* These information obtained from several reports. Some of them
report interplant signal and some of them report the effect on plant
pathogens.
Reference
Adesemoye A.O., Torbert H.A. & Kloepper J.W. (2008) Enhanced plant
nutrient use efficiency with PGPR and AMF in an integrated nutrient
management system. Can J Microbiol , 54 , 876-886.
Alborn H., Turlings T., Jones T.H., Stenhagen G., Loughrin J. &
Tumlinson J. (1997) An elicitor of plant volatiles from beet armyworm
oral secretion. Science , 276 , 945-949.
Alborn H.T., Hansen T.V., Jones T.H., Bennett D.C., Tumlinson J.H.,
Schmelz E.A. & Teal P.E. (2007) Disulfooxy fatty acids from the
American bird grasshopper Schistocerca americana, elicitors of
plant volatiles. Proceedings of the National Academy of Sciences ,104 , 12976-12981.
Ali J.G., Alborn H.T. & Stelinski L.L. (2011) Constitutive and induced
subterranean plant volatiles attract both entomopathogenic and plant
parasitic nematodes. Journal of Ecology , 99 , 26-35.
Ameye M., Allmann S., Verwaeren J., Smagghe G., Haesaert G., Schuurink
R.C. & Audenaert K. (2018) Green leaf volatile production by plants: a
meta-analysis. New Phytologist , 220 , 666-683.
Ameye M., Audenaert K., De Zutter N., Steppe K., Van Meulebroek L.,
Vanhaecke L., De Vleesschauwer D., Haesaert G. & Smagghe G. (2015)
Priming of wheat with the green leaf volatile Z-3-hexenyl acetate
enhances defense against Fusarium graminearum but boosts
deoxynivalenol production. Plant physiology , 167 ,
1671-1684.
Andika I.B., Wei S., Cao C., Salaipeth L., Kondo H. & Sun L. (2017)
Phytopathogenic fungus hosts a plant virus: A naturally occurring
cross-kingdom viral infection. Proceedings of the National Academy
of Sciences , 114 , 12267-12272.
Babikova Z., Gilbert L., Bruce T.J., Birkett M., Caulfield J.C.,
Woodcock C., Pickett J.A. & Johnson D. (2013) Underground signals
carried through common mycelial networks warn neighbouring plants of
aphid attack. Ecology Letters , 16 , 835-843.
Bailly A., Groenhagen U., Schulz S., Geisler M., Eberl L. & Weisskopf
L. (2014) The inter-kingdom volatile signal indole promotes root
development by interfering with auxin signalling. Plant J ,80 , 758-771.
Bais H.P. (2006) The role of root exudates in rhizosphere interations
with plants and other organisms. Annual Reveiw Plant Biology ,57 , 233-266.
Ballaré C.L. & Austin A.T. (2019) Recalculating growth and defense
strategies under competition: key roles of photoreceptors and
jasmonates. Journal of Experimental Botany , 70 ,
3425-3436.
Barto E.K., Hilker M., Muller F., Mohney B.K., Weidenhamer J.D. &
Rillig M.C. (2011) The fungal fast lane: common mycorrhizal networks
extend bioactive zones of allelochemicals in soils. PLoS One ,6 , e27195.
Bell K., Naranjo-Guevara N., Santos R.C., Meadow R. & Bento J.M.S.
(2020) Predatory earwigs are attracted by herbivore-induced plant
volatiles linked with plant growth-promoting rhizobacteria.Insects of Jianfengling , 11 , 217.
Bennett J.A., Cahill J.F. & van der Heijden M. (2016) Fungal effects on
plant-plant interactions contribute to grassland plant abundances:
evidence from the field. Journal of Ecology , 104 ,
755-764.
Berg G., Rybakova D., Fischer D., Cernava T., Vergès M.-C.C., Charles
T., Chen X., Cocolin L., Eversole K. & Corral G.H. (2020) Microbiome
definition re-visited: old concepts and new challenges.Microbiome , 8 , 1-22.
Bian R., Andika I.B., Pang T., Lian Z., Wei S., Niu E., Wu Y., Kondo H.,
Liu X. & Sun L. (2020) Facilitative and synergistic interactions
between fungal and plant viruses. Proceedings of the National
Academy of Sciences , 117 , 3779-3788.
Bichlmeier M. (2017) Identification of Systemic Acquired
Resistance–Related Volatile Organic Compounds and their Role in Plant
Immunity , Technische Universität München.
Biedrzycki M.L., Jilany T.A., Dudley S.A. & Bais H.P. (2010) Root
exudates mediate kin recognition in plants. Communicative &
integrative biology , 3 , 28-35.
Bittebiere A.-K., Benot M.-L. & Mony C. (2020) Clonality as a key but
overlooked driver of biotic interactions in plants. Perspectives
in Plant Ecology, Evolution and Systematics , 43 , 125510.
Body M.J.A., Neer W.C., C. V., Lin C.-H., Vu D. & Cocroft R.B. (2019)
Caterpillar chewing vibrations cause changes in plant hormones and
volatile emissions in Arabidopsis thaliana . Frontiers in
Plant Science , 10:810 .
Bonaventure G., VanDoorn A. & Baldwin I.T. (2011) Herbivore-associated
elicitors: FAC signaling and metabolism. Trends in Plant Science ,16 , 294-299.
Bouwmeester H., Schuurink R.C., Bleeker P.M. & Schiestl F. (2019) The
role of volatiles in plant communication. Plant Journal ,100 , 892-907.
Caicedo-Lopez L.H., Contreras-Medina L.M., Guevara-Gonzaleza R.G.,
Perez-Matzumotob A.E. & Ruiz-Ruedab A. (2020) Effects of hydric stress
on vibrational frequency patterns of Capsicum annuum plants.Plant Signaling Behavior , e1770489-2 .
Camacho-Coronel X., Molina-Torres J. & Heil M. (2020) Sequestration of
exogenous volatiles by plant cuticular waxes as a mechanism of passive
associational resistance: a proof of concept. Frontiers in Plant
Science , 11 , 121.
Carrión V.J., Perez-Jaramillo J., Cordovez V., Tracanna V., de Hollander
M., Ruiz-Buck D., Mendes L.W., van Ijcken V.F.J., Medema M.H. &
Raaijmakers J. (2019) Pathogen-induced activation of disease-suppressive
functions in the endophytic root microbiome. Science ,366 , 606-612.
Carvalhais L.C., Dennis P.G., Badri D.V., Kidd B.N., Vivanco J.M. &
Schenk P.M. (2015) Linking jasmonic acid signaling, root exudates, and
rhizosphere microbiomes. Molecular Plant Microbe Interactions ,28 , 1049-1058.
Castelyn H.D., Appelgryn J.J., Mafa M.S., Pretorius Z.A. & Visser B.
(2014) Volatiles emitted by leaf rust infected wheat induce a defence
response in exposed uninfected wheat seedlings. Australasian Plant
Pathology , 44 , 245-254.
Chalal M., Winkler J.B., Gourrat K., Trouvelot S., Adrian M., Schnitzler
J.-P., Jamois F. & Daire X. (2015) Sesquiterpene volatile organic
compounds (VOCs) are markers of elicitation by sulfated laminarine in
grapevine. Frontiers in plant science , 6 , 350. doi:
310.3389/fpls.2015.00350.
Chang C., Kwok S.F., Bleecker A.B. & Meyerowitz E.M. (1993) Arabidopsis
ethylene-response gene ETR1: similarity of product to two-component
regulators. Science , 262 , 539-544.
Chariou P.L., Dogan A.B., Welsh A.G., Saidel G.M., Baskaran H. &
Steinmetz N.F. (2019) Soil mobility of synthetic and virus-based model
nanopesticides. Nature Nanotechnology , 14 , 712-718.
Chen H., Yang R., Chen J., Luo Q., Cui X., Yan X. & Gerwick W.H.
(2019a) 1-Octen-3-ol, a self-stimulating oxylipin messenger, can prime
and induce defense of marine alga. BMC Plant Biology ,19 , 37.
Chen Q., Jiang T., Liu Y.X., Liu H., Zhao T., Liu Z., Gan X., Hallab A.,
Wang X., He J., Ma Y., Zhang F., Jin T., Schranz M.E., Wang Y., Bai Y.
& Wang G. (2019b) Recently duplicated sesterterpene (C25) gene clusters
in Arabidopsis thaliana modulate root microbiota. Sci China
Life Sci , 62 , 947-958.
Chen S., Zhang L., Cai X., Li X., Bian L., Luo Z., Li Z., Chen Z. & Xin
Z. (2020) (E)-Nerolidol is a volatile signal that induces defenses
against insects and pathogens in tea plants. Hortic Res ,7 , 52.
Cheol Song G., Sim H.-J., Kim S.-G. & Ryu C.-M. (2016) Root-mediated
signal transmission of systemic acquired resistance against above-ground
and below-ground pathogens. Annals of botany , 118 ,
821-831.
Chiriboga X., Guo H., Campos-Herrera R., Röder G., Imperiali N., Keel
C., Maurhofer M. & Turlings T.C. (2018) Root-colonizing bacteria
enhance the levels of (E)-β-caryophyllene produced by maize roots in
response to rootworm feeding. Oecologia , 187 , 459-468.
Choi W.-G., Miller G., Wallace I., Harper J., Mittler R. & Gilroy S.
(2017) Orchestrating rapid long-distance signaling in plants with Ca2+,
ROS and electrical signals. The Plant Journal , 90 ,
698-707.
Cipollini D., Rigsby C.M. & Barto E.K. (2012) Microbes as targets and
mediators of allelopathy in plants. Journal of Chemical Ecology ,38 , 714-727.
Conrath U., Beckers G.J., Langenbach C.J. & Jaskiewicz M.R. (2015)
Priming for enhanced defense. Annu Rev Phytopathol , 53 ,
97-119.
Copolovici L., Kannaste A., Pazouki L. & Niinemets U. (2012) Emissions
of green leaf volatiles and terpenoids from Solanum lycopersicumare quantitatively related to the severity of cold and heat shock
treatments. Journal of Plant Physiology , 169 , 664-672.
Cotton T.E.A., Petriacq P., Cameron D.D., Meselmani M.A.,
Schwarzenbacher R., Rolfe S.A. & Ton J. (2019) Metabolic regulation of
the maize rhizobiome by benzoxazinoids. ISME Journal ,13 , 1647-1658.
D’Alessandro M., Erb M., Ton J., Brandenburg A., Karlen D., Zopfi J. &
Turlings T.C. (2014) Volatiles produced by soil‐borne endophytic
bacteria increase plant pathogen resistance and affect tritrophic
interactions. Plant, cell & environment , 37 , 813-826.
da Trindade R., Almeida L., Xavier L., Lins A.L., Andrade E.H., Maia
J.G., Mello A., Setzer W.N., Ramos A. & da Silva J.K. (2019) Arbuscular
mycorrhizal fungi colonization promotes changes in the volatile
compounds and enzymatic activity of lipoxygenase and phenylalanine
ammonia lyase in Piper nigrum L. ’Bragantina’. Plants
(Basel) , 8 .
De Lange E.S., Laplanche D., Guo H., Xu W., Vlimant M., Erb M., Ton J.
& Turlings T.C. (2020) Spodoptera frugiperda caterpillars
suppress herbivore-induced volatile emissions in Maize. Journal of
Chemical Ecology , 1-17.
de Toledo G.R.A., Parise A.G., Simmi F.Z., Costa A.V.L., Senko L.G.S.,
Debono M.-W. & Souza G.M. (2019) Plant electrome: the electrical
dimension of plant life. Theoretical and Experimental Plant
Physiology , 31 , 21-46.
Deja-Sikora E., Mercy L., Baum C. & Hrynkiewicz K. (2019) The
Contribution of endomycorrhiza to the performance of potato virus
y-infected solanaceous plants: disease alleviation or exacerbation?Frontiers in Microbiology , 10 , 516.
Delaney K.J., Breza-Boruta B., Lemańczyk G., Bocianowski J., Wrzesińska
D., Kalka I. & Piesik D. (2015) Maize VOC induction after infection by
the bacterial pathogen, Pantoea ananatis, alters neighbouring plant VOC
emissions. Journal of Plant Diseases and Protection ,122 , 125-132.
Delory B.M., Delaplace P., Fauconnier M.-L. & du Jardin P. (2016)
Root-emitted volatile organic compounds: can they mediate belowground
plant-plant interactions? Plant and Soil , 402 , 1-26.
Desurmont G.A., Xu H. & Turlings T.C. (2016) Powdery mildew suppresses
herbivore-induced plant volatiles and interferes with parasitoid
attraction in Brassica rapa . Plant, Cell & Environment ,39 , 1920-1927.
Disi J.O., Mohammad H.K., Lawrence K., Kloepper J. & Fadamiro H. (2019)
A soil bacterium can shape belowground interactions between maize,
herbivores and entomopathogenic nematodes. Plant and Soil ,437 , 83-92.
Dombrowski J.E., Kronmiller B.A., Hollenbeck V.G., Rhodes A.C., Henning
J.A. & Martin R.C. (2019) Transcriptome analysis of the model grassLolium temulentum exposed to green leaf volatiles. BMC
Plant Biology , 19 , 222.
Dombrowski J.E. & Martin R.C. (2018) Activation of MAP kinases by green
leaf volatiles in grasses. BMC Research Notes , 11 , 1-6.
Eberl F., Hammerbacher A., Gershenzon J. & Unsicker S.B. (2018) Leaf
rust infection reduces herbivore‐induced volatile emission in black
poplar and attracts a generalist herbivore. New Phytologist ,220 , 760-772.
Edwards J.A., Santos-Medellın C.M., Liechty Z.S., Nguyen B., Lurie E. &
Eason S. (2018) Compositional shifts in root-associated bacterial and
archaeal microbiota track the plant life cycle in field-grown rice.PLoS Biology , 16(2): e2003862 .
Effah E., Holopainen J.K. & McCormick A.C. (2019) Potential roles of
volatile organic compounds in plant competition. Perspectives in
Plant Ecology, Evolution and Systematics , 38 , 58-63.
Falik O., Mordoch Y., Ben-Natan D., Vanunu M., Goldstein O. &
Novoplansky A. (2012) Plant responsiveness to root-root communication of
stress cues. Annals of Botany , 110 , 271-280.
Fan X., Hu H., Huang G., Huang F., Li Y. & Palta J. (2015) Soil
inoculation with Burkholderia sp. LD-11 has positive effect on water-use
efficiency in inbred lines of maize. Plant and Soil ,390 , 337-349.
Ghosh R., Mishra R.C., Choi B., Kwon Y.S., Won Bae D., Park S.C.J., M.J.
& Bae H. (2016) Exposure to sound vibrations lead to transcriptomic,
proteomic and hormonal changes in arabidopsis. Scientific Report ,6, 33370 .
Gilbert L. & Johnson D. (2017) Plant–plant communication through
common mycorrhizal networks. In: Advances in Botanical Research ,
pp. 83-97. Elsevier.
Gilbert S.F. (2019) Evolutionary transitions revisited: Holobiont
evo-devo. Journal of Experimental Zoology 332 , 307-314.
Glazebrook J. (2005) Contrasting mechanisms of defense against
biotrophic and necrotrophic pathogens. Annual Reveiw of
Phytopathology , 43 , 205-227.
Gómez S. & Stuefer J.F. (2006) Members only: induced systemic
resistance to herbivory in a clonal plant network. Oecologia ,147 , 461-468.
Gómez S., Van Dijk W. & Stuefer J.F. (2010) Timing of induced
resistance in a clonal plant network. Plant Biology , 12 ,
512-517.
Gorman Z., Christensen S.A., Yan Y., He Y., Borrego E. & Kolomiets M.V.
(2020) Green leaf volatiles and jasmonic acid enhance susceptibility to
anthracnose diseases caused by Colletotrichum graminicola in
maize. Molecular Plant Pathology , 21 , 702-715.
Gu Y., Wei Z., Wang X., Friman V.-P., Huang J., Wang X., Mei X., Xu Y.,
Shen Q. & Jousset A. (2016) Pathogen invasion indirectly changes the
composition of soil microbiome via shifts in root exudation profile.Biology and Fertility of Soils , 52 , 997-1005.
Guerrieri A., Dong L. & Bouwmeester H.J. (2019) Role and exploitation
of underground chemical signaling in plants. Pest Management
Science , 75 , 2455-2463.
Heil M. & Bueno J.C.S. (2014) Herbivore-Induced Volatiles as Rapid
Signals in Systemic Plant Responses. Plant Signal. Behav. ,2 , 191-193.
Hettenhausen C., Li J., Zhuang H., Sun H., Xu Y., Qi J., Zhang J., Lei
Y., Qin Y., Sun G., Wang L., Baldwin I.T. & Wu J. (2017) Stem parasitic
plant Cuscuta australis (dodder) transfers herbivory-induced signals
among plants. Proceedings of the National Academy of Sciences ,114 , E6703-E6709.
Hodge A., Fitter A.H. & Robinson D. (2013) Microbial mediation of plant
competition and community structure. Functional Ecology ,27 , 865-875.
Hopke J., Donath J., Blechert S. & Boland W. (1994) Herbivore-induced
volatiles: the emission of acyclic homoterpenes from leaves ofPhaseolus lunatus and Zea mays can be triggered by a
β-glucosidase and jasmonic acid. Febs Letters , 352 ,
146-150.
Hortal S., Lozano Y.M., Bastida F., Armas C., Moreno J.L., Garcia C. &
Pugnaire F.I. (2017) Plant-plant competition outcomes are modulated by
plant effects on the soil bacterial community. Scientific Report ,7 , 17756.
Hu L., Ye M. & Erb M. (2019) Integration of two herbivore‐induced plant
volatiles results in synergistic effects on plant defence and
resistance. Plant, Cell & Environment , 42 , 959-971.
