynthetic rate (Klimmek, Sjödin, Noutsos, Leister & Jansson, 2006; Tanaka et al., 2001). 
At T2, a significant FNR up-regulation was also observed in the N-use efficient genotypes. In chloroplasts, the FNR protein was reported to mediate the electrons transfer from reduced Fd to NADP+ to generate NADPH, required for carbon assimilation (Mulo, 2011). This protein was also positively involved in the re-assimilation of ammonia released during photorespiration via Fd-GOGAT and to maintain optimal redox balance in plastids (Eisenhut, Roell & Weber, 2019; Foyer, Bloom, Queval & Noctor, 2009). The FNR was also involved in ROS quenching to preserve the NADP+/NADPH homeostasis and to avoid oxidative stress (Palatnik, Valle & Carrillo, 1997; Palatnik et al., 2003). Furthermore, nitrite generated in the cytosol is imported into the chloroplasts and reduced by FD-dependent NiR to ammonium to sustain high nitrogen use efficiency (Hoff, Truong & Caboche, 1994; Sugiura, Georgescu & Takahashi, 2007). Therefore, we may assume that FNR contribute to N-use efficiency by lowering energy cost both in nitrate assimilation and oxidative stress response as reported by Hanke et al., (2005) and Lintala et al., (2007). 
GO enrichment analysis 
Interestingly, GO enrichment analysis within genotypes revealed five genes involved in “GO: 0010167 response to nitrate”, including those belonging to the NRT1/PTR FAMILY 6.3-like. They were significantly up-regulated in the efficient genotypes root, mainly in AM222. In particular, NPF6.3/NRT1.1, belonging to this family, is a dual-affinity NO3– transporter able to transport auxin (Gojon, Krouk, Perrine-Walker, & Laugier, 2011; Krouk et al., 2010), and displaying also a NO3– sensing function as well as a NO3–-induced change in root development (Huang, Liu, Lo, & Tsay, 1999; Remans et al., 2006). Therefore, higher genes expression of NRT1/PTR family in the N-use efficient root genotypes could support their role in NO3– uptake and root development. The other DEGs, belonging to “GO: 0010167 response to nitrate”, included a CLC-B for N storage into the vacuole and the BTB1 as a mediator for multiple responses to nutrients, stress and auxins (Mandadi, Misra, Ren & McKnight, 2009; Robert, Quint, Brand, Vivian-Smith & Offringa, 2009), and the NIR1, a key enzyme involved in the ammonium nitrite reduction. Therefore, these results could explain the most efficiency of AM222 at LN, compared to the other genotypes, able to uptake and accumulate a higher N amount in plant tissues.
The GO enrichment analysis among genotypes, including the subcategories “GO:0010035 response to inorganic substances”, “GO:0009628 response to abiotic stimulus” and “GO:0006995 cellular response to nitrogen starvation”, allowed us to identify modulated genes shared by the more N-efficient genotypes, in both root and shoot. In detail, a higher expression of catalase, enzyme involved in hydrogen peroxide (H2O2) protection, was evident in the shoot of both the N-use efficient genotypes. The H2O2 is a ROS toxic molecular species, mainly produced during photosynthesis and photorespiration, able of causing damage to cellular structures and signaling molecule in transduction networks for abiotic stimuli (Li et al., 2015; Xing, Jia & Zhang, 2008). 
Our results suggest that the N-efficient genotypes might have developed a higher ability to detoxify and protect plants from ROS production, through a more effective antioxidant system in N-stress condition, as previously reported in salt tolerant rice genotypes (Vighi et al., 2016). Likewise, a large number of peroxidases (up to 29) were up-regulated in low-N tolerant barley genotypes, apparently contributing to the higher of antioxidant activity under N limited stress condition (Quan et al., 2016).
Finally, a high significant up-regulation of WRKY33, belonging to the WRKY family, was also identified in the N-use efficient root genotypes, at T2. Several TFs were described able to modulate plant responses to limited N, although their functions in plant were not well known. Firstly, an elevated expression of NAC29 was found in Arabidopsis under N stress (Peng, Bi, Zhu & Rothstein, 2007), more recently it was reported that a GATA type zinc finger TF family protein (MLOC_53547) was up-regulated in a low-N tolerant barley variety compared to sensitive ones (Quan et al., 2016). The WRKY TF family plays a multitude of roles in plant, regulating normal growth and development, and response to stimuli in plants (Jiang et al., 2017), conferring tolerance to some biotic and abiotic stresses, including H2O2 production (Jiang & Yu, 2009; Song, Jing & Yu, 2009). Recently, the TF WRKY1 seemed to be involved in the genome-wide transcriptional reprogramming of Arabidopsis exposed to each or combined light and nitrogen stress (Heerah, Katari, Penjor, Coruzzi & Marshall-Colon, 2019). 
