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Abstract

The present work is concerned with the well-posedness and efficient numerical algorithm
for a terminal value problem with a generalized Caputo fractional derivative. We investigate
the existence and uniqueness of the solution of the terminal value problem, and consider the
continuous dependence of the solutions on the given data. To illustrate our theoretical results,
we present a one step algorithm for solving the considered problems. Some numerical examples
are shown to illustrate the theoretical results and the efficiency of the numerical method.
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1 Introduction

The fractional calculus has been employed to model many non-classic physical phenomenons due
to the nonlocal nature of this kind of operators. To match the applications of mathematics,
physics and engineering, various fractional derivatives were introduced [8, 15, 25, 18, 26, 27, 24].
Differential equations with fractional derivatives have been investigated extensively in the last
decades. In recent years, terminal value problems for fractional ordinary differential equations
have also attracted several scholars’ attention [8, 9, 10, 12, 13, 14, 22]. In this work, we study
the well-posedness and efficient numerical approximations for the following terminal value problem
involving a generalized Caputo fractional derivative

ρ
cD

α
0+ (y(t)) = f(t, y(t)), t ∈ [0, T ], (1)

y(T ) = yT , (2)

where f : [0, T ]×R → R is continuous, and ρ
cD

α
0+ (y(t)) , (α ∈ (0, 1), ρ ∈ R) denotes the generalized

Caputo fractional derivative of order α [3, 18, 16, 21]

ρ
cD

α
0+y(t) =

ρDα
0+

[
y(t)−

n−1∑
k=0

y(k)(0)

k!
(t)k

]
, (3)

with the generalized Riemann-Liouville derivative of order α ∈ (n− 1, n)

ρDα
0+y(t) =

(
t1−ρ d

dt

)n
ρIn−α

0+ y(t), (4)

where ρIσ0+ denotes the generalized fractional integral of order σ

ρIσ
0+y(t) =

ρ1−σ

Γ(σ)

∫ t

0

τρ−1y(τ)

(tρ − τρ)1−σ
dτ, σ > 0, ρ ∈ R. (5)
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Obviously, if ρ = 1, then the generalized Caputo fractional derivative reduces to the classic Caputo
fractional derivative. The generalized fractional derivatives of Caputo-type (3) and Riemann-
Liouville-type (4) were introduced by Katugampola [16] in order to generalize the Riemann-
Liouville and Hadamard fractional derivatives. There are many different ways to define the gen-
eralized Caputo derivative (3). For example, the one is discussed by Oliveira [23] with properly
choosing parameters in Erdélyi-Kober-type derivative [24, 26, 15, 18, 19, 21]. For more properties,
physical applications of the generalized Caputo derivative, we may refer to the recent review papers
[23, 26, 2, 18, 20].

So far, much efforts have been made by many researchers to develop the theory and numerical
algorithm of differential equations with generalized Caputo derivative (3). Katugampola [17] stud-
ied the existence and uniqueness of a fractional differential equation governed by the generalized
fractional derivative. Almeida et al. [3] provided a decomposition formula to solve a Cauchy prob-
lem of Eq. (1). Recently, by using nonuniform grid, Zeng et al. present a numerical method for
an initial Value problem of a generalized fractional differential equation with fractional derivative
(3). Furthermore, many significant contributions were made to the numerical methods for Caputo
fractional initial and terminal value problems, such as [6, 7, 8, 10, 13, 11, 14, 22].

To the best of our knowledge, both the theoretical and numerical investigations on the terminal
value problems (1)-(2) are rather rare. In this work, we will first discuss the well-posedness of
problems (1)-(2), based on which we further develop a one step algorithm for the initial and
terminal value problems of the generalized fractional differential equation (1). In addition, detailed
convergence analysis of the proposed numerical algorithm is rigorously established.

The rest of this paper is organized as follows. In Section 2, we discuss the existence and
uniqueness of the solution of problem (1)-(2). Then we investigate the continuous dependence of
the solution on the given data in Section 3. Section 4 is devoted to the derivation of numerical
approach and several numerical examples are presented to verify the efficiency of our numerical
algorithm and theoretical results.

2 Existence and uniqueness of the solution

Using the composite properties of the generalized fractional calculus given in [17, 23], we have the
following results.

Lemma 2.1 ([17]). For the continuous function f : [0, T ] × R → R , the following initial value
problem {

ρ
cD

α
0+ (y(t)) = f(t, y(t)), t ∈ (0, T ],

y(k)(t)|t=0 = ck, k = 0, 1, . . . , n− 1,
(6)

is equivalent to the Volterra integral equation of the second kind

y(t) =
n−1∑
k=0

tk

k!
ck +

ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ, (7)

where α ∈ (n− 1, n), n ∈ N+. Particularly, for α ∈ (0, 1), we have

y(t) = c0 +
ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ. (8)

Lemma 2.2 ([4, 5]). Let u(t) and v(t) be nonnegative and integrable functions, g(t) be nonnegative
and nondecreasing in [a, b]. If

u(t) ≤ v(t) + g(t)ρ1−α

∫ t

a

τρ−1u(τ)

(tρ − τρ)α−1
dτ, t ∈ [a, b], (9)

then

u(t) ≤ v(t) +

∫ t

a

∞∑
k=1

ρ1−kα (g(t)Γ(α))
k

Γ(kα)

τρ−1v(τ)

(tρ − τρ)1−kα
dτ, t ∈ [a, b]. (10)

Furthermore, if v(t) is nondecreasing, then

u(t) ≤ v(t)Eα

(
g(t)Γ(α)

(tρ − aρ)α

ρα

)
, t ∈ [a, b], (11)
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where Eα(z) denotes the Mittag-Leffler function defined by [25]

Eα(z) =
∞∑
k=0

zk

Γ(kα+ 1)
, 0 < α < 1. (12)

Furthermore, with the similar argument given in [17, 23], we can prove the following theorem.

Theorem 2.1. For α ∈ (n − 1, n), ρ ∈ R, the fractional differential equation (6) has a unique
solution y(t) ∈ Cn([0, T ]).

Using Lemma 2.1, we can derive the relationship between the terminal boundary problem (1)-
(2) and a nonlinear Volterra integral equation. The conclusion is stated in the following lemma.

Lemma 2.3. If the function f : [0, T ] × R → R is continuous, then the terminal value problem
(1)-(2) is equivalent to the nonlinear Volterra integral equation

y(t) = yT +
ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ (13)

−ρ
1−α

Γ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ.

Proof. By Lemma 2.1, we conclude that the solution y satisfies the following integral equation

y(t) = y(0) +
ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ. (14)

On the other hand, the solution of the problem (1)-(2) satisfies

y(T ) = y(0) +
ρ1−α

Γ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ,

which yields

y(0) = y(T )− ρ1−α

Γ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ. (15)

Finally, the result (13) is obtained by inserting (15) into (14).

In what follows, we discuss the existence and uniqueness of solutions of the terminal value
problem (1)-(2) employing the Banach fixed point theorem. Instead of investigating the problem
(1)-(2), we consider its equivalent problem (13).

Denote Ωδ = {y ∈ C([0, T ]) : ∥y − yT ∥[0,T ] ≤ δ} equipped with the norm ∥y(t)∥[0,T ] =
max
t∈[0,T ]

|y(t)|, and

δ =
2T ρα∥f∥[0,T ]

Γ(1 + α)
. (16)

The set Ωδ is a closed subset of the Banach space consisting of all continuous functions on [0, T ],
equipped with the norm ∥ · ∥[0,T ], and it is nonempty because the function y(t) = yT belongs to
the set Ωδ. In Ωδ, the integral equation (13) can be rewritten in the form of

y(t) = (Py)(t),

where the integral operator P gives

(Py)(t) = yT +
ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ (17)

−ρ
1−α

Γ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ.

In order to prove that the problem (1)-(2) has a unique continuous solution, we only need to prove
that the operator P has a unique fixed point in Ωδ. With the help of the Banach fixed point
theorem, we obtain the following theorem.
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Theorem 2.2. Let D = [0, T ] × [yT − δ, yT + δ] with δ given by (16). Assume that the function
f : D → R is continuous for all t ∈ [0, T ], and satisfies the Lipschitz type condition with respect to
the second variable, i.e.,

|f(t, y)− f(t, z)| ≤ LLip|y − z|, ∀ y, z ∈ Ωδ. (18)

If the Lipschitz constant satisfies LLip <
ραΓ(α+1)

2Tρα , then P maps Ωδ into itself and it is a contrac-
tion, i.e.,

∥Py − Pz∥[0,T ] ≤ ∥y − z∥[0,T ], ∀ y, z ∈ Ωδ. (19)

Therefore, the operator P has a unique solution y∗ ∈ Ωδ which implies that the terminal value
problem (1)-(2) has a unique solution y∗ ∈ Ωδ.

Proof. Firstly, we show that Py ∈ Ωδ if y ∈ Ωδ. Applying the definition of P , we arrive at

|Py − yT |

=
ρ1−α

Γ(α)

∣∣∣∣∣
∫ t

0

(tρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ −
∫ T

0

(T ρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ

∣∣∣∣∣
≤ ρ1−α

Γ(α)

∫ t

0

∣∣(tρ − τρ)α−1 − (T ρ − τρ)α−1
∣∣ τρ−1 f(τ, y(τ)) dτ

+

∫ T

t

(T ρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ.

For 0 < α < 1, using the fact (aα − bα) ≤ (a− b)α when a ≥ b ≥ 0, we can estimate that∫ t

0

∣∣(tρ − τρ)α−1 − (T ρ − τρ)α−1
∣∣ τρ−1dτ

=
1

ρ

∫ t

0

∣∣(tρ − τρ)α−1 − (T ρ − τρ)α−1
∣∣ d(τρ)

=
1

ρα

[
(T ρ − tρ)α + (T ρα − τρα)

]
≤ 2

ρα
(T ρ − tρ)α.

Then it follows that

∥Py − yT ∥[0,T ] ≤
4∥f∥[0,T ]T

ρα

ραΓ(α+ 1)
:= δ,

which implies (Py) ∈ Ωδ.
Secondly, we show that P is a contraction on Ωδ, with δ defined by (16). For any y, z ∈ Ωδ,

t ∈ [0, T ], we can check that

|(Py)(t)− (Pz)(t)| ≤ ρ1−α

Γ(α)

(∫ t

0

(tρ − τρ)α−1 τρ−1|f(τ, y(τ))− f(τ, z(τ))|dτ

+

∫ T

0

(T ρ − τρ)α−1 τρ−1 |f(τ, y(τ))− f(τ, z(τ))|dτ

)

≤ 2LLipT
ρα

ραΓ(α+ 1)
∥y − z∥[0,T ] < ∥y − z∥[0,T ],

which means the operator P is a contraction on Ωδ. Finally, the conclusion follows from the Banach
fixed point theorem.

With the similar argument, we can also get the existence and uniqueness of solutions of the
following two-point boundary value problem{

ρ
cD

α
0+ (y(t)) = f(t, y(t)), t ∈ (0, T ), 0 < α < 1,

y(0) = 0, y(T ) = 0.
(20)

Analogous to Lemma 2.3, we also have the following result for the problem (20).
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Lemma 2.4. If f : [0, T ]×R → R is continuous, then two point boundary problem (20) is equivalent
to the nonlinear Fredholm integral equation

y(t) =
ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ

− tρ1−α

TΓ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ. (21)

Theorem 2.3. Assume that the function f : D → R is continuous for all t ∈ [0, T ], and f also
fulfills a Lipschitz condition with respect to the second variable. If the Lipschitz constant LLip

satisfies LLip <
ραΓ(α+1)

2Tρα , then (20) has a unique solution y ∈ C1[0, T ].

Proof. Define the operator

(Py)(t) =
ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ

− tρ1−α

TΓ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ. (22)

We can check that the operator defined above is a contraction, i.e.,

|(Py)(t)− (Pz)(t)| ≤ ρ1−α

Γ(α)

(∫ t

0

(tρ − τρ)α−1 τρ−1|f(τ, y(τ))− f(τ, z(τ))|dτ

+
t

T

∫ T

0

(T ρ − τρ)α−1 τρ−1 |f(τ, y(τ))− f(τ, z(τ))|dτ

)

≤ 2LLipT
ρα

ραΓ(α+ 1)
∥y − z∥[0,T ] < ∥y − z∥[0,T ].

Then, by using the Banach fixed point theorem, we obtained that P has a unique fixed point.

3 Continuous dependence of the solution

In this section, we will discuss the continuous dependence of the solution on the data for problem
(1)-(2. As we have proved that the problem (1)-(2) is equivalent to the nonlinear Volterra integral
equation of the second kind, the theoretical analysis is carried out on the model (13). To analyze the
continuous dependence of the solution on the given data, we should consider suffer perturbations
on the terminal value yT , the parameters α, ρ and the right-hand side term f . More specifically,
we will consider the following perturbed problems

ρ
cD

α
0+ (z(t)) = f(t, z(t)), t ∈ [0, T ], (23)

z(T ) = zT , (24)

ρ
cD

α−ϵ
0+ (z(t)) = f(t, z(t)), t ∈ [0, T ], (25)

z(T ) = yT , (26)

ρ−ε
c Dα

0+ (z(t)) = f(t, z(t)), t ∈ [0, T ], (27)

z(T ) = yT , (28)

ρ
cD

α
0+ (y(t)) = f̃(t, z(t)), t ∈ [0, T ], (29)

z(T ) = yT , (30)
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which are equivalent to the following integral equations

z(t) = zT +
ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 f(τ, z(τ)) dτ

−ρ
1−α

Γ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1 f(τ, z(τ)) dτ, (31)

z(t) = yT +
ρ1−α+ϵ

Γ(α− ϵ)

∫ t

0

(tρ − τρ)α−ϵ−1 τρ−1 f(τ, z(τ)) dτ

− ρ1−α

Γ(α− ϵ)

∫ T

0

(T ρ − τρ)α−ϵ−1 τρ−1 f(τ, z(τ)) dτ, (32)

z(t) = yT +
(ρ− ε)1−α

Γ(α)

∫ t

0

(tρ−ε − τρ−ε)α−1 τρ−ε−1 f(τ, z(τ)) dτ

−ρ
1−α

Γ(α)

∫ T

0

(T ρ−ε − τρ−ε)α−1 τρ−ε−1 f(τ, z(τ)) dτ, (33)

y(t) = yT +
ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 f̂(τ, z(τ)) dτ

−ρ
1−α

Γ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1 f̂(τ, z(τ)) dτ, (34)

respectively. Under the assumption of Theorem 2.2, we have the following estimates for above
perturbed problems.

Theorem 3.1. Let y and z be the unique solutions of problems (1)-(2) and (23)-(24), respectively.
Then

∥y − z∥ ≤ 1

Cα,ρ,LLip

|yT − zT | , (35)

where Cα,ρ,LLip = 1− 2LLipT
ρα

ραΓ(α+1) .

Proof. From (13) and (31 ), for any t ∈ [0, T ], we have

|y(t)− z(t)| ≤ |(yT − zT )|+
ρ1−α

Γ(α)

∣∣∣∣∫ t

0

(tρ − τρ)α−1 τρ−1
[
f(τ, y(τ))− f(τ, z(τ))

]
dτ

∣∣∣∣
+
ρ1−α

Γ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1 |f(τ, y(τ))− f(τ, z(τ))| dτ,

≤ |yT − zT |+
LLipρ

1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 |y(τ)− z(τ)| dτ

+
LLipρ

1−α

Γ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1 |y(τ)− z(τ)| dτ. (36)

Thus

∥y − z∥ ≤ |yT − zT |+
LLipρ

1−α

Γ(α)
∥y − z∥ ×(∫ t

0

(tρ − τρ)α−1 τρ−1 dτ +

∫ T

0

(T ρ − τρ)α−1 τρ−1 dτ

)

= |ya − za|+
LLipρ

1−α

Γ(α)
∥y − z∥

(
tρα

ρα
+
T ρα

ρα

)
≤ |yT − zT |+

2LLipT
ρα

ραΓ(α+ 1)
∥y − z∥ .

In view of the Lipschitz constant LLip given in Theorem 2.2, we have

Cα,ρ,LLip
= 1− 2LLipT

ρα

ραΓ(α+ 1)
> 0, (37)

which yields (35).
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Remark 3.1. Furthermore, we have from (36) that

|y(t)− z(t)| ≤ |yT − zT |+
LLipρ

1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 |y(τ)− z(τ)| dτ.

For ρ ≥ 1, using Lemma 2.2, we can get

|y(t)− z(t)| ≤ |yT − zT |Eα

(
LLip

tρα

ρα

)
, t ∈ [0, T ], (38)

where Eα(z) denotes the Mittag-Leffler function defined by (12).

Theorem 3.2. Let y and z be the unique solutions of problems (1)-(2) and (25)-(26), respectively.
Then, for 0 < α− ϵ < 1, we have

∥y − z∥ =
2CKT ∥f∥
Cα,ρ,LLip

ϵ, (39)

where Cα,ρ,LLip is given by (37).

Proof. Using (13) and (32), for any t ∈ [0, T ], we have

|y(t)− z(t)| =

∣∣∣∣ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ

− ρ1−α+ϵ

Γ(α− ϵ)

∫ t

0

(tρ − τρ)α−ϵ−1 τρ−1 f(τ, z(τ)) dτ

− ρ1−α

Γ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1 f(τ, y(τ)) dτ

+
ρ1−α+ϵ

Γ(α− ϵ)

∫ T

0

(T ρ − τρ)α−ϵ−1 τρ−1 f(τ, z(τ)) dτ

∣∣∣∣∣ ,
hence,

|y(t)− z(t)|

≤
∫ t

0

∣∣∣∣ 1

Γ(α)
f(τ, y(τ))− ρϵ(tρ − τρ)−ϵ

Γ(α− ϵ)
f(τ, z(τ))

∣∣∣∣ ∣∣ρ1−ατρ−1(tρ − τρ)α−1
∣∣ dτ

+

∫ T

0

∣∣∣∣ 1

Γ(α)
f(τ, y(τ))− ρϵ(T ρ − τρ)−ϵ

Γ(α− ϵ)
f(τ, z(τ))

∣∣∣∣ ∣∣ρ1−ατρ−1(T ρ − τρ)α−1
∣∣ dτ (40)

:= I + II.

For the first term on the right-hand side of (40), we have

I =

∫ t

0

∣∣∣∣ 1

Γ(α)
f(τ, y(τ))− ρϵ(tρ − τρ)−ϵ

Γ(α− ϵ)
f(τ, z(τ))

∣∣∣∣ ∣∣ρ1−ατρ−1(tρ − τρ)α−1
∣∣ dτ

=

∫ t

0

∣∣∣∣ 1

Γ(α)
f(τ, y(τ))− 1

Γ(α)
f(τ, z(τ)) +

1

Γ(α)
f(τ, z(τ))

−ρ
ϵ(tρ − τρ)−ϵ

Γ(α− ϵ)
f(τ, z(τ))

∣∣∣∣ ∣∣ρ1−ατρ−1(T ρ − τρ)α−1
∣∣ dτ

≤ LLipT
ρα

ραΓ(α+ 1)
∥y − z∥+

∫ T

0

∣∣∣∣ 1

Γ(α)
f(τ, z(τ))− ρϵ(tρ − τρ)−ϵ

Γ(α− ϵ)
f(τ, z(τ))

∣∣∣∣
×
∣∣ρ1−ατρ−1(T ρ − τρ)α−1

∣∣ dτ.
Defining the function K(x) =

(tρ − τρ)x

Γ(x+ 1)
, and using the mean value theorem, we obtain

∣∣∣∣ (tρ − τρ)α−1

Γ(α)
− (tρ − τρ)α−ϵ−1

Γ(α− ϵ)

∣∣∣∣ ≤ CKϵ,
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where CK = max
x∈[α−ϵ−1,α−ϵ]

K ′(x). Hence, we get the bound of the term I as follows

I ≤ LLipT
ρα

ραΓ(α+ 1)
∥y − z∥+ CKT ∥f∥ ϵ.

For the second term on the right-hand side of (40), we have

II =

∫ T

0

∣∣∣∣ 1

Γ(α)
f(τ, y(τ))− ρϵ(T ρ − τρ)−ϵ

Γ(α− ϵ)
f(τ, z(τ))

∣∣∣∣ ∣∣ρ1−ατρ−1(T ρ − τρ)α−1
∣∣ dτ

≤ LLipT
ρα

Γ(α+ 1)
∥y − z∥+ CKT ∥f∥ ϵ,

and therefore ∥y − z∥ ≤ 2LLipT
ρα

ραΓ(α+1) ∥y − z∥+ 2CKT ∥f∥ ϵ, which implies (39).

Remark 3.2. From (40), we can get

|y(t)− z(t)| ≤ 2CKT ∥f∥ ϵ+
LLip

ραΓ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 |y(τ)− z(τ)| dτ.

Using Lemma 2.2, for ρ ≥ 1, we have

|y(t)− z(t)| ≤ 2CKT ∥f∥Eα

(
LLip

tρα

ρα

)
ϵ, t ∈ [0, T ],

where Eα(z) denotes the Mittag-Leffler function defined by (12).