Huang M., Sanchez-Moreiras A.M., Abel C., Sohrabi R., Lee S., Gershenzon
J. & Tholl D. (2012) The major volatile organic compound emitted fromArabidopsis thaliana flowers, the sesquiterpene
(E)-beta-caryophyllene, is a defense against a bacterial pathogen.New Phytologist , 193 , 997-1008.
Jassbi A.R., Zamanizadehnajari S. & Baldwin I.T. (2010) Phytotoxic
volatiles in the roots and shoots of Artemisia tridentata as
detected by headspace solid-phase microextraction and gas
chromatographic-mass spectrometry analysis. Journal of Chemical
Ecology , 36 , 1398-1407.
Jiang Y., Ye J., Veromann L.-L. & Niinemets Ü. (2016) Scaling of
photosynthesis and constitutive and induced volatile emissions with
severity of leaf infection by rust fungus (Melampsora
larici-populina ) in Populus balsamifera var. suaveolens .Tree Physiology , 1-17.
Jung H.W., Tschaplinski T.J., Wang L., Glazebrook J. & Greenberg J.T.
(2009) Priming in systemic plant immunity. Science 324 ,
89-91.
Jung J., Kim S.-K., Jung S.-H., Jeong M.-J. & Ryu C.-M. (2020) Sound
vibration-triggered epigenetic modulation induces plant root immunity
against Ralstonia solanacearum . Frontiers in Microbiology ,11 , 1978. doi: 1910.3389/fmicb.2020.01978.
Karamanoli K., Kokalas V., Koveos D., Junker R. & Farré-Armengol G.
(2020) Bacteria affect plant-mite interactions via altered scent
emissions. Journal of Chemical Ecology , 1-11.
Karban R., Shiojiri K., Ishizaki S., Wetzel W.C. & Evans R.Y. (2013)
Kin recognition affects plant communication and defence. P Roy Soc
B-Biol Sci , 280 , 20123062.
Karban R., Wetzel W.C., Shiojiri K., Ishizaki S., Ramirez S.R. & Blande
J.D. (2014) Deciphering the language of plant communication: volatile
chemotypes of sagebrush. New Phytol , 204 , 380-385.
Kessler A. & Heil M. (2011) The multiple faces of indirect defences and
their agents of natural selection. Functional Ecology ,25 , 348-357.
Khashi u Rahman M., Zhou X. & Wu F. (2019) The role of root exudates,
CMNs, and VOCs in plant–plant interaction. Journal of Plant
Interactions , 14 , 630-636.
Klimm F.S., Weinhold A. & Volf M. (2020) Volatile production differs
between oak leaves infested by leaf-miner Phyllonorycter
harrisella (Lepidoptera: Gracillariidae) and galler Neuroterus
quercusbaccarum (Hymenoptera: Cynipidae). European Journal of
Entomology , 117 , 101-109.
Kollasch A.M., Abdul‑Kaf A., Body M.J.A., Pinto C.F., Appel H.M. &
Cocroft R.B. (2020) Leaf vibrations produced by chewing provide a
consistent acoustic target for plant recognition of herbivores.Oecologia .
Kong C.-H., Zhang S.-Z., Li Y.-H., Xia Z.-C., Yang X.-F., Meiners S.J.
& Wang P. (2018a) Plant neighbor detection and allelochemical response
are driven by root-secreted signaling chemicals. Nature
Communications , 9 , 3867.
Kong C.H., Xu X.H., Zhang M. & Zhang S.Z. (2010) Allelochemical tricin
in rice hull and its aurone isomer against rice seedling rot disease.Pest management science , 66 , 1018-1024.
Kong C.H., Zhang S.Z., Li Y.H., Xia Z.C., Yang X.F., Meiners S.J. &
Wang P. (2018b) Plant neighbor detection and allelochemical response are
driven by root-secreted signaling chemicals. Nature
Communications , 9 , 3867.
Kong H.G., Song G.C., Sim H.J. & Ryu C.-M. (2020) Achieving similar
root microbiota composition in neighbouring plants through airborne
signalling. ISME Journal , In Press .
Korenblum E., Dong Y., Szymanski J., Panda S., Jozwiak A., Massalha H.,
Meir S., Rogachev I. & Aharoni A. (2020) Rhizosphere microbiome
mediates systemic root metabolite exudation by root-to-root signaling.Proceedings of the National Academy of Sciences , 117 ,
3874-3883.
Kroes A., Weldegergis B.T., Cappai F., Dicke M. & van Loon J.J. (2017)
Terpenoid biosynthesis in Arabidopsis attacked by caterpillars
and aphids: effects of aphid density on the attraction of a caterpillar
parasitoid. Oecologia , 185 , 699-712.
Kudjordjie E.N., Sapkota R., Steffensen S.K., Fomsgaard I.S. &
Nicolaisen M. (2019) Maize synthesized benzoxazinoids affect the host
associated microbiome. Microbiome , 7 , 59.
Kwon Y.S., Ryu C.M., Lee S., Park H.B., Han K.S., Lee J.H., Lee K.,
Chung W.S., Jeong M.J., Kim H.K. & Bae D.W. (2010) Proteome analysis ofArabidopsis seedlings exposed to bacterial volatiles.Planta , 232 , 1355-1370.
Lazazzara V., Bueschl C., Parich A., Pertot I., Schuhmacher R. &
Perazzolli M. (2018) Downy mildew symptoms on grapevines can be reduced
by volatile organic compounds of resistant genotypes. Scientific
Reports , 8 , 1618.
Lazebnik J., Tibboel M., Dicke M. & van Loon J.J. (2017) Inoculation of
susceptible and resistant potato plants with the late blight pathogenPhytophthora infestans : effects on an aphid and its parasitoid.Entomologia Experimentalis et Applicata , 163 , 305-314.
Lee B., Lee S. & Ryu C.M. (2012) Foliar aphid feeding recruits
rhizosphere bacteria and primes plant immunity against pathogenic and
non-pathogenic bacteria in pepper. Annals of Botany ,110 , 281-290.
