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Abstract

A nonlinear oscillator arising in a micro-electro-mechanical system (MEMS) is difficult to be solved analytically due to the zero conditions. so the main objective of this work is to analyze the mathematical model of this system, and its approximate analytical solution is solved via the coupling Variational Iteration method and Laplace transform(LVIM). This method provides an efficient way to obtain the approximate nonlinear frequency and approximate solutions of MEMS. Moreover, LVIM also approximates the pull-in threshold in terms of model parameters. Finally, the results are compared with the exact one and a good result is obtained. 
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1. Introduction 

In recent years,  the micro-electromechanical systems have been caught much attention duo to their attractive properties such as small size, high reliability and low power consumption. The dynamics of the micro-electromechanical systems, are of interest for its current and potential applications to study the property of the MEMS oscillator and to find its approximate analytical solutions. So far there are many analytical methods to solve nonlinear differential equations, for example, the variational iteration method [1-4],the homotopy perturbation method [5-8], the iteration perturbation method [9-11], the frequency formulation[12-22], Two-scale method[24-26]. Here the variational iteration method has a great potential in solving nonlinear differential equations.
The variational iteration method was first proposed by professor He Ji-huan in 1998[27]. The method is to construct a correction functional with a Lagrange multiplier, which is determined by the variational theory [28-32]. Now it has been used to solve many kinds of nonlinear problems. 
In this manuscript, under the zero initial conditions, we coupled the variational iteration method with the integral transform[33] to solve a generalized MEMS oscillatory system represented with a second-order nonlinear differential equation. We get the approximate analytic solutions to this problem and compare the results of the exact one.

2.  LVIM for nonlinear oscillators

Consider the following general nonlinear oscillator which can be represented with second order nonlinear ordinary differential equation as

                                               (1)
We can re-express Eq. (1) as 

							(2)


Whereandis the frequency of the oscillation of the system to be determined.
According to Variational iteration method, we can construct the correction functional for Eq. (2) as 

  	(3)

whereis a general Lagrange multiplier. Recently, some authors adopt the general form of Lagrange multiplier[13,14] as


Applying the Laplace transform on both side of Eq. (3), the correction functional can be written as 

          (4)
Thus 



          (5)



Hererepresents the kth approximation and is a restricted variation an. We get

     		           		(6)

								(7)
By applying the inverse Laplace transform on the Eq. (7) ,we achieve the Lagrange multiplier

								(8)

Using Eq. (4), the form of the iterative formula as follow

After some simple calculations, we get the correction functional is further reduced with the initial conditions 


we have the iterative formula for Eq. (1) after the convolution operation with the zero initial conditions

					(9)

3. Application of the LVIM 

In this section ,we consider the following MEMS oscillator[34,35] 

                   (10)
with initial conditions 

                           (11)
   Eq.(10) with the zero conditions plays an important role in analysis the pull-in instability and periodic property of the micro-electro-mechanical device with a current-carrying conductor.
By Laplace based variational iteration method (LVIM) discussed in the above section and after utilizing the Taylor series ,we can write Eq. (10) as

						(12)
According to Eq. (2), Eq. