* These information obtained from several reports. Some of them report interplant signal and some of them report the effect on plant pathogens.
Reference
Adesemoye A.O., Torbert H.A. & Kloepper J.W. (2008) Enhanced plant nutrient use efficiency with PGPR and AMF in an integrated nutrient management system. Can J Microbiol , 54 , 876-886.
Alborn H., Turlings T., Jones T.H., Stenhagen G., Loughrin J. & Tumlinson J. (1997) An elicitor of plant volatiles from beet armyworm oral secretion. Science , 276 , 945-949.
Alborn H.T., Hansen T.V., Jones T.H., Bennett D.C., Tumlinson J.H., Schmelz E.A. & Teal P.E. (2007) Disulfooxy fatty acids from the American bird grasshopper Schistocerca americana, elicitors of plant volatiles. Proceedings of the National Academy of Sciences ,104 , 12976-12981.
Ali J.G., Alborn H.T. & Stelinski L.L. (2011) Constitutive and induced subterranean plant volatiles attract both entomopathogenic and plant parasitic nematodes. Journal of Ecology , 99 , 26-35.
Ameye M., Allmann S., Verwaeren J., Smagghe G., Haesaert G., Schuurink R.C. & Audenaert K. (2018) Green leaf volatile production by plants: a meta-analysis. New Phytologist , 220 , 666-683.
Ameye M., Audenaert K., De Zutter N., Steppe K., Van Meulebroek L., Vanhaecke L., De Vleesschauwer D., Haesaert G. & Smagghe G. (2015) Priming of wheat with the green leaf volatile Z-3-hexenyl acetate enhances defense against Fusarium graminearum but boosts deoxynivalenol production. Plant physiology , 167 , 1671-1684.
Andika I.B., Wei S., Cao C., Salaipeth L., Kondo H. & Sun L. (2017) Phytopathogenic fungus hosts a plant virus: A naturally occurring cross-kingdom viral infection. Proceedings of the National Academy of Sciences , 114 , 12267-12272.
Babikova Z., Gilbert L., Bruce T.J., Birkett M., Caulfield J.C., Woodcock C., Pickett J.A. & Johnson D. (2013) Underground signals carried through common mycelial networks warn neighbouring plants of aphid attack. Ecology Letters , 16 , 835-843.
Bailly A., Groenhagen U., Schulz S., Geisler M., Eberl L. & Weisskopf L. (2014) The inter-kingdom volatile signal indole promotes root development by interfering with auxin signalling. Plant J ,80 , 758-771.
Bais H.P. (2006) The role of root exudates in rhizosphere interations with plants and other organisms. Annual Reveiw Plant Biology ,57 , 233-266.
Ballaré C.L. & Austin A.T. (2019) Recalculating growth and defense strategies under competition: key roles of photoreceptors and jasmonates. Journal of Experimental Botany , 70 , 3425-3436.
Barto E.K., Hilker M., Muller F., Mohney B.K., Weidenhamer J.D. & Rillig M.C. (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS One ,6 , e27195.
Bell K., Naranjo-Guevara N., Santos R.C., Meadow R. & Bento J.M.S. (2020) Predatory earwigs are attracted by herbivore-induced plant volatiles linked with plant growth-promoting rhizobacteria.Insects of Jianfengling , 11 , 217.
Bennett J.A., Cahill J.F. & van der Heijden M. (2016) Fungal effects on plant-plant interactions contribute to grassland plant abundances: evidence from the field. Journal of Ecology , 104 , 755-764.
Berg G., Rybakova D., Fischer D., Cernava T., Vergès M.-C.C., Charles T., Chen X., Cocolin L., Eversole K. & Corral G.H. (2020) Microbiome definition re-visited: old concepts and new challenges.Microbiome , 8 , 1-22.
Bian R., Andika I.B., Pang T., Lian Z., Wei S., Niu E., Wu Y., Kondo H., Liu X. & Sun L. (2020) Facilitative and synergistic interactions between fungal and plant viruses. Proceedings of the National Academy of Sciences , 117 , 3779-3788.
Bichlmeier M. (2017) Identification of Systemic Acquired Resistance–Related Volatile Organic Compounds and their Role in Plant Immunity , Technische Universität München.
Biedrzycki M.L., Jilany T.A., Dudley S.A. & Bais H.P. (2010) Root exudates mediate kin recognition in plants. Communicative & integrative biology , 3 , 28-35.
Bittebiere A.-K., Benot M.-L. & Mony C. (2020) Clonality as a key but overlooked driver of biotic interactions in plants. Perspectives in Plant Ecology, Evolution and Systematics , 43 , 125510.
Body M.J.A., Neer W.C., C. V., Lin C.-H., Vu D. & Cocroft R.B. (2019) Caterpillar chewing vibrations cause changes in plant hormones and volatile emissions in Arabidopsis thaliana . Frontiers in Plant Science , 10:810 .
Bonaventure G., VanDoorn A. & Baldwin I.T. (2011) Herbivore-associated elicitors: FAC signaling and metabolism. Trends in Plant Science ,16 , 294-299.
Bouwmeester H., Schuurink R.C., Bleeker P.M. & Schiestl F. (2019) The role of volatiles in plant communication. Plant Journal ,100 , 892-907.
Caicedo-Lopez L.H., Contreras-Medina L.M., Guevara-Gonzaleza R.G., Perez-Matzumotob A.E. & Ruiz-Ruedab A. (2020) Effects of hydric stress on vibrational frequency patterns of Capsicum annuum plants.Plant Signaling Behavior , e1770489-2 .
Camacho-Coronel X., Molina-Torres J. & Heil M. (2020) Sequestration of exogenous volatiles by plant cuticular waxes as a mechanism of passive associational resistance: a proof of concept. Frontiers in Plant Science , 11 , 121.
Carrión V.J., Perez-Jaramillo J., Cordovez V., Tracanna V., de Hollander M., Ruiz-Buck D., Mendes L.W., van Ijcken V.F.J., Medema M.H. & Raaijmakers J. (2019) Pathogen-induced activation of disease-suppressive functions in the endophytic root microbiome. Science ,366 , 606-612.
Carvalhais L.C., Dennis P.G., Badri D.V., Kidd B.N., Vivanco J.M. & Schenk P.M. (2015) Linking jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Molecular Plant Microbe Interactions ,28 , 1049-1058.
Castelyn H.D., Appelgryn J.J., Mafa M.S., Pretorius Z.A. & Visser B. (2014) Volatiles emitted by leaf rust infected wheat induce a defence response in exposed uninfected wheat seedlings. Australasian Plant Pathology , 44 , 245-254.
Chalal M., Winkler J.B., Gourrat K., Trouvelot S., Adrian M., Schnitzler J.-P., Jamois F. & Daire X. (2015) Sesquiterpene volatile organic compounds (VOCs) are markers of elicitation by sulfated laminarine in grapevine. Frontiers in plant science , 6 , 350. doi: 310.3389/fpls.2015.00350.
Chang C., Kwok S.F., Bleecker A.B. & Meyerowitz E.M. (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science , 262 , 539-544.
Chariou P.L., Dogan A.B., Welsh A.G., Saidel G.M., Baskaran H. & Steinmetz N.F. (2019) Soil mobility of synthetic and virus-based model nanopesticides. Nature Nanotechnology , 14 , 712-718.
Chen H., Yang R., Chen J., Luo Q., Cui X., Yan X. & Gerwick W.H. (2019a) 1-Octen-3-ol, a self-stimulating oxylipin messenger, can prime and induce defense of marine alga. BMC Plant Biology ,19 , 37.
Chen Q., Jiang T., Liu Y.X., Liu H., Zhao T., Liu Z., Gan X., Hallab A., Wang X., He J., Ma Y., Zhang F., Jin T., Schranz M.E., Wang Y., Bai Y. & Wang G. (2019b) Recently duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate root microbiota. Sci China Life Sci , 62 , 947-958.
Chen S., Zhang L., Cai X., Li X., Bian L., Luo Z., Li Z., Chen Z. & Xin Z. (2020) (E)-Nerolidol is a volatile signal that induces defenses against insects and pathogens in tea plants. Hortic Res ,7 , 52.
Cheol Song G., Sim H.-J., Kim S.-G. & Ryu C.-M. (2016) Root-mediated signal transmission of systemic acquired resistance against above-ground and below-ground pathogens. Annals of botany , 118 , 821-831.
Chiriboga X., Guo H., Campos-Herrera R., Röder G., Imperiali N., Keel C., Maurhofer M. & Turlings T.C. (2018) Root-colonizing bacteria enhance the levels of (E)-β-caryophyllene produced by maize roots in response to rootworm feeding. Oecologia , 187 , 459-468.
Choi W.-G., Miller G., Wallace I., Harper J., Mittler R. & Gilroy S. (2017) Orchestrating rapid long-distance signaling in plants with Ca2+, ROS and electrical signals. The Plant Journal , 90 , 698-707.
Cipollini D., Rigsby C.M. & Barto E.K. (2012) Microbes as targets and mediators of allelopathy in plants. Journal of Chemical Ecology ,38 , 714-727.
Conrath U., Beckers G.J., Langenbach C.J. & Jaskiewicz M.R. (2015) Priming for enhanced defense. Annu Rev Phytopathol , 53 , 97-119.
Copolovici L., Kannaste A., Pazouki L. & Niinemets U. (2012) Emissions of green leaf volatiles and terpenoids from Solanum lycopersicumare quantitatively related to the severity of cold and heat shock treatments. Journal of Plant Physiology , 169 , 664-672.
Cotton T.E.A., Petriacq P., Cameron D.D., Meselmani M.A., Schwarzenbacher R., Rolfe S.A. & Ton J. (2019) Metabolic regulation of the maize rhizobiome by benzoxazinoids. ISME Journal ,13 , 1647-1658.
D’Alessandro M., Erb M., Ton J., Brandenburg A., Karlen D., Zopfi J. & Turlings T.C. (2014) Volatiles produced by soil‐borne endophytic bacteria increase plant pathogen resistance and affect tritrophic interactions. Plant, cell & environment , 37 , 813-826.
da Trindade R., Almeida L., Xavier L., Lins A.L., Andrade E.H., Maia J.G., Mello A., Setzer W.N., Ramos A. & da Silva J.K. (2019) Arbuscular mycorrhizal fungi colonization promotes changes in the volatile compounds and enzymatic activity of lipoxygenase and phenylalanine ammonia lyase in Piper nigrum L. ’Bragantina’. Plants (Basel) , 8 .
De Lange E.S., Laplanche D., Guo H., Xu W., Vlimant M., Erb M., Ton J. & Turlings T.C. (2020) Spodoptera frugiperda caterpillars suppress herbivore-induced volatile emissions in Maize. Journal of Chemical Ecology , 1-17.
de Toledo G.R.A., Parise A.G., Simmi F.Z., Costa A.V.L., Senko L.G.S., Debono M.-W. & Souza G.M. (2019) Plant electrome: the electrical dimension of plant life. Theoretical and Experimental Plant Physiology , 31 , 21-46.
Deja-Sikora E., Mercy L., Baum C. & Hrynkiewicz K. (2019) The Contribution of endomycorrhiza to the performance of potato virus y-infected solanaceous plants: disease alleviation or exacerbation?Frontiers in Microbiology , 10 , 516.