Lee S.M., Kim S.K., Lee N., Ahn C.Y. & Ryu C.M. (2020) D‐Lactic acid
secreted by Chlorella fusca primes pattern‐triggered immunity
against Pseudomonas syringae in Arabidopsis. The Plant
Journal , 102 , 761–778.
Leitner M., Kaiser R., Rasmussen M.O., Driguez H., Boland W. & Mithöfer
A. (2008) Microbial oligosaccharides differentially induce volatiles and
signalling components in Medicago truncatula. Phytochemistry ,69 , 2029-2040.
Li L.-L., Zhao H.-H. & Kong C.-H. (2020a) (–)-Loliolide, the most
ubiquitous lactone, is involved in barnyardgrass-induced rice
allelopathy. Journal of Experimental Botany , 71 ,
1540-1550.
Li S., Zhang J., Liu H., Liu N., Shen G., Zhuang H. & Wu J. (2020b)
Dodder-transmitted mobile signals prime host plants for enhanced salt
tolerance. Journal of Experimental Botany , 71 ,
1171-1184.
Lin Y., Hussain M., Avery P.B., Qasim M., Fang D. & Wang L. (2016)
Volatiles from plants induced by multiple aphid attacks promote conidial
performance of Lecanicillium lecanii . PLoS One ,11 , e0151844.
Lopez-Gresa M.P., Paya C., Ozaez M., Rodrigo I., Conejero V., Klee H.,
Belles J.M. & Lison P. (2018) A New Role For Green Leaf Volatile Esters
in Tomato Stomatal Defense Against Pseudomonas syringe pv. tomato.Front Plant Sci , 9 , 1855.
Lopez-Raez J.A., Shirasu K. & Foo E. (2017) Strigolactones in plant
interactions with beneficial and detrimental organisms: the Yin and
Yang. Trends in Plant Science , 22 , 527-537.
Maggini V., Bandeira Reidel R.V., De Leo M., Mengoni A., Rosaria Gallo
E., Miceli E., Biffi S., Fani R., Firenzuoli F., Bogani P. & Pistelli
L. (2020) Volatile profile of Echinacea purpurea plants after in
vitro endophyte infection. Natural Product Research , 34 ,
2232-2237.
Mannaa M., Han G., Jeon H.W., Kim J., Kim N., Park A.R., Kim J.C. & Seo
Y.S. (2020) Influence of resistance-inducing chemical elicitors against
pine wilt disease on the rhizosphere microbiome. Microorganisms ,8 .
Martel J.W., Alford A.R. & Dickens J. (2007) Evaluation of a novel host
plant volatile-based attracticide for management of Colorado potato
beetle, Leptinotarsa decemlineata (Say). Crop Protection ,26 , 822-827.
Mirabella R., Rauwerda H., Allmann S., Scala A., Spyropoulou E.A., Vries
M., Boersma M.R., Breit T.M., Haring M.A. & Schuurink R.C. (2015)
WRKY40 and WRKY6 act downstream of the green leaf volatile E‐2‐hexenal
in Arabidopsis. The Plant Journal , 83 , 1082-1096.
Moisan K., Lucas-Barbosa D., Villela A., Greenberg L.O., Cordovez V.,
Raaijmakers J.M. & Dicke M. No evidence of modulation of indirect plant
resistance of Brassica rapa plants by volatiles from soil-borne
fungi. Ecological Entomology , n/a .
Moreira X., Nell C.S., Katsanis A., Rasmann S. & Mooney K.A. (2018)
Herbivore specificity and the chemical basis of plant–plant
communication in Baccharis salicifolia (Asteraceae). New
Phytologist , 220 , 703-713.
Munoz-Parra E., Pelagio-Flores R., Raya-Gonzalez J., Salmeron-Barrera
G., Ruiz-Herrera L.F., Valencia-Cantero E. & Lopez-Bucio J. (2017)
Plant-plant interactions influence developmental phase transitions,
grain productivity and root system architecture in Arabidopsis via auxin
and PFT1/MED25 signalling. Plant, Cell & Environment ,40 , 1887-1899.
Neal A. & Ton J. (2013) Systemic defense priming by Pseudomonas
putida KT2440 in maize depends on benzoxazinoid exudation from the
roots. Plant Signaling & Behavior , 8 , e22655.
Nerva L., Varese G.C., Falk B.W. & Turina M. (2017) Mycoviruses of an
endophytic fungus can replicate in plant cells: Evolutionary
implications. Scientific Report , 7, 1908 .
Ninkovic V., Dahlin I., Vucetic A., Petrovic-Obradovic O., Glinwood R.
& Webster B. (2013) Volatile exchange between undamaged plants-a new
mechanism affecting insect orientation in intercropping. PLoS
One , 8 , e69431.
Okutani F., Hamamoto S., Aoki Y., Nakayasu M., Nihei N., Nishimura T.,
Yazaki K. & Sugiyama A. (2020) Rhizosphere modeling reveals
spatiotemporal distribution of daidzein shaping soybean rhizosphere
bacterial community. Plant, Cell & Environment , 43 ,
1036-1046.
Oliveira M.D.M., Varanda C.M.R. & Félix M.R.F. (2016) Induced
resistance during the interaction pathogen x plant and the use of
resistance inducers. Phytochemistry Letters , 15 ,
152-158.
Orlovskis Z. & Reymond P. (2020) Pieris brassicae eggs trigger
inter‐plant systemic acquired resistance against a foliar pathogen inArabidopsis . New Phytologist .
Paika S.M., Jinb E.S., Simc S.J. & N.L. J. (2018) Vibration-induced
stress priming during seed culture increases microalgal biomass in high
shear field-cultivation. Bioresource Technology .
Paschold A., Halitschke R. & Baldwin I.T. (2006) Using ’mute’ plants to
translate volatile signals. Plant Journal , 45 , 275-291.