Gene co-expression network analysis reveals NUE-related gene clusters
The co-expression network analysis, by using LHCBs as baits, identified a multitude of genes involved in photosynthesis, light harvesting, porphyrin formation and tetrapyrrole biosynthetic process, and in particular, the glyceraldehyde-3-phosphate dehydrogenase chloroplastic-like gene (GAPCP), encoding a key enzyme for starch breakdown to form sucrose and generate primary metabolites for fatty acids and amino acids synthesis (Munoz-Bertomeu et al., 2009). 
In the same network, an auxin-responsive family protein, belonging to a multigenic family, was present, whose physiological functions included the utilization of ascorbate (ASC) as electron donor to act as monodehydroascorbate reductase, (regenerating ASC) and as Fe3+ reductase, thus providing reduced iron for trans-membrane transport (TM). These processes resulted in plant defense against stress, cell wall modifications and iron metabolism (Asard, Barbaro, Trost & Berczi, 2013). Furthermore, the tight modulation of the protochlorophyllide chloroplastic-like and coproporphyrinogen-III chloroplastic-like genes, which encode for proteins in the porphyrin-containing compound metabolic process involved in tetrapyrrole biosynthesis (Kobayashi & Masuda, 2016), suggest us that N-use efficient genotypes may produce chlorophyll more efficiently than the inefficient ones. 
Among FNR co-network genes, another auxin-responsive family protein and a fructose-bisphosphate aldolase chloroplastic-like (FBA) must be underlined. Indeed, FNR is the main electrons source and their distribution results essential for several metabolic reactions such as NADPH production, useful for chlorophyll biosynthesis, CO2, fatty acids, nitrogen and sulphur assimilation (Hanke et al., 2005; Hanke & Mulo, 2013). Therefore, a higher expression under limited N supply of these genes may contribute to AM222 and 67-3 N-use efficiency. By contrast, the reduction of LHCB, FNR and both co-network genes in AM22 and 305E40 could negatively affect their photosynthetic ability. 
According to co-network analysis, the FBA enzymes family showed significant differences at the transcriptional level in the NUE contrasting genotypes playing a key role in glycolysis, gluconeogenesis and in the Calvin cycle, suggesting different responses to abiotic stress and plant development (Lu et al., 2012; Lv et al., 2017). Thus, a higher FBA expression in the N-use efficient genotypes may positively influence the Calvin cycle turnover improving plant photosynthetic rate (Uematsu, Suzuki, Iwamae, Inui & Yukawa, 2012), with positive effects in plant response to low N.
Furthermore, the co-expression network analysis, by using WRKY33 as bait, revealed its concurrent expression with other up-regulated TFs and genes correlated to stress responses. Among them, two transcript factors, two kinase proteins and other genes shared WRKY33 expression pattern. Interestingly, transcripts belonging to the Mitogen-Activated Protein Kinase (MAPK) family, together with a Yellow-leaf-specific gene 9 (YLS9), a Zinc finger protein zat10-like, two ethylene-responsive TFs like (ERFs), a Soybean Gene Regulated by Cold (SRC2), a Nudix hydrolase mitochondrial-like (NUDT18), an auxin-responsive family protein and a Respiratory Burst Oxidase c family protein (RBOHF) resulted up-regulated. In plants, MAPK cascades are functional modules encoded by multigenic families responsible for controlling stress response, cellular differentiation and organ development. MAPKs play an important role in several signaling networks involved in plant responses to environment; recently, an up-regulation in response to nutritional deficiency and N-signaling was highlighted (Chardin, Schenk, Hirt, Colcombet & Krapp, 2017). 
Remarkably, YLS9 was reported to play a role in N remobilization and recycling, important to plants adaptation and survival in unfavorable environmental conditions (Yoshida, Ito, Nishida, & Watanabe, 2001). Therefore, the YLS9 up-regulation suggested a higher N remobilization in the N-use efficient genotypes compared to the inefficient ones. 
Plant stress responses and related signal transduction pathways appeared also under the control of ERF transcription factor family. In particular, ERF5 and ERF6 seemed to activate other stress-related TF like WRKY33 and MYB51 under water stress in Arabidopsis, and a zinc finger protein zat10, which modulates abiotic stress responses and reactive oxygen-defense (Dubois et al., 2013; Mittler et al., 2006). Consistently, an ERF4 and ERF5 together with a zat10-like protein were co-expressed and up-regulated together with WRKY33 in AM222. 
Finally, the orthologous of Soybean Gene Regulated by Cold-2 (SRC2) was up-regulated in the N-use efficient AM222. Interestingly, SRC2 was reported as Ca2+-dependent activator of NADPH oxidase catalytic genes, RBOHF, which in turn functioned in the abscisic acid (ABA)‐induced ROS production in guard cells, demonstrating that ROS production is rate‐limiting for ABA signal transduction (Kwak et al., 2003). 
NUE-related gene expression in eggplant and AtWRKY transgenic lines 
We validated the RNA-seq experiment through gene expression analysis of seven bait genes used in GCN and other three genes of interest included in WRKY33 genes cluster (Stress-induced protein, Zinc-Finger DNA binding protein and Auxin-responsive family protein) showing a higher transcript abundance in the high NUE genotypes.
More interestingly, to confirm the biological significance of our results, in an independent hydroponic experiment the expression pattern of six out ten key genes identified (FNR, CAT, WRKY33, Stress-induced protein, Zinc-Finger DNA binding protein, Auxin-responsive family protein) were analyzed on three pairs NUE contrasting genotypes, in response to low (0.5 mM) and high (10 mM) N-supply. In shoot, FNR resulted up-regulated at low-N in the more N-use efficient genotypes (AM222, 67-3 and AM241), by contrast, the more inefficient ones (AM22, 305E40 and AM194) did not show significant differences between N treatments. We also observed differences in CAT transcript levels at LN between 67-3 and 305E40.
In root, a significant WRKY33 up-regulation at low N suggested its involvement for determining N-use efficiency in the more efficient genotypes compared to the more inefficient ones. Interestingly, WRKY33 transcript abundance differences were drop off at high N supply. Likewise, Stress-induced protein, Zinc-Finger DNA binding protein and Auxin-responsive family protein (from WRKY33 co-network cluster) showed the same gene expression pattern between genotypes at low and high N supply. Finally, the experiment on AtWRKY33 Arabidopsis transgenic lines confirmed that the 35S::AtWRKY33 over-expressed mutant compared to the control (Col-0) displayed phenotypic traits significantly associated with an improved response to low N supply most probably caused by a modulation of co-network genes useful for determining a higher NUE .
Conclusion
In conclusion, the first transcriptomics comparison among NUE contrasting eggplants clearly showed a coordinated network genes regulation to cope limited N availability into the soil. Root and shoot transcriptome analysis in response to low nitrate allowed us to detect several DEGs between efficient and inefficient genotypes identifying key networks useful to understand the genetic mechanisms for increasing NUE in eggplant. RNA-seq analysis revealed an up-regulation of gene transcripts involved in the Light Reaction pathway and in the biological process responses to inorganic substance, abiotic stimuli and cellular response to nitrogen starvation. The key role of WRKY33 was confirmed in Arabidopsis mutant overexpressed the best orthologue of SmWRKY33 (AtWRKY33), resulting in a more competitive root system for more efficiently N-capturing in the soil and finally in a best NUE. Discovering the target gene/s of SmWRKY33 at root level will be explored in the next future. 
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Table 1: DEGs classified in biological process through TopGO enrichment analysis: a) root; b) shoot. Differential expression analysis was performed using the DESeq2 R package (1.10.1). The threshold levels for DEG detection were set at FDR-corrected p-value < 0.05 and Log2FC >|1|.
	a. Root_AM222_T1_vs._T0
	IDs
	log2Fold
Change
	pvalue
	padj
	GO Biological process

	NRT1/ PTR FAMILY 6.3-like
	SMEL_008g297920.1
	4.293227
	3.88E-23
	1.59E-19
	Response to nitrate, Inorganic anion transport

	btb poz and taz domain-containing protein 1-like
	SMEL_003g189050.1
	3.574049
	6.56E-09
	1.41E-06
	Response to nitrate

	chloride channel protein clc-b-like
	SMEL_002g162840.1
	1.727582
	2.59E-07
	3.42E-05
	Response to nitrate, Inorganic anion transport

	ferredoxin--nitrite chloroplastic-like
	SMEL_012g384590.1
	1.54281
	1.09E-06
	0.00012
	Response to nitrate

	NRT1/ PTR FAMILY 6.3-like
	SMEL_008g317030.1
	1.322336
	1.01E-08
	2.06E-06
	Response to nitrate, Inorganic anion transport

	molybdate transporter 1-like
	SMEL_010g356400.1
	2.247766
	1.96E-06
	0.000201
	Inorganic anion transport

	sulfate transporter -like
	SMEL_006g270520.1
	2.03408
	3.78E-14
	2.58E-11
	Inorganic anion transport

	phosphate transporter
	SMEL_003g169230.1
	1.074216
	0.001589
	0.039113
	Inorganic anion transport

	probable ubiquitin-conjugating enzyme e2 24-like
	SMEL_000g064800.1
	-1.09824
	1.12E-06
	0.00012
	Inorganic anion transport

	s-type anion channel slah3-like
	SMEL_003g183450.1
	-1.15201
	0.002241
	0.049937
	Inorganic anion transport

	ferredoxin- chloroplastic-like isoform 1
	SMEL_000g010460.1
	2.352428
	1.22E-21
	2.49E-18
	Ferredoxin metabolic process

	ferredoxin- chloroplastic-like
	SMEL_004g207860.1
	-1.18183
	0.001495
	0.038181
	Ferredoxin metabolic process

	
	
	
	
	
	

	
	
	
	
	
	

	b. Shoot_AM222_T1_vs._T0
	IDs
	log2Fold Change
	pvalue
	padj
	GO Biological process

	chloride channel protein clc-b-like
	SMEL_002g162840.1
	1.568046
	1.43E-07
	3.74E-05
	Response to nitrate

	nitrate transporter -like
	SMEL_006g256580.1
	1.552489
	0.0019160
	0.037590
	Response to nitrate

	ferredoxin--nitrite chloroplastic-like
	SMEL_012g384590.1
	1.384162
	0.000119
	0.005865
	Response to nitrate


Figure legends

Figure 1 Counts matrix normalized in RNAseq experiment of seven main DEGs at T0, T1 and T2 a. Light-harvesting complex (LHCB) genes differentially expressed in shoot; b. Ferredoxin--NADP reductase (FNR) differentially expressed in shoot; c. WRKY TF 33 - like (WRKY33) differentially expressed in root; d. Catalase (CAT) differentially expressed in shoot. The N-use efficient and inefficient genotypes are reported in black and grey, respectively. The significant differences between mean values are indicated by alphabet letters using Fisher LSD Method and 95% Confidence.