Delaney K.J., Breza-Boruta B., Lemańczyk G., Bocianowski J., Wrzesińska D., Kalka I. & Piesik D. (2015) Maize VOC induction after infection by the bacterial pathogen, Pantoea ananatis, alters neighbouring plant VOC emissions. Journal of Plant Diseases and Protection ,122 , 125-132.
Delory B.M., Delaplace P., Fauconnier M.-L. & du Jardin P. (2016) Root-emitted volatile organic compounds: can they mediate belowground plant-plant interactions? Plant and Soil , 402 , 1-26.
Desurmont G.A., Xu H. & Turlings T.C. (2016) Powdery mildew suppresses herbivore-induced plant volatiles and interferes with parasitoid attraction in Brassica rapa . Plant, Cell & Environment ,39 , 1920-1927.
Disi J.O., Mohammad H.K., Lawrence K., Kloepper J. & Fadamiro H. (2019) A soil bacterium can shape belowground interactions between maize, herbivores and entomopathogenic nematodes. Plant and Soil ,437 , 83-92.
Dombrowski J.E., Kronmiller B.A., Hollenbeck V.G., Rhodes A.C., Henning J.A. & Martin R.C. (2019) Transcriptome analysis of the model grassLolium temulentum exposed to green leaf volatiles. BMC Plant Biology , 19 , 222.
Dombrowski J.E. & Martin R.C. (2018) Activation of MAP kinases by green leaf volatiles in grasses. BMC Research Notes , 11 , 1-6.
Eberl F., Hammerbacher A., Gershenzon J. & Unsicker S.B. (2018) Leaf rust infection reduces herbivore‐induced volatile emission in black poplar and attracts a generalist herbivore. New Phytologist ,220 , 760-772.
Edwards J.A., Santos-Medellın C.M., Liechty Z.S., Nguyen B., Lurie E. & Eason S. (2018) Compositional shifts in root-associated bacterial and archaeal microbiota track the plant life cycle in field-grown rice.PLoS Biology , 16(2): e2003862 .
Effah E., Holopainen J.K. & McCormick A.C. (2019) Potential roles of volatile organic compounds in plant competition. Perspectives in Plant Ecology, Evolution and Systematics , 38 , 58-63.
Falik O., Mordoch Y., Ben-Natan D., Vanunu M., Goldstein O. & Novoplansky A. (2012) Plant responsiveness to root-root communication of stress cues. Annals of Botany , 110 , 271-280.
Fan X., Hu H., Huang G., Huang F., Li Y. & Palta J. (2015) Soil inoculation with Burkholderia sp. LD-11 has positive effect on water-use efficiency in inbred lines of maize. Plant and Soil ,390 , 337-349.
Ghosh R., Mishra R.C., Choi B., Kwon Y.S., Won Bae D., Park S.C.J., M.J. & Bae H. (2016) Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in arabidopsis. Scientific Report ,6, 33370 .
Gilbert L. & Johnson D. (2017) Plant–plant communication through common mycorrhizal networks. In: Advances in Botanical Research , pp. 83-97. Elsevier.
Gilbert S.F. (2019) Evolutionary transitions revisited: Holobiont evo-devo. Journal of Experimental Zoology 332 , 307-314.
Glazebrook J. (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annual Reveiw of Phytopathology , 43 , 205-227.
Gómez S. & Stuefer J.F. (2006) Members only: induced systemic resistance to herbivory in a clonal plant network. Oecologia ,147 , 461-468.
Gómez S., Van Dijk W. & Stuefer J.F. (2010) Timing of induced resistance in a clonal plant network. Plant Biology , 12 , 512-517.
Gorman Z., Christensen S.A., Yan Y., He Y., Borrego E. & Kolomiets M.V. (2020) Green leaf volatiles and jasmonic acid enhance susceptibility to anthracnose diseases caused by Colletotrichum graminicola in maize. Molecular Plant Pathology , 21 , 702-715.
Gu Y., Wei Z., Wang X., Friman V.-P., Huang J., Wang X., Mei X., Xu Y., Shen Q. & Jousset A. (2016) Pathogen invasion indirectly changes the composition of soil microbiome via shifts in root exudation profile.Biology and Fertility of Soils , 52 , 997-1005.
Guerrieri A., Dong L. & Bouwmeester H.J. (2019) Role and exploitation of underground chemical signaling in plants. Pest Management Science , 75 , 2455-2463.
Heil M. & Bueno J.C.S. (2014) Herbivore-Induced Volatiles as Rapid Signals in Systemic Plant Responses. Plant Signal. Behav. ,2 , 191-193.
Hettenhausen C., Li J., Zhuang H., Sun H., Xu Y., Qi J., Zhang J., Lei Y., Qin Y., Sun G., Wang L., Baldwin I.T. & Wu J. (2017) Stem parasitic plant Cuscuta australis (dodder) transfers herbivory-induced signals among plants. Proceedings of the National Academy of Sciences ,114 , E6703-E6709.
Hodge A., Fitter A.H. & Robinson D. (2013) Microbial mediation of plant competition and community structure. Functional Ecology ,27 , 865-875.
Hopke J., Donath J., Blechert S. & Boland W. (1994) Herbivore-induced volatiles: the emission of acyclic homoterpenes from leaves ofPhaseolus lunatus and Zea mays can be triggered by a β-glucosidase and jasmonic acid. Febs Letters , 352 , 146-150.
Hortal S., Lozano Y.M., Bastida F., Armas C., Moreno J.L., Garcia C. & Pugnaire F.I. (2017) Plant-plant competition outcomes are modulated by plant effects on the soil bacterial community. Scientific Report ,7 , 17756.
Hu L., Ye M. & Erb M. (2019) Integration of two herbivore‐induced plant volatiles results in synergistic effects on plant defence and resistance. Plant, Cell & Environment , 42 , 959-971.
Huang M., Sanchez-Moreiras A.M., Abel C., Sohrabi R., Lee S., Gershenzon J. & Tholl D. (2012) The major volatile organic compound emitted fromArabidopsis thaliana flowers, the sesquiterpene (E)-beta-caryophyllene, is a defense against a bacterial pathogen.New Phytologist , 193 , 997-1008.
Jassbi A.R., Zamanizadehnajari S. & Baldwin I.T. (2010) Phytotoxic volatiles in the roots and shoots of Artemisia tridentata as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. Journal of Chemical Ecology , 36 , 1398-1407.
Jiang Y., Ye J., Veromann L.-L. & Niinemets Ü. (2016) Scaling of photosynthesis and constitutive and induced volatile emissions with severity of leaf infection by rust fungus (Melampsora larici-populina ) in Populus balsamifera var. suaveolens .Tree Physiology , 1-17.
Jung H.W., Tschaplinski T.J., Wang L., Glazebrook J. & Greenberg J.T. (2009) Priming in systemic plant immunity. Science 324 , 89-91.
Jung J., Kim S.-K., Jung S.-H., Jeong M.-J. & Ryu C.-M. (2020) Sound vibration-triggered epigenetic modulation induces plant root immunity against Ralstonia solanacearum . Frontiers in Microbiology ,11 , 1978. doi: 1910.3389/fmicb.2020.01978.
Karamanoli K., Kokalas V., Koveos D., Junker R. & Farré-Armengol G. (2020) Bacteria affect plant-mite interactions via altered scent emissions. Journal of Chemical Ecology , 1-11.
Karban R., Shiojiri K., Ishizaki S., Wetzel W.C. & Evans R.Y. (2013) Kin recognition affects plant communication and defence. P Roy Soc B-Biol Sci , 280 , 20123062.
Karban R., Wetzel W.C., Shiojiri K., Ishizaki S., Ramirez S.R. & Blande J.D. (2014) Deciphering the language of plant communication: volatile chemotypes of sagebrush. New Phytol , 204 , 380-385.
Kessler A. & Heil M. (2011) The multiple faces of indirect defences and their agents of natural selection. Functional Ecology ,25 , 348-357.
Khashi u Rahman M., Zhou X. & Wu F. (2019) The role of root exudates, CMNs, and VOCs in plant–plant interaction. Journal of Plant Interactions , 14 , 630-636.
Klimm F.S., Weinhold A. & Volf M. (2020) Volatile production differs between oak leaves infested by leaf-miner Phyllonorycter harrisella (Lepidoptera: Gracillariidae) and galler Neuroterus quercusbaccarum (Hymenoptera: Cynipidae). European Journal of Entomology , 117 , 101-109.
Kollasch A.M., Abdul‑Kaf A., Body M.J.A., Pinto C.F., Appel H.M. & Cocroft R.B. (2020) Leaf vibrations produced by chewing provide a consistent acoustic target for plant recognition of herbivores.Oecologia .
Kong C.-H., Zhang S.-Z., Li Y.-H., Xia Z.-C., Yang X.-F., Meiners S.J. & Wang P. (2018a) Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nature Communications , 9 , 3867.
Kong C.H., Xu X.H., Zhang M. & Zhang S.Z. (2010) Allelochemical tricin in rice hull and its aurone isomer against rice seedling rot disease.Pest management science , 66 , 1018-1024.
Kong C.H., Zhang S.Z., Li Y.H., Xia Z.C., Yang X.F., Meiners S.J. & Wang P. (2018b) Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nature Communications , 9 , 3867.
Kong H.G., Song G.C., Sim H.J. & Ryu C.-M. (2020) Achieving similar root microbiota composition in neighbouring plants through airborne signalling. ISME Journal , In Press .
Korenblum E., Dong Y., Szymanski J., Panda S., Jozwiak A., Massalha H., Meir S., Rogachev I. & Aharoni A. (2020) Rhizosphere microbiome mediates systemic root metabolite exudation by root-to-root signaling.Proceedings of the National Academy of Sciences , 117 , 3874-3883.
Kroes A., Weldegergis B.T., Cappai F., Dicke M. & van Loon J.J. (2017) Terpenoid biosynthesis in Arabidopsis attacked by caterpillars and aphids: effects of aphid density on the attraction of a caterpillar parasitoid. Oecologia , 185 , 699-712.
Kudjordjie E.N., Sapkota R., Steffensen S.K., Fomsgaard I.S. & Nicolaisen M. (2019) Maize synthesized benzoxazinoids affect the host associated microbiome. Microbiome , 7 , 59.
Kwon Y.S., Ryu C.M., Lee S., Park H.B., Han K.S., Lee J.H., Lee K., Chung W.S., Jeong M.J., Kim H.K. & Bae D.W. (2010) Proteome analysis ofArabidopsis seedlings exposed to bacterial volatiles.Planta , 232 , 1355-1370.
Lazazzara V., Bueschl C., Parich A., Pertot I., Schuhmacher R. & Perazzolli M. (2018) Downy mildew symptoms on grapevines can be reduced by volatile organic compounds of resistant genotypes. Scientific Reports , 8 , 1618.
Lazebnik J., Tibboel M., Dicke M. & van Loon J.J. (2017) Inoculation of susceptible and resistant potato plants with the late blight pathogenPhytophthora infestans : effects on an aphid and its parasitoid.Entomologia Experimentalis et Applicata , 163 , 305-314.
Lee B., Lee S. & Ryu C.M. (2012) Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper. Annals of Botany ,110 , 281-290.
Lee S.M., Kim S.K., Lee N., Ahn C.Y. & Ryu C.M. (2020) D‐Lactic acid secreted by Chlorella fusca primes pattern‐triggered immunity against Pseudomonas syringae in Arabidopsis. The Plant Journal , 102 , 761–778.
Leitner M., Kaiser R., Rasmussen M.O., Driguez H., Boland W. & Mithöfer A. (2008) Microbial oligosaccharides differentially induce volatiles and signalling components in Medicago truncatula. Phytochemistry ,69 , 2029-2040.
Li L.-L., Zhao H.-H. & Kong C.-H. (2020a) (–)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. Journal of Experimental Botany , 71 , 1540-1550.
Li S., Zhang J., Liu H., Liu N., Shen G., Zhuang H. & Wu J. (2020b) Dodder-transmitted mobile signals prime host plants for enhanced salt tolerance. Journal of Experimental Botany , 71 , 1171-1184.
Lin Y., Hussain M., Avery P.B., Qasim M., Fang D. & Wang L. (2016) Volatiles from plants induced by multiple aphid attacks promote conidial performance of Lecanicillium lecanii . PLoS One ,11 , e0151844.
Lopez-Gresa M.P., Paya C., Ozaez M., Rodrigo I., Conejero V., Klee H., Belles J.M. & Lison P. (2018) A New Role For Green Leaf Volatile Esters in Tomato Stomatal Defense Against Pseudomonas syringe pv. tomato.Front Plant Sci , 9 , 1855.
Lopez-Raez J.A., Shirasu K. & Foo E. (2017) Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends in Plant Science , 22 , 527-537.
Maggini V., Bandeira Reidel R.V., De Leo M., Mengoni A., Rosaria Gallo E., Miceli E., Biffi S., Fani R., Firenzuoli F., Bogani P. & Pistelli L. (2020) Volatile profile of Echinacea purpurea plants after in vitro endophyte infection. Natural Product Research , 34 , 2232-2237.
Mannaa M., Han G., Jeon H.W., Kim J., Kim N., Park A.R., Kim J.C. & Seo Y.S. (2020) Influence of resistance-inducing chemical elicitors against pine wilt disease on the rhizosphere microbiome. Microorganisms ,8 .
Martel J.W., Alford A.R. & Dickens J. (2007) Evaluation of a novel host plant volatile-based attracticide for management of Colorado potato beetle, Leptinotarsa decemlineata (Say). Crop Protection ,26 , 822-827.
Mirabella R., Rauwerda H., Allmann S., Scala A., Spyropoulou E.A., Vries M., Boersma M.R., Breit T.M., Haring M.A. & Schuurink R.C. (2015) WRKY40 and WRKY6 act downstream of the green leaf volatile E‐2‐hexenal in Arabidopsis. The Plant Journal , 83 , 1082-1096.
Moisan K., Lucas-Barbosa D., Villela A., Greenberg L.O., Cordovez V., Raaijmakers J.M. & Dicke M. No evidence of modulation of indirect plant resistance of Brassica rapa plants by volatiles from soil-borne fungi. Ecological Entomology , n/a .
Moreira X., Nell C.S., Katsanis A., Rasmann S. & Mooney K.A. (2018) Herbivore specificity and the chemical basis of plant–plant communication in Baccharis salicifolia (Asteraceae). New Phytologist , 220 , 703-713.
Munoz-Parra E., Pelagio-Flores R., Raya-Gonzalez J., Salmeron-Barrera G., Ruiz-Herrera L.F., Valencia-Cantero E. & Lopez-Bucio J. (2017) Plant-plant interactions influence developmental phase transitions, grain productivity and root system architecture in Arabidopsis via auxin and PFT1/MED25 signalling. Plant, Cell & Environment ,40 , 1887-1899.
Neal A. & Ton J. (2013) Systemic defense priming by Pseudomonas putida KT2440 in maize depends on benzoxazinoid exudation from the roots. Plant Signaling & Behavior , 8 , e22655.
Nerva L., Varese G.C., Falk B.W. & Turina M. (2017) Mycoviruses of an endophytic fungus can replicate in plant cells: Evolutionary implications. Scientific Report , 7, 1908 .
Ninkovic V., Dahlin I., Vucetic A., Petrovic-Obradovic O., Glinwood R. & Webster B. (2013) Volatile exchange between undamaged plants-a new mechanism affecting insect orientation in intercropping. PLoS One , 8 , e69431.
Okutani F., Hamamoto S., Aoki Y., Nakayasu M., Nihei N., Nishimura T., Yazaki K. & Sugiyama A. (2020) Rhizosphere modeling reveals spatiotemporal distribution of daidzein shaping soybean rhizosphere bacterial community. Plant, Cell & Environment , 43 , 1036-1046.
Oliveira M.D.M., Varanda C.M.R. & Félix M.R.F. (2016) Induced resistance during the interaction pathogen x plant and the use of resistance inducers. Phytochemistry Letters , 15 , 152-158.
Orlovskis Z. & Reymond P. (2020) Pieris brassicae eggs trigger inter‐plant systemic acquired resistance against a foliar pathogen inArabidopsis . New Phytologist .
Paika S.M., Jinb E.S., Simc S.J. & N.L. J. (2018) Vibration-induced stress priming during seed culture increases microalgal biomass in high shear field-cultivation. Bioresource Technology .
Paschold A., Halitschke R. & Baldwin I.T. (2006) Using ’mute’ plants to translate volatile signals. Plant Journal , 45 , 275-291.
Peñaflor M.F.G. & Bento J.M.S. (2019) Red-rot infection in sugarcane attenuates the attractiveness of sugarcane borer-induced plant volatiles to parasitoid. Arthropod-Plant Interactions , 13 , 117-125.
Piesik D., Lemnczyk G., Skoczek A., Lamparski R., Bocianowski J., Kotwica K. & Delaney K.J. (2011) Fusarium infection in maize: volatile induction of infected and neighboring uninfected plants has the potential to attract a pest cereal leaf beetle, Oulema melanopus .Journal of Plant Physiology , 168 , 1534-1542.
Piesik D., Pańka D., Jeske M., Wenda-Piesik A., Delaney K.J. & Weaver D.K. (2013) Volatile induction of infected and neighbouring uninfected plants potentially influence attraction/repellence of a cereal herbivore. Journal of Applied Entomology , 137 , 296-309.
Pontin M., Bottini R., Burba J.L. & Piccoli P. (2015) Allium sativum produces terpenes with fungistatic properties in response to infection with Sclerotium cepivorum . Phytochemistry ,115 , 152-160.
Poveda J., Hermosa R., Monte E. & Nicolás C. (2019) Trichoderma harzianum favours the access of arbuscular mycorrhizal fungi to non-host Brassicaceae roots and increases plant productivity.Scientific Reports , 9 , 1-11.
Qawasmeh A., Raman A. & Wheatley W. (2015) Volatiles in perennial ryegrass infected with strains of endophytic fungus: impact on African black beetle host selection. Journal of Applied Entomology ,139 , 94-104.
Qian Y., Li D., Han L. & Sun Z. (2010) Inter-ramet photosynthate translocation in buffalograss under differential water deficit stress.Journal of The American Society for Horticultural Science ,135 , 310-316.
Quintana-Rodriguez E., Morales-Vargas A.T., Molina-Torres J., Ádame-Alvarez R.M., Acosta-Gallegos J.A., Heil M. & Flynn D. (2015) Plant volatiles cause direct, induced and associational resistance in common bean to the fungal pathogen Colletotrichum lindemuthianum .Journal of Ecology , 103 , 250-260.
Rasmann S., Kollner T.G., Degenhardt J., Hiltpold I., Toepfer S., Kuhlmann U., Gershenzon J. & Turlings T.C.J. (2005) Recruitment of entomopathogenic nematodes by insect-damaged maize roots. Nature ,434 , 732-737.
Ren L., Su S., Yang X., Xu Y., Huang Q. & Shen Q. (2008) Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biology and Biochemistry , 40 , 834-844.
Riedlmeier M., Ghirardo A., Wenig M., Knappe C., Koch K., Georgii E., Dey S., Parker J.E., Schnitzler J.P. & Vlot A.C. (2017) Monoterpenes Support Systemic Acquired Resistance within and between Plants.Plant Cell , 29 , 1440-1459.
Rivas-San Vicente M. & Plasencia J. (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot ,62 , 3321-3338.
Rodriguez P.A. & Bos J.I. (2013) Toward understanding the role of aphid effectors in plant infestation. Molecular Plant-Microbe Interactions , 26 , 25-30.
Roiloa S.R., Antelo B. & Retuerto R. (2014) Physiological integration modifies delta15N in the clonal plant Fragaria vesca, suggesting preferential transport of nitrogen to water-stressed offspring.Annals of Botany , 114 , 399-411.
Roossinck M.J. (2019) Evolutionary and ecological links between plant and fungal viruses. New Phytologist , 221 , 86-92.
Rudrappa T., Czymmek K.J., Pare P.W. & Bais H.P. (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol ,148 , 1547-1556.
Rybakova D., Rack-Wetzlinger U., Cernava T., Schaefer A., Schmuck M. & Berg G. (2017) Aerial warfare: a volatile dialogue between the plant pathogen Verticillium longisporum and its antagonistPaenibacillus polymyxa . Frontiers in plant science ,8 , 1294. doi: 1210.3389/fpls.2017.01294.
Semchenko M., John E.A. & Hutchings M.J. (2007) Effects of physical connection and genetic identity of neighbouring ramets on root-placement patterns in two clonal species. New Phytol , 176 , 644-654.
Sharifi R., Ahmadzadeh M., Sharifi-Tehrani A. & Talebi-Jahromi K. (2010) Pyoverdine production in Pseudomonas fluorescens UTPF5 and its association with suppression of common bean damping off caused byRhizoctonia solani (Kühn). Journal of Plant Protection Research , 50 , 72-78.
Sharifi R., Lee S.M. & Ryu C.M. (2018) Microbe-induced plant volatiles.New Phytologist , 220 , 684-691.
Sharifi R. & Ryu C.-M. (2018a) Biogenic volatile compounds for plant disease diagnosis and health improvement. The Plant Pathology Journal , 34 , 459-469.
Sharifi R. & Ryu C.-M. (2018b) Revisiting bacterial volatile-mediated plant growth promotion: Lessons from the past and objectives for the future. Annals of Botany , 122 , 349-358.
Sharifi R. & Ryu C.-M. (2018c) Sniffing bacterial volatile compounds for healthier plants. Current Opinion In Plant Biology ,44 , 88-97.
Sharifi R. & Ryu C.-M. (2020) Formulation and Agricultural Application of Bacterial Volatile Compounds. In: Bacterial Volatile Compounds as Mediators of Airborne Interactions (ed C.-M.e.a. Ryu). Springer, Singapore.
Sharifi R. & Ryu C.M. (2017) Chatting with a tiny belowground member of the holobiome: communication between plants and growth-promoting rhizobacteria. Advances in Botanical Research , 82 , 135-160.
Shulaev V., Silverman P. & Raskin I. (1997) Airborne signalling by methyl salicylate in plant pathogen resistance. Nature ,385 , 718-721.
Simmi F.Z., Dallagnol L.J., Ferreira A.S., Pereira D.R. & Souza G.M. (2020) Electrome alterations in a plant-pathogen system: Toward early diagnosis. Bioelectrochemistry , 133 , 107493.
Sobhy I.S., Bruce T.J. & Turlings T.C. (2018) Priming of cowpea volatile emissions with defense inducers enhances the plant’s attractiveness to parasitoids when attacked by caterpillars. Pest Management Science , 74 , 966-977.
Song G.C., Choi H.K. & Ryu C.-M. (2015) Gaseous 3-pentanol primes plant immunity against a bacterial speck pathogen, Pseudomonas syringaepv. tomato via salicylic acid and jasmonic acid-dependent signaling pathways in Arabidopsis . Frontiers in Plant Science ,6 .
Song G.C., Sim H.J., Kim S.G. & Ryu C.M. (2016) Root-mediated signal transmission of systemic acquired resistance against above-ground and below-ground pathogens. Ann Bot .
Song Y.Y., Ye M., Li C., He X., Zhu-Salzman K., Wang R.L., Su Y.J., Luo S.M. & Zeng R.S. (2014) Hijacking common mycorrhizal networks for herbivore-induced defence signal transfer between tomato plants.Scientific Report , 4 , 3915.
Song Y.Y., Zeng R.S., Xu J.F., Li J., Shen X. & Yihdego W.G. (2010) Interplant communication of tomato plants through underground common mycorrhizal networks. PLoS One , 5 , e13324.
Stringlis I.A., Proietti S., Hickman R., Van Verk M.C., Zamioudis C. & Pieterse C.M. (2018) Root transcriptional dynamics induced by beneficial rhizobacteria and microbial immune elicitors reveal signatures of adaptation to mutualists. The Plant Journal , 93 , 166-180.
Suarez J. & Stencel A. (2020) A part-dependent account of biological individuality: why holobionts are individuals and ecosystems simultaneously. Biol Rev Camb Philos Soc .
Sugimoto K., Matsui K., Iijima Y., Akakabe Y., Muramoto S., Ozawa R., Uefune M., Sasaki R., Alamgir K.M. & Akitake S. (2014) Intake and transformation to a glycoside of (Z)-3-hexenol from infested neighbors reveals a mode of plant odor reception and defense. Proceedings of the National Academy of Sciences , 111 , 7144-7149.
Sweeney C., Lakshmanan V. & Bais H.P. (2017) Interplant aboveground signaling prompts upregulation of auxin promoter and malate transporter as part of defensive response in the neighboring plants. Frontiers in Plant Science , 8 , 595.
Takagi H., Ishiga Y., Watanabe S., Konishi T., Egusa M., Akiyoshi N., Matsuura T., Mori I.C., Hirayama T., Kaminaka H., Shimada H. & Sakamoto A. (2016) Allantoin, a stress-related purine metabolite, can activate jasmonate signaling in a MYC2-regulated and abscisic acid-dependent manner. Journal of experimental botany , 67 , 2519-2532.
Takigahira H. & Yamawo A. (2019) Competitive responses based on kin-discrimination underlie variations in leaf functional traits in Japanese beech (Fagus crenata ) seedlings. Evolutionary Ecology , 33 , 521-531.
Tedersoo L., Bahram M. & Zobel M. (2020) How mycorrhizal associations drive plant population and community biology. Science ,367 .
Toome M., Randjärv P., Copolovici L., Niinemets U., Heinsoo K. & Luik A. (2010) Leaf rust induced volatile organic compounds signalling in willow during the infection. Planta 232 , 235–243.
Tu S., Yang R., Xu X., Chen J., Luo Q., Zhu Z., Chen H. & Yan X. (2017) Flg22‐triggered oxylipin production in Pyropia haitanensis .Phycological Research , 65 , 86-93.
Tungadi T., Groen S.C., Murphy A.M., Pate A.E., Iqbal J., Bruce T.J., Cunniffe N.J. & Carr J.P. (2017) Cucumber mosaic virus and its 2b protein alter emission of host volatile organic compounds but not aphid vector settling in tobacco. Virology Journal , 14 , 1-9.
Vahabi K., Reichelt M., Scholz S.S., Furch A.C.U., Matsuo M., Johnson J.M., Sherameti I., Gershenzon J. & Oelmuller R. (2018)Alternaria brassicae induces systemic jasmonate responses in arabidopsis which travel to neighboring plants via aPiriformsopora indica hyphal network and activate abscisic acid responses. Frontiers in Plant Science , 9 , 626.
van Dam N.M. & Bouwmeester H.J. (2016) Metabolomics in the rhizosphere: tapping into belowground chemical communication. Trends in Plant Science , 21 , 256-265.
van Doan C., Züst T., Maurer C., Zhang X., Machado R.A.R., Mateo P., Ye M., Schimmel B.C.J., Glauser G. & Robert C.A.M. (2020) Tissue-specific volatile-mediated defense regulation in maize leaves and roots.
van Doorn M.M., Merl-Pham J., Ghirardo A., Fink S., Polle A., Schnitzler J.P. & Rosenkranz M. (2020) Root isoprene formation alters lateral root development. Plant & Cell Environment .
Van West P.v., Morris B., Reid B., Appiah A.A., Osborne M., Campbell T., Shepherd S. & Gow N.A.R. (2002) Oomycete plant pathogens use electric fields to target roots. Molecular plant-microbe interactions ,15 , 790-798.
Vannier N., Bittebiere A.-K., Mony C. & Vandenkoornhuyse P. (2020) Root endophytic fungi impact host plant biomass and respond to plant composition at varying spatio-temporal scales. Fungal Ecology ,44 , 100907.
Vannier N., Mony C., Bittebiere A.-K., Theis K.R., Rosenberg E. & Vandenkoornhuyse P. (2019) Clonal Plants as Meta-Holobionts.mSystems , 4 , e00213-00218.
Veen C., Fry E., ten Hooven F., Kardol P., Morriën E. & De Long J.R. (2019) The role of plant litter in driving plant-soil feedbacks.Frontiers in Environmental Science , 7 , 168.
Vucetic A., Dahlin I., Petrovic-Obradovic O., Glinwood R., Webster B. & Ninkovic V. (2014) Volatile interaction between undamaged plants affects tritrophic interactions through changed plant volatile emission.Plant signaling & behavior , 9 , e29517.
Wang C.H., Wu L., Wang Z., Alabady M.S., Parson D., Molumo Z. & Fankhauser S.C. (2020) Characterizing changes in soil microbiome abundance and diversity due to different cover crop techniques.PloS One , 15 , e0232453.
Wang K., Liu J., Zhan Y. & Liu Y. (2019) A new slow‐release formulation of methyl salicylate optimizes the alternative control of Sitobion avenae (Fabricius)(Hemiptera: Aphididae) in wheat fields. Pest Management Science , 75 , 676-682.
Wang Z., Li Y., Li T., Zhao T. & Liao Y. (2020) Conservation tillage decreases selection pressure on community assembly in the rhizosphere of arbuscular mycorrhizal fungi. Science of the Total Environment ,710: 136326 .
Waters M.T., Gutjahr C., Bennett T. & Nelson D.C. (2017) Strigolactone signaling and evolution. Annual Review of Plant Biology ,68 , 291-322.
Wenig M., Ghirardo A., Sales J.H., Pabst E.S., Breitenbach H.H., Antritter F., Weber B., Lange B., Lenk M., Cameron R.K., Schnitzler J.P. & Vlot A.C. (2019) Systemic acquired resistance networks amplify airborne defense cues. Nat Commun , 10 , 3813.
Wu D., Qi T., Li W.X., Tian H., Gao H., Wang J., Ge J., Yao R., Ren C., Wang X.B., Liu Y., Kang L., Ding S.W. & Xie D. (2017) Viral effector protein manipulates host hormone signaling to attract insect vectors.Cell Research , 27 , 402-415.
Xu H., Desurmont G., Degen T., Zhou G., Laplanche D., Henryk L. & Turlings T.C. (2016) Combined use of herbivore-induced plant volatiles and sex pheromones for mate location in braconid parasitoids.Plant, Cell & Environment .
Yang J.W., Yi H.-S., Kim H., Lee B., Lee S., Ghim S.-Y. & Ryu C.-M. (2011) Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below-ground microflora. Journal of Ecology , 99 , 46-56.
Yang M., Zhang Y., Qi L., Mei X., Liao J., Ding X., Deng W., Fan L., He X., Vivanco J.M., Li C., Zhu Y. & Zhu S. (2014) Plant-plant-microbe mechanisms involved in soil-borne disease suppression on a maize and pepper intercropping system. PLoS One , 9 , e115052.
Yang X.-F., Li L.-L., Xu Y. & Kong C.-H. (2018) Kin recognition in rice (Oryza sativa ) lines. New Phytologist , 220 , 567-578.
Ye M., Glauser G., Lou Y., Erb M. & Hu L. (2019) Molecular dissection of early defense signaling underlying volatile-mediated defense regulation and herbivore resistance in rice. The Plant Cell ,31 , 687-698.
Yi H.S., Heil M., Adame-Alvarez R.M., Ballhorn D.J. & Ryu C.M. (2009) Airborne induction and priming of plant defenses against a bacterial pathogen. Plant Physiology , 151 , 2152-2161.
Zebelo S.A., Matsui K., Ozawa R. & Maffei M.E. (2012) Plasma membrane potential depolarization and cytosolic calcium flux are early events involved in tomato (Solanum lycopersicon ) plant-to-plant communication. Plant science , 196 , 93-100.
Zhang H., Kim M.S., Krishnamachari V., Payton P., Sun Y., Grimson M., Farag M.A., Ryu C.M., Allen R., Melo I.S. & Pare P.W. (2007) Rhizobacterial volatile emissions regulate auxin homeostasis and cell expansion in Arabidopsis . Planta , 226 , 839-851.
Zhang P.J., Broekgaarden C., Zheng S.J., Snoeren T.A., van Loon J.J., Gols R. & Dicke M. (2013) Jasmonate and ethylene signaling mediate whitefly‐induced interference with indirect plant defense inArabidopsis thaliana . New Phytologist , 197 , 1291-1299.
Zhang Y.C., Zou Y.N., Liu L.P. & Wu Q.S. (2019) Common mycorrhizal networks activate salicylic acid defense responses of trifoliate orange (Poncirus trifoliata). Journal of integrative plant biology ,61 , 1099-1111.
Zhao M., Cheng J., Guo B., Duan J. & Che C.-T. (2018) Momilactone and related diterpenoids as potential agricultural chemicals. Journal of Agricultural and Food Chemistry , 66 , 7859-7872.
Zhou C., Ma Z., Lu X., Zhu L. & Yan C. (2020) Pseudomonas fluorescens MZ05 Enhances Resistance against Setosphaeria turcica by Mediating Benzoxazinoid Metabolism in the Maize Inbred Line Anke35. Agriculture , 10 , 32.
Zhou Y., Cen H., Tian D., Wang C. & Zhang Y. (2019) A tomato and tall fescue intercropping system controls tomato stem rot. Journal of Plant Interactions , 14 , 637-647.
Zhuang H., Li J., Song J., Hettenhausen C., Schuman M.C., Sun G., Zhang C., Li J., Song D. & Wu J. (2018) Aphid (Myzus persicae ) feeding on the parasitic plant dodder (Cuscuta australis ) activates defense responses in both the parasite and soybean host. New Phytologist , 218 , 1586-1596.