Peñaflor M.F.G. & Bento J.M.S. (2019) Red-rot infection in sugarcane
attenuates the attractiveness of sugarcane borer-induced plant volatiles
to parasitoid. Arthropod-Plant Interactions , 13 ,
117-125.
Piesik D., Lemnczyk G., Skoczek A., Lamparski R., Bocianowski J.,
Kotwica K. & Delaney K.J. (2011) Fusarium infection in maize:
volatile induction of infected and neighboring uninfected plants has the
potential to attract a pest cereal leaf beetle, Oulema melanopus .Journal of Plant Physiology , 168 , 1534-1542.
Piesik D., Pańka D., Jeske M., Wenda-Piesik A., Delaney K.J. & Weaver
D.K. (2013) Volatile induction of infected and neighbouring uninfected
plants potentially influence attraction/repellence of a cereal
herbivore. Journal of Applied Entomology , 137 , 296-309.
Pontin M., Bottini R., Burba J.L. & Piccoli P. (2015) Allium
sativum produces terpenes with fungistatic properties in response to
infection with Sclerotium cepivorum . Phytochemistry ,115 , 152-160.
Poveda J., Hermosa R., Monte E. & Nicolás C. (2019) Trichoderma
harzianum favours the access of arbuscular mycorrhizal fungi to
non-host Brassicaceae roots and increases plant productivity.Scientific Reports , 9 , 1-11.
Qawasmeh A., Raman A. & Wheatley W. (2015) Volatiles in perennial
ryegrass infected with strains of endophytic fungus: impact on African
black beetle host selection. Journal of Applied Entomology ,139 , 94-104.
Qian Y., Li D., Han L. & Sun Z. (2010) Inter-ramet photosynthate
translocation in buffalograss under differential water deficit stress.Journal of The American Society for Horticultural Science ,135 , 310-316.
Quintana-Rodriguez E., Morales-Vargas A.T., Molina-Torres J.,
Ádame-Alvarez R.M., Acosta-Gallegos J.A., Heil M. & Flynn D. (2015)
Plant volatiles cause direct, induced and associational resistance in
common bean to the fungal pathogen Colletotrichum lindemuthianum .Journal of Ecology , 103 , 250-260.
Rasmann S., Kollner T.G., Degenhardt J., Hiltpold I., Toepfer S.,
Kuhlmann U., Gershenzon J. & Turlings T.C.J. (2005) Recruitment of
entomopathogenic nematodes by insect-damaged maize roots. Nature ,434 , 732-737.
Ren L., Su S., Yang X., Xu Y., Huang Q. & Shen Q. (2008) Intercropping
with aerobic rice suppressed Fusarium wilt in watermelon. Soil
Biology and Biochemistry , 40 , 834-844.
Riedlmeier M., Ghirardo A., Wenig M., Knappe C., Koch K., Georgii E.,
Dey S., Parker J.E., Schnitzler J.P. & Vlot A.C. (2017) Monoterpenes
Support Systemic Acquired Resistance within and between Plants.Plant Cell , 29 , 1440-1459.
Rivas-San Vicente M. & Plasencia J. (2011) Salicylic acid beyond
defence: its role in plant growth and development. J Exp Bot ,62 , 3321-3338.
Rodriguez P.A. & Bos J.I. (2013) Toward understanding the role of aphid
effectors in plant infestation. Molecular Plant-Microbe
Interactions , 26 , 25-30.
Roiloa S.R., Antelo B. & Retuerto R. (2014) Physiological integration
modifies delta15N in the clonal plant Fragaria vesca, suggesting
preferential transport of nitrogen to water-stressed offspring.Annals of Botany , 114 , 399-411.
Roossinck M.J. (2019) Evolutionary and ecological links between plant
and fungal viruses. New Phytologist , 221 , 86-92.
Rudrappa T., Czymmek K.J., Pare P.W. & Bais H.P. (2008) Root-secreted
malic acid recruits beneficial soil bacteria. Plant Physiol ,148 , 1547-1556.
Rybakova D., Rack-Wetzlinger U., Cernava T., Schaefer A., Schmuck M. &
Berg G. (2017) Aerial warfare: a volatile dialogue between the plant
pathogen Verticillium longisporum and its antagonistPaenibacillus polymyxa . Frontiers in plant science ,8 , 1294. doi: 1210.3389/fpls.2017.01294.
Semchenko M., John E.A. & Hutchings M.J. (2007) Effects of physical
connection and genetic identity of neighbouring ramets on root-placement
patterns in two clonal species. New Phytol , 176 ,
644-654.
Sharifi R., Ahmadzadeh M., Sharifi-Tehrani A. & Talebi-Jahromi K.
(2010) Pyoverdine production in Pseudomonas fluorescens UTPF5 and
its association with suppression of common bean damping off caused byRhizoctonia solani (Kühn). Journal of Plant Protection
Research , 50 , 72-78.
Sharifi R., Lee S.M. & Ryu C.M. (2018) Microbe-induced plant volatiles.New Phytologist , 220 , 684-691.
Sharifi R. & Ryu C.-M. (2018a) Biogenic volatile compounds for plant
disease diagnosis and health improvement. The Plant Pathology
Journal , 34 , 459-469.
Sharifi R. & Ryu C.-M. (2018b) Revisiting bacterial volatile-mediated
plant growth promotion: Lessons from the past and objectives for the
future. Annals of Botany , 122 , 349-358.
Sharifi R. & Ryu C.-M. (2018c) Sniffing bacterial volatile compounds
for healthier plants. Current Opinion In Plant Biology ,44 , 88-97.
Sharifi R. & Ryu C.-M. (2020) Formulation and Agricultural Application
of Bacterial Volatile Compounds. In: Bacterial Volatile Compounds
as Mediators of Airborne Interactions (ed C.-M.e.a. Ryu). Springer,
Singapore.
Sharifi R. & Ryu C.M. (2017) Chatting with a tiny belowground member of
the holobiome: communication between plants and growth-promoting
rhizobacteria. Advances in Botanical Research , 82 ,
135-160.
Shulaev V., Silverman P. & Raskin I. (1997) Airborne signalling by
methyl salicylate in plant pathogen resistance. Nature ,385 , 718-721.
Simmi F.Z., Dallagnol L.J., Ferreira A.S., Pereira D.R. & Souza G.M.
(2020) Electrome alterations in a plant-pathogen system: Toward early
diagnosis. Bioelectrochemistry , 133 , 107493.
Sobhy I.S., Bruce T.J. & Turlings T.C. (2018) Priming of cowpea
volatile emissions with defense inducers enhances the plant’s
attractiveness to parasitoids when attacked by caterpillars. Pest
Management Science , 74 , 966-977.
Song G.C., Choi H.K. & Ryu C.-M. (2015) Gaseous 3-pentanol primes plant
immunity against a bacterial speck pathogen, Pseudomonas syringaepv. tomato via salicylic acid and jasmonic acid-dependent signaling
pathways in Arabidopsis . Frontiers in Plant Science ,6 .
Song G.C., Sim H.J., Kim S.G. & Ryu C.M. (2016) Root-mediated signal
transmission of systemic acquired resistance against above-ground and
below-ground pathogens. Ann Bot .
Song Y.Y., Ye M., Li C., He X., Zhu-Salzman K., Wang R.L., Su Y.J., Luo
S.M. & Zeng R.S. (2014) Hijacking common mycorrhizal networks for
herbivore-induced defence signal transfer between tomato plants.Scientific Report , 4 , 3915.
Song Y.Y., Zeng R.S., Xu J.F., Li J., Shen X. & Yihdego W.G. (2010)
Interplant communication of tomato plants through underground common
mycorrhizal networks. PLoS One , 5 , e13324.
Stringlis I.A., Proietti S., Hickman R., Van Verk M.C., Zamioudis C. &
Pieterse C.M. (2018) Root transcriptional dynamics induced by beneficial
rhizobacteria and microbial immune elicitors reveal signatures of
adaptation to mutualists. The Plant Journal , 93 ,
166-180.
Suarez J. & Stencel A. (2020) A part-dependent account of biological
individuality: why holobionts are individuals and ecosystems
simultaneously. Biol Rev Camb Philos Soc .
Sugimoto K., Matsui K., Iijima Y., Akakabe Y., Muramoto S., Ozawa R.,
Uefune M., Sasaki R., Alamgir K.M. & Akitake S. (2014) Intake and
transformation to a glycoside of (Z)-3-hexenol from infested neighbors
reveals a mode of plant odor reception and defense. Proceedings of
the National Academy of Sciences , 111 , 7144-7149.
Sweeney C., Lakshmanan V. & Bais H.P. (2017) Interplant aboveground
signaling prompts upregulation of auxin promoter and malate transporter
as part of defensive response in the neighboring plants. Frontiers
in Plant Science , 8 , 595.
Takagi H., Ishiga Y., Watanabe S., Konishi T., Egusa M., Akiyoshi N.,
Matsuura T., Mori I.C., Hirayama T., Kaminaka H., Shimada H. & Sakamoto
A. (2016) Allantoin, a stress-related purine metabolite, can activate
jasmonate signaling in a MYC2-regulated and abscisic acid-dependent
manner. Journal of experimental botany , 67 , 2519-2532.
Takigahira H. & Yamawo A. (2019) Competitive responses based on
kin-discrimination underlie variations in leaf functional traits in
Japanese beech (Fagus crenata ) seedlings. Evolutionary
Ecology , 33 , 521-531.
Tedersoo L., Bahram M. & Zobel M. (2020) How mycorrhizal associations
drive plant population and community biology. Science ,367 .
Toome M., Randjärv P., Copolovici L., Niinemets U., Heinsoo K. & Luik
A. (2010) Leaf rust induced volatile organic compounds signalling in
willow during the infection. Planta 232 , 235–243.
Tu S., Yang R., Xu X., Chen J., Luo Q., Zhu Z., Chen H. & Yan X. (2017)
Flg22‐triggered oxylipin production in Pyropia haitanensis .Phycological Research , 65 , 86-93.
Tungadi T., Groen S.C., Murphy A.M., Pate A.E., Iqbal J., Bruce T.J.,
Cunniffe N.J. & Carr J.P. (2017) Cucumber mosaic virus and its
2b protein alter emission of host volatile organic compounds but not
aphid vector settling in tobacco. Virology Journal , 14 ,
1-9.
Vahabi K., Reichelt M., Scholz S.S., Furch A.C.U., Matsuo M., Johnson
J.M., Sherameti I., Gershenzon J. & Oelmuller R. (2018)Alternaria brassicae induces systemic jasmonate responses in
arabidopsis which travel to neighboring plants via aPiriformsopora indica hyphal network and activate abscisic acid
responses. Frontiers in Plant Science , 9 , 626.
van Dam N.M. & Bouwmeester H.J. (2016) Metabolomics in the rhizosphere:
tapping into belowground chemical communication. Trends in Plant
Science , 21 , 256-265.
van Doan C., Züst T., Maurer C., Zhang X., Machado R.A.R., Mateo P., Ye
M., Schimmel B.C.J., Glauser G. & Robert C.A.M. (2020) Tissue-specific
volatile-mediated defense regulation in maize leaves and roots.
van Doorn M.M., Merl-Pham J., Ghirardo A., Fink S., Polle A., Schnitzler
J.P. & Rosenkranz M. (2020) Root isoprene formation alters lateral root
development. Plant & Cell Environment .
Van West P.v., Morris B., Reid B., Appiah A.A., Osborne M., Campbell T.,
Shepherd S. & Gow N.A.R. (2002) Oomycete plant pathogens use electric
fields to target roots. Molecular plant-microbe interactions ,15 , 790-798.
Vannier N., Bittebiere A.-K., Mony C. & Vandenkoornhuyse P. (2020) Root
endophytic fungi impact host plant biomass and respond to plant
composition at varying spatio-temporal scales. Fungal Ecology ,44 , 100907.
Vannier N., Mony C., Bittebiere A.-K., Theis K.R., Rosenberg E. &
Vandenkoornhuyse P. (2019) Clonal Plants as Meta-Holobionts.mSystems , 4 , e00213-00218.