Figure 2 Gene Ontology (GO) functions. A Venn diagram analysis of GO terms that were significantly over-represented (p < 0.05) among genotypes against AM22 in roots (a, b, c) and shoots (d, e, f) at T0, T1 and T2.

Figure 3 Four independent genes co-expression networks (GCN). The Networks were obtained by using as baits a. the four LHCB genes; b. the Ferredoxin--NADP leaf chloroplastic (FNR) gene; c. the catalase (CAT) gene and d. the putative WRKY 33-like transcription factor (WRKY33). A bait node represents a gene whose node is white and diamond-shaped, while the familiar nodes are correlated or anti-correlated to the bait by an edge, whose green or red color indicates a positive and negative correlation, respectively; a darker color represents a stronger correlation.

Figure 4 Quantitative real-time PCR (qRT-PCR) analysis on de novo independent hydroponic experiment. Six DEGs identified by RNAseq experiment were tested onto 3 pairs of NUE-contrasting genotypes (the efficient - AM241 and the inefficient - AM149 were added). a) the Ferredoxin--NADP reductase (FNR); b) Catalase (CAT); c) WRKY 33-like transcription factor (WRKY33); d) Stress-induced protein; e) Zinc-Finger DNA-binding protein; f) Auxin-responsive family protein. Low and High nitrate supply are reported in black and grey, respectively. The significant differences between mean values are indicated by alphabet letters using Fisher LSD Method and 95% Confidence.