Theorem 3.3. Let y and z be the unique solutions of problems (1)-(2) and (27)-(28), respectively.
Then

∥y − z∥ =
2C̃K ∥f∥
Cα,ρ,LLip

ε, (41)

where Cα,ρ,LLip is given by (37).

Proof. Combining (13) and (33), for any t ∈ [0, T ], yields

Γ(α) |y(t)− z(t)|

≤
∫ t

0

∣∣ρ1−α(tρ − τρ)α−1 τρ−1f(τ, y(τ))− (ρ− ε)1−α(tρ−ε − τρ−ε)α−1 τρ−ε−1f(τ, z(τ))
∣∣ dτ

+

∫ T

0

∣∣ρ1−α(T ρ − τρ)α−1 τρ−1f(τ, y(τ))− (ρ− ε)1−α(T ρ−ε − τρ−ε)α−1 τρ−ε−1f(τ, z(τ))
∣∣ dτ

:= Ĩ + ĨI. (42)

For the term Ĩ, applying the mean value theorem, we have

Ĩ ≤
∫ t

0

∣∣ρ1−α(tρ − τρ)α−1 τρ−1f(τ, y(τ))− ρ1−α(tρ − τρ)α−1 τρ−1 f(τ, z(τ))
∣∣ dτ

+

∫ t

0

∣∣ρ1−α(tρ − τρ)α−1 τρ−1 f(τ, z(τ))− (ρ− ε)1−α(tρ−ε − τρ−ε)α−1 τρ−ε−1f(τ, z(τ))
∣∣ dτ

≤ LLipT
ρα

ραα
∥y − z∥+ C̃K ∥f∥ ε,

where C̃K = max
x∈[ρ−ε,ρ]

∣∣∣K̃ ′(x)
∣∣∣ and

K̃(x) = x1−α(tx − τx)α−1 τx−1.

By similar arguments, we get

Ĩ ≤ LLipT
ρα

ραα
∥y − z∥+ C̃K ∥f∥ ε.

Hence ∥y − z∥ ≤ 2LLipT
ρα

ραΓ(α+1) ∥y − z∥+ 2C̃K ∥f∥ ε. Finally, we obtain (41).
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Remark 3.3. From (42), we have

|y(t)− z(t)| ≤ 2ĈKT ∥f∥ ϵ+
LLip

ραΓ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 |y(τ)− z(τ)| dτ.

Using Lemma 2.2, for ρ ≥ 1, we have

|y(t)− z(t)| ≤ 2ĈKT ∥f∥Eα

(
LLip

tρα

ρα

)
ϵ, t ∈ [0, T ],

where Eα(z) denotes the Mittag-Leffler function defined by (12).

Theorem 3.4. Let y and z be the unique solutions of problems (1)-(2) and (29)-(30), respectively.
Then

∥y − z∥ =
1

Cα,ρ,LLip

2T ρα

ραΓ(α+ 1)

∥∥∥f − f̃
∥∥∥ ,

where Cα,ρ,LLip
is given by (37).

Proof. Using (13) and (34), for any t ∈ [0, T ], we have

|y(t)− z(t)| ≤ ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1
∣∣∣f(τ, y(τ))− f̂(τ, z(τ))

∣∣∣ dτ
+

ρ1−α

Γ(α)

∫ T

0

(T ρ − τρ)α−1 τρ−1
∣∣∣f(τ, y(τ))− f̂(τ, z(τ))

∣∣∣ dτ
:= (I) + (II).

After simple arguments, we have

(I) ≤ ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 |f(τ, y(τ))− f(τ, z(τ))| dτ

+
ρ1−α

Γ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1
∣∣∣f(τ, z(τ))− f̂(τ, z(τ))

∣∣∣ dτ
≤ LLipt

ρα

ραΓ(α+ 1)
∥y − z∥+ tρα

ραΓ(α+ 1)

∥∥∥f − f̃
∥∥∥ ,

and

(II) ≤ LLipT
ρα

ραΓ(α+ 1)
∥y − z∥+ T ρα

ραΓ(α+ 1)

∥∥∥f − f̃
∥∥∥ .

Hence ∥y − z∥ ≤ 2LLipT
ρα

ραΓ(α+1) ∥y − z∥+ 2Tρα

ραΓ(α+1)

∥∥∥f − f̃
∥∥∥ , which follows the result of the theorem.

Remark 3.4. From (43), we have

|y(t)− z(t)| ≤ +
2T ρα

ραΓ(α+ 1)

∥∥∥f − f̃
∥∥∥+ LLip

ραΓ(α)

∫ t

0

(tρ − τρ)α−1 τρ−1 |y(τ)− z(τ)| dτ.

Using Lemma 2.2, for ρ ≥ 1, we can get

|y(t)− z(t)| ≤ 2ĈKT ∥f∥Eα

(
LLip

tρα

ρα

)
ϵ, t ∈ [0, T ],

where Eα(z) denotes the Mittag-Leffler function defined by (12).