Veen C., Fry E., ten Hooven F., Kardol P., Morriën E. & De Long J.R.
(2019) The role of plant litter in driving plant-soil feedbacks.Frontiers in Environmental Science , 7 , 168.
Vucetic A., Dahlin I., Petrovic-Obradovic O., Glinwood R., Webster B. &
Ninkovic V. (2014) Volatile interaction between undamaged plants affects
tritrophic interactions through changed plant volatile emission.Plant signaling & behavior , 9 , e29517.
Wang C.H., Wu L., Wang Z., Alabady M.S., Parson D., Molumo Z. &
Fankhauser S.C. (2020) Characterizing changes in soil microbiome
abundance and diversity due to different cover crop techniques.PloS One , 15 , e0232453.
Wang K., Liu J., Zhan Y. & Liu Y. (2019) A new slow‐release formulation
of methyl salicylate optimizes the alternative control of Sitobion
avenae (Fabricius)(Hemiptera: Aphididae) in wheat fields. Pest
Management Science , 75 , 676-682.
Wang Z., Li Y., Li T., Zhao T. & Liao Y. (2020) Conservation tillage
decreases selection pressure on community assembly in the rhizosphere of
arbuscular mycorrhizal fungi. Science of the Total Environment ,710: 136326 .
Waters M.T., Gutjahr C., Bennett T. & Nelson D.C. (2017) Strigolactone
signaling and evolution. Annual Review of Plant Biology ,68 , 291-322.
Wenig M., Ghirardo A., Sales J.H., Pabst E.S., Breitenbach H.H.,
Antritter F., Weber B., Lange B., Lenk M., Cameron R.K., Schnitzler J.P.
& Vlot A.C. (2019) Systemic acquired resistance networks amplify
airborne defense cues. Nat Commun , 10 , 3813.
Wu D., Qi T., Li W.X., Tian H., Gao H., Wang J., Ge J., Yao R., Ren C.,
Wang X.B., Liu Y., Kang L., Ding S.W. & Xie D. (2017) Viral effector
protein manipulates host hormone signaling to attract insect vectors.Cell Research , 27 , 402-415.
Xu H., Desurmont G., Degen T., Zhou G., Laplanche D., Henryk L. &
Turlings T.C. (2016) Combined use of herbivore-induced plant volatiles
and sex pheromones for mate location in braconid parasitoids.Plant, Cell & Environment .
Yang J.W., Yi H.-S., Kim H., Lee B., Lee S., Ghim S.-Y. & Ryu C.-M.
(2011) Whitefly infestation of pepper plants elicits defence responses
against bacterial pathogens in leaves and roots and changes the
below-ground microflora. Journal of Ecology , 99 , 46-56.
Yang M., Zhang Y., Qi L., Mei X., Liao J., Ding X., Deng W., Fan L., He
X., Vivanco J.M., Li C., Zhu Y. & Zhu S. (2014) Plant-plant-microbe
mechanisms involved in soil-borne disease suppression on a maize and
pepper intercropping system. PLoS One , 9 , e115052.
Yang X.-F., Li L.-L., Xu Y. & Kong C.-H. (2018) Kin recognition in rice
(Oryza sativa ) lines. New Phytologist , 220 ,
567-578.
Ye M., Glauser G., Lou Y., Erb M. & Hu L. (2019) Molecular dissection
of early defense signaling underlying volatile-mediated defense
regulation and herbivore resistance in rice. The Plant Cell ,31 , 687-698.
Yi H.S., Heil M., Adame-Alvarez R.M., Ballhorn D.J. & Ryu C.M. (2009)
Airborne induction and priming of plant defenses against a bacterial
pathogen. Plant Physiology , 151 , 2152-2161.
Zebelo S.A., Matsui K., Ozawa R. & Maffei M.E. (2012) Plasma membrane
potential depolarization and cytosolic calcium flux are early events
involved in tomato (Solanum lycopersicon ) plant-to-plant
communication. Plant science , 196 , 93-100.
Zhang H., Kim M.S., Krishnamachari V., Payton P., Sun Y., Grimson M.,
Farag M.A., Ryu C.M., Allen R., Melo I.S. & Pare P.W. (2007)
Rhizobacterial volatile emissions regulate auxin homeostasis and cell
expansion in Arabidopsis . Planta , 226 , 839-851.
Zhang P.J., Broekgaarden C., Zheng S.J., Snoeren T.A., van Loon J.J.,
Gols R. & Dicke M. (2013) Jasmonate and ethylene signaling mediate
whitefly‐induced interference with indirect plant defense inArabidopsis thaliana . New Phytologist , 197 ,
1291-1299.
Zhang Y.C., Zou Y.N., Liu L.P. & Wu Q.S. (2019) Common mycorrhizal
networks activate salicylic acid defense responses of trifoliate orange
(Poncirus trifoliata). Journal of integrative plant biology ,61 , 1099-1111.
Zhao M., Cheng J., Guo B., Duan J. & Che C.-T. (2018) Momilactone and
related diterpenoids as potential agricultural chemicals. Journal
of Agricultural and Food Chemistry , 66 , 7859-7872.
Zhou C., Ma Z., Lu X., Zhu L. & Yan C. (2020) Pseudomonas
fluorescens MZ05 Enhances Resistance against Setosphaeria
turcica by Mediating Benzoxazinoid Metabolism in the Maize Inbred Line
Anke35. Agriculture , 10 , 32.
Zhou Y., Cen H., Tian D., Wang C. & Zhang Y. (2019) A tomato and tall
fescue intercropping system controls tomato stem rot. Journal of
Plant Interactions , 14 , 637-647.
Zhuang H., Li J., Song J., Hettenhausen C., Schuman M.C., Sun G., Zhang
C., Li J., Song D. & Wu J. (2018) Aphid (Myzus persicae ) feeding
on the parasitic plant dodder (Cuscuta australis ) activates
defense responses in both the parasite and soybean host. New
Phytologist , 218 , 1586-1596.