Figure 5 Root morphology and Nitrogen Use Efficiency (NUE). Arabidopsis Col0 wild type (WT), wrky33-2 knockout mutant and 35S:AtWRKY33 transgenic line exposed to low (0.5 mM, LN) and high (10 mM, HN) nitrate for 7 days. A) Total root length (TRL, cm); B) Primary root length (PRL, cm); C) Lateral root length (LRL, cm); D) Lateral root Number (LRN, #); E) Nitrogen Use Efficiency (SDW/N%). The values represent the mean ± error standard. Different letters indicate significant differences at P<0.05 (Tukey’s test, n= 18).
Supporting Information
Table S1 Differential expressed genes (DEGs) between pair of genotypes at each time and tissue. The threshold levels for DEG detection were set up at FDR-corrected p-value < 0.05 and Log2FC >|1|. DEG analysis was performed using the DESeq2 R package (1.10.1) (Love et al. 2010; Robinson and Oshlack 2010).
Table S2 Differential expression analysis of Light-harvesting complex (LHCB, SMEL_008g310950.1) in pairwise comparison of the involved genotypes using the DESeq2 R package (1.10.1). The threshold levels for DEG detection were set at FDR-corrected p-value < 0.05 and Log2FC >|1|.
Table S3 Differential expression analysis of Ferredoxin--NADP reductase (FNR, SMEL_002g153410.1) in pairwise comparison of the involved genotypes using the DESeq2 R package (1.10.1). The threshold levels for DEG detection were set at FDR-corrected p-value < 0.05 and Log2FC >|1|.
Table S4 Venn diagram that shows all possible logical relations between a finite collection of different sets.
Table S5 Differential expression analysis of WRKY 33-like TF (SMEL_006g257490.1) in pairwise comparison of the involved genotypes using the DESeq2 R package (1.10.1). The threshold levels for DEG detection were set at FDR-corrected p-value < 0.05 and Log2FC >|1|. 
Table S6 Differential expression analysis of catalase (CAT, SMEL_005g238230.1) performed using the DESeq2 R package (1.10.1). The threshold levels for DEG detection were set at FDR-corrected p-value < 0.05 and Log2FC >|1|.
Table S7 Genes involved in the CGNs obtained by using LHCBs, FNR, WRKY33 and CAT as baits. Relationships among genes were calculated and co-expressed genes were identified based on Pearson Correlation Coefficient (PCC).
Table S8 Average values of 2^-ΔCt [(target-HK)] for six selected genes in qRT-PCR from the new additional hydroponic experiment (ANOVA significance. *, 0.05; **, 0.01; ***, 0.001 - Fisher LSD Method and 95% Confidence).
Figure S1 Principal Component Analysis (PCA) using the following six different subsets of gene expression dataset in eggplants: root at T0 (a); at T1 (b), at T2 (c); shoot at T0 (d); at T1 (e); at T2 (f). 
Figure S2 Differential expressed genes (DEGs) between pair of genotypes at each time and tissue (a-f), in addition DEGs from T1 vs T0 in root and shoot for each genotype were also reported (g-h). The threshold levels for DEG detection were set up at FDR-corrected p-value < 0.05 and Log2FC >|1|. DEG analysis was performed using the DESeq2 R package (1.10.1) (Love et al., 2010; Robinson and Oshlack, 2010).
Figure S3 Overview changes of transcripts abundance related to primary and secondary metabolism pathways. Root AM222 vs AM22 (a) and 67-3 vs 305E40 (b) at T0; Root AM222 vs AM22 (c) and 67-3 vs 305E40 (d) at T1; Root AM222 vs AM22 (e) and 67-3 vs 305E40 (f) at T2; Shoot AM222 vs AM22 (g) and 67-3 vs 305E40 (h) at T0; Shoot AM222 vs AM22 (i) and 67-3 vs 305E40 (l) at T1;  Shoot AM222 vs AM22 (m) and 67-3 vs 305E40 (n) at T2. Transcription levels with a value log2 FC ≥ 1 for pairwise comparisons are displayed in colored squares. The red and green indicate up- and down-regulated expressed genes, respectively. The large red square area indicates up- and down-regulated transcripts involved in a specific pathway. The top right-hand scale shows the expression level.
Figure S4 GO enrichment for each genotype at time comparisons T1 vs T0 (a-d root; e-h shoot); T2 vs T1 and T2 vs T0): hierarchical tree chart of GO terms over-represented in root and shoot at the biological process (BP) category in response to low nitrate treatment. The boxes in the graph represent the GO terms with their GO ID, the term definition and the statistical information. The most significant GO terms (p ≤ 0.05) are red colored, while the least significant in yellow. The direction rank is set from top to bottom. 
Figure S5 GO enrichment between the other three genotypes vs. AM22: hierarchical tree chart of GO terms over-represented in root and shoot at the biological process (BP), cellular component (CC) and molecular function (MF) category at each sampling time. The boxes in the graph represent the GO terms with their GO ID, the term definition and the statistical information. The most significant GO terms (p ≤ 0.05) are red colored red, while the least significant in yellow. The direction rank is set from top to bottom.
Figure S6 Scatter plots of RNA-Seq normalized read count matrix vs. Real-time qPCR relative quantification data. A) The same RNA from RNA-seq experiment were utilized for a first validation by using 10 genes. B) RNA extracted from the new experiment samples were utilized compared to RNA-seq data by using the most important six genes.

Figure S7 A) Phylogenetic tree of WRKY peptide sequences of Arabidopsis, eggplant homologs SMEL_006g257490.1 (http://www.eggplantgenome.org/), Sme2.5_01585.1_g00006.1 (http://eggplant.kazusa.or.jp/) and tomato Solyc06g066370.4.1 (https://solgenomics.net/). The sequences were aligned using ClustalW software and the phylogeny constructed using the neighbor-joining method. B) Analysis of sequence motifs in related WRKY33 protein sequences SMEL_006g257490.1 and AT2G38470.