4 Numerical results

4.1 Numerical method for initial value problem

We first describe a simple numerical algorithm for fractional initial value problem

ρ
cD

α
0+ (y(t)) = f(t, y(t)), t ∈ (0, T ], (43)

y(0) = y0. (44)

9



As stated in Lemma 2.1, the problem (43)-(44) is equivalent to (8). Then, instead of solving
problem (43)-(44) directly, we design an algorithm for solving (8). The interval [0, T ] is divided
into a uniform mesh T = {tk = kh, k = 0, 1, . . . ,K}, K ∈ N+, with a mesh size h = T

K . If applying
the left rectangle rule (with the kernel (tρk − τρ)α−1τρ−1 being the weight) on the integral in (7),
i.e., ∫ tk

0

(tρk − τρ)α−1τρ−1f(τ, y(τ))dτ ≈
k−1∑
j=0

f(tj , y(tj))

∫ tj+1

tj

(tρk − τρ)α−1τρ−1dτ,

then we get ∫ tk

0

(tρk − τρ)α−1τρ−1f(τ, y(τ))dτ =
hρα

ρα

k−1∑
j=0

bj,kf(tj , y(tj)), (45)

where f is continuous and the weights bj,k+1 are given by

bj,k = [kρ − jρ]α − [kρ − (j + 1)ρ]α, j = 0, 1, . . . , k − 1.

Then the one step method for solving (7) is given by

yh(tk) =

⌈α⌉−1∑
j=0

tjk
j!
y
(k)
0 +

hρα

ραΓ(α+ 1)

k−1∑
j=0

bj,kf(tj , yh(tj)), (46)

where ⌈·⌉ denotes the integer-valued function. Next, we estimate the local truncation error and
convergence order for the scheme (46). First, we present several lemmas which will be used later.

Lemma 4.1 ([5]). Let {xk}Kk=0 be a sequence of non-negative real numbers. If

xk ≤ ψk +Mhβ(1−λ)
k−1∑
j=1

jβ−1xk
(kβ − jβ)λ

, t ∈ [0, T ], (47)

where 0 < λ < 1, β ≥ 1, M is a positive constant, then

xk ≤ ψkE1−λ

(
MΓ(1− λ)

β
(kh)β(1−λ)

)
, 0 ≤ k ≤ K, (48)

where E1−α(z) denotes the Mittag-Leffler function defined by (12).

Lemma 4.2. Suppose f(t, y(t)) ∈ C[0, T ], then we have∣∣∣∣ ∫ tk

0

(tρk − τρ)α−1τρ−1f(τ, y(τ))dτ − hρα

ρα

k−1∑
j=0

bj,kf(tj , y(tj))

∣∣∣∣ ≤ Cαh, (49)

where Cα = 2Tρα∥f ′∥∞
ρα .

Proof. By some calculations, we have∣∣∣∣ ∫ tk

0

(tρk − τρ)α−1τρ−1f(τ, y(τ))dτ − hρα

ρα

k−1∑
j=0

bj,ky(tj , y(tj)),

∣∣∣∣
=

∣∣∣∣ ∫ tk

0

(tρk − τρ)α−1τρ−1
(
f(τ, y(τ))− f(tj , y(tj))

)
dτ

∣∣∣∣ (50)

≤
∣∣∣∣ k−1∑
j=0

∫ tj+1

tj

(tρk − τρ)α−1τρ−1
∣∣(τ − tj)f

′(θj , y(θj))
∣∣dτ ∣∣∣∣, θj ∈ (tj , tj+1)

≤ ∥f ′∥∞
k−1∑
j=0

h

(∫ tj+1

tj

(tρk − τρ)α−1τρ−1dτ

)
,

=
∥f ′∥∞h
ρα

k−1∑
j=0

[
(tρk − tρj )

α − (tρk − tρj+1)
α
]

≤ Cαh.
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Denotes the maximum of the errors as ∥eh∥∞ = max1≤k≤K |y(xk)−yh(xk)|. Using Lemma 4.2,
we obtain the error estimate of the scheme (46) in the following theorem.

Theorem 4.1. If f(t, y(t)) ∈ C[0, T ], then the convergence order of numerical scheme (46) is one,
i.e., ∥eh∥∞ ≤ Ch.

Remark 4.1. Recall the function f(t, y(t)) satisfies a Lipschitz condition with respect to the second
variable with the Lipschitz constant LLip, subtracting (8) from (46), we obtain∣∣∣∣y(xk)− yh(tk)

∣∣∣∣ ≤ LLip

[ k−1∑
j=0

∫ tj+1

tj

(tρk − τρ)α−1τρ−1
∣∣y(xk)− yh(tk)

∣∣dτ]+O(h),

≤ LLiph
ρα

k−1∑
j=0

jρ−1

(kρ − jρ)1−α

∣∣y(xk)− yh(tk)
∣∣+O(h).

Using the discrete weakly singular Gronwall’s inequality presented in Lemma 4.1, we can also get
∥eh∥∞ ≤ Ch.

The numerical experiment consists of two parts. In the first part, we test the efficiency and the
accuracy of the numerical algorithm (46) for the fractional initial value problem (43)-(44). The
numerical errors are measured by the maximum norm ∥eh∥∞ in the following first two examples.
Then, we present some numerical examples to check our theoretical findings discussed in Section
3.

Example 4.1. Consider the following linear fractional differential equation

ρ
cD

α
0+ (y(t)) = q(t)y(t) + g(t), 0 < t ≤ 1, (51)

with the initial condition y(0) = 0, where q(t) = e−t, g(t) =
Γ(1+ 2+ρα

ρ )ρα

Γ(1+ 2+ρα
ρ −α)

t2 − e−ty(t). Employing

the relation
ρ
cD

α
0+y(t) =

ρDα
0+

[
y(t)− y(0)

]
, (52)

and the following formula [16, 23]

ρDα
0+

(
tβ
)
=


Γ(1+ β

ρ )ρ
α

Γ(1+ β
ρ−α)

tβ−αρ, ρ > 0, α− β
ρ /∈ N+,

0, ρ > 0, α− β

ρ
∈ N+,

(53)

we obtain that the solution of problem (51) is y(t) = t2+ρα.

Table 1: Maximum errors and convergence orders of Example 4.1 solved by the scheme (46) with
T = 1, ρ = 0.4.

α = 0.2 α = 0.5 α = 0.9
h ∥eh∥∞ order ∥eh∥∞ order ∥eh∥∞ order

1/10 2.7932e-001 2.6453e-001 2.7799e-001
1/20 1.4484e-001 0.9474 1.4273e-001 0.8900 1.5653e-001 0.8286
1/40 7.3042e-002 0.9877 7.4455e-002 0.9389 8.4314e-002 0.8926
1/80 3.6329e-002 1.0076 3.8053e-002 0.9684 4.4096e-002 0.9351
1/160 1.7934e-002 1.0184 1.9215e-002 0.9858 2.2633e-002 0.9622

Table 2: Maximum errors and convergence orders of Example 4.1 solved by the scheme (46) with
T = 1, α = 0.5.

ρ = 0.5 ρ = 1 ρ = 2
h ∥eh∥∞ order ∥eh∥∞ order ∥eh∥∞ order

1/10 2.5107e-001 1.9443e-001 1.0989e-001
1/20 1.3339e-001 0.9124 9.7160e-002 1.0008 4.8702e-002 1.1739
1/40 6.8712e-002 0.9571 4.7924e-002 1.0196 2.2114e-002 1.1390
1/80 3.4787e-002 0.9820 2.3579e-002 1.0232 1.0286e-002 1.1042
1/160 1.7451e-002 0.9952 1.1619e-002 1.0209 4.8788e-003 1.0761
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Example 4.2. Consider the nonlinear fractional differential equation

ρ
cD

α
0+ (y(t)) = y2(t) + g(t), 0 < t ≤ 1, (54)

with the initial condition y(0) = 1. The analytical solution of (54) is given by y(t) = t5 + 1.

Table 3: Maximum errors and convergence orders of Example 4.2 solved by the scheme (46) with
T = 1, ρ = 0.4.

α = 0.2 α = 0.5 α = 0.9
h ∥eh∥∞ order ∥eh∥∞ order ∥eh∥∞ order

1/10 1.2551e-01 1.4771e-01 1.9934e-01
1/20 5.5593e-02 1.1748 6.6365e-02 1.1543 9.6522e-02 1.0463
1/40 2.5741e-02 1.1108 3.1064e-02 1.0952 4.7324e-02 1.0283
1/80 1.2173e-02 1.0804 1.4881e-02 1.0618 2.3408e-02 1.0156
1/160 5.8237e-03 1.0637 7.2296e-03 1.0415 1.1636e-02 1.0084

Table 4: Maximum errors and convergence orders of Example 4.2 solved by the scheme (46) with
T = 1, α = 0.5.

ρ = 0.5 ρ = 2 ρ = 6
h ∥eh∥∞ order ∥eh∥∞ order ∥eh∥∞ order

1/10 1.4456e-01 9.4993e-02 5.2856e-02
1/20 6.4858e-02 1.1563 4.1232e-02 1.2041 2.9685e-02 0.8323
1/40 3.0331e-02 1.0965 1.8826e-02 1.1310 1.5942e-02 0.8969
1/80 1.4520e-02 1.0628 8.8493e-03 1.0891 8.3368e-03 0.9352
1/160 7.0508e-03 1.0422 4.2386e-03 1.0620 4.2906e-03 0.9583

4.2 Numerical method for the terminal value problem

This part is to test the numerical algorithm for the terminal value problem (1)-(2) and check the
theoretical analysis presented in Section 3. Firstly, with the help of Theorem 3.1 of [9], we have
that if y1 and y2 are two solutions of the differential equations

ρ
cD

α
0+ (yj(t)) = f(t, yj(t)), j = 1, 2, (55)

subject to the initial conditions yj(0) = yj0, j = 1, 2, respectively, where y10 ̸= y20. Then for all
t where both y1(t) and y2(t) exist we have y1(t) ̸= y2(t). So the solution of a generalized Caputo
fractional differential equation of order α ∈ (0, 1) is uniquely defined by a condition that can be
specified at any point t ≥ 0. It follows that for the solution of (1) that passes through the point
(T, yT ) we are able to find at most one point (0, y0) that also lies on the same solution trajectory.
To evaluate the value of y(T ), we need a numerical method to solve initial value problems. We use
the algorithm given in [13, 10] to obtain the initial value y(0) . The selection of the initial value
for the terminal value problem is implemented by the following steps. The precision ϵstop = 10−5

is used for computing y(0). The next numerical example is given to show the dependence on the
problem parameters which is analyzed in Theorems 3.1-3.4.

Example 4.3. Consider the following problem

ρ
cD

α
0+ (y(t)) = −y(t) + t2 +

Γ
(
1 + 2

ρ

)
ρα

Γ
(
1 + 2

ρ − α
) t2−ρα := f(t, y), t > 0, (56)

with the terminal condition y(1) = 1. The analytical solution of (56) is given by y(t) = t2.

In this example, we denote ∥y − z∥∞ = max
1≤k≤K

|yk − zk|. Note that the function f satisfies the

assumptions of Theorems 3.1- 3.4. We consider the following perturbed problems

ρ
cD

α
0+ (z(t)) = f(t, z), t > 0, (57)

z(T ) = yT + εT ,
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Algorithm 4.1 The procedure of selecting initial value.

1: Guess an approximation of y(0) denoted by y10, solve the initial value problem

ρ
cD

α
0+ (y(t)) = f(t, y(t)), t ∈ (0, T ],

y(0) = y10,

and get y(T ) denoted by y1T .

2: if |y(T )− y1T | < ϵstop, then stop, y(0) = y10.
else
Re-guess an approximation y(0) as yk(0), solve the initial value problem

ρ
cD

α
0+ (y(t)) = f(t, y(t)), t ∈ (0, T ],

y(0) = yk0,

and get y(T ) denoted by ykT .

3: until |y(T )− ykT | < ϵstop, then stop, y(0) = yk0.

ρ
cD

α
0+ (z(t)) = f(t, z) + εf , t > 0, (58)

z(T ) = yT ,

ρ
cD

α+εα
0+ (z(t)) = f(t, z), t > 0, (59)

z(T ) = yT ,

ρ+ερ
c Dα

0+ (z(t)) = f(t, z), t > 0, (60)

z(T ) = yT .

Table 5: Maximum errors and convergence orders of Example 4.2 solved by the scheme (46) with
T = 1, ρ = 2.

εT
h 0.3 0.1 0.03 0.01 0.0025

1/10 3.0000× 10−1 1.0000× 10−1 3.0000× 10−2 1.0000× 10−2 2.5000× 10−3

1/20 3.0000× 10−1 1.0000× 10−1 3.0000× 10−2 1.0000× 10−2 2.5000× 10−3

1/40 3.0000× 10−1 1.0000× 10−1 3.0000× 10−2 1.0000× 10−2 2.5000× 10−3

1/80 3.0000× 10−1 1.0000× 10−1 3.0000× 10−2 1.0000× 10−2 2.5000× 10−3

1/160 3.0000× 10−1 1.0000× 10−1 3.0000× 10−2 1.0000× 10−2 2.5000× 10−3

Table 6: Maximum errors and convergence orders of Example 4.2 solved by the scheme (46) with
T = 1, α = 0.5.

εf
h 0.5 0.2 0.1 0.05 0.02

1/10 2.4241× 10−1 9.6963× 10−2 4.8481× 10−2 2.4241× 10−2 9.6963× 10−3

1/20 2.4043× 10−1 9.6172× 10−2 4.8086× 10−2 2.4043× 10−2 9.6172× 10−3

1/40 2.3943× 10−1 9.5771× 10−2 4.7885× 10−2 2.3943× 10−2 9.5771× 10−3

1/80 2.3892× 10−1 9.5569× 10−2 4.7784× 10−2 2.3892× 10−2 9.5569× 10−3

1/160 2.3892× 10−1 9.5468× 10−2 4.7734× 10−2 2.3867× 10−2 9.5468× 10−3

13



Table 7: Maximum errors and convergence orders of Example 4.2 solved by the scheme (46) with
T = 1, ρ = 2.

εα
h 0.05 0.1 0.15 0.2 0.5

1/10 5.1809× 10−1 4.8886× 10−1 4.5895× 10−1 4.2848× 10−1 2.4200× 10−1

1/20 5.6454× 10−1 5.3329× 10−1 5.0139× 10−1 4.6889× 10−1 2.6847× 10−1

1/40 5.8723× 10−1 5.5498× 10−1 5.2209× 10−1 4.8861× 10−1 2.8143× 10−1

1/80 5.9844× 10−1 5.6570× 10−1 5.3233× 10−1 4.9836× 10−1 2.8787× 10−1

1/160 6.0400× 10−1 5.7104× 10−1 5.3743× 10−1 5.0322× 10−1 2.9109× 10−1

Table 8: Maximum errors and convergence orders of Example 4.2 solved by the scheme (46) with
T = 1, α = 0.5.

ερ
h 0.001 0.025 0.05 0.1 0.2

1/10 1.8950× 10−5 4.7294× 10−4 9.4418× 10−4 1.8816× 10−3 3.7360× 10−3

1/20 2.3905× 10−5 5.9656× 10−4 1.1909× 10−3 2.3730× 10−3 4.7107× 10−3

1/40 2.6686× 10−5 6.6594× 10−4 1.3293× 10−3 2.6486× 10−3 5.2568× 10−3

1/80 2.8156× 10−5 7.0260× 10−4 1.4025× 10−3 2.7941× 10−3 5.5452× 10−3

1/160 2.8912× 10−5 7.2144× 10−4 1.4401× 10−3 2.8690× 10−3 5.6935× 10−3

The numerical results of the perturbed problems (57)-(60) are presented in Tables 5, 6, 7 and
8, respectively, from which we see that ∥y − z∥∞ ∼ ϵT , ∥y − z∥∞ ∼ ϵf ∥y − z∥∞ ∼ ϵα and
∥y − z∥∞ ∼ ϵρ, which are consistent with the theoretical results proved in Theorems 3.1 - 3.4.

5 Conclusion

We have discussed a terminal value problem with a generalized Caputo fractional derivative. The
existence and uniqueness of solutions are obtained by using the Banach fixed point theorem. The
continuous dependence of the solution on the data of terminal value problem are considered. We
have proposed a simple one step method to confirm the continuous dependence of the solution
on the data for the corresponding perturbed problems. The numerical results agree with our
theoretical findings. The convergence rate of the proposed numerical method is of the first order.
Developing high-order numerical methods for the considered model will be our further work.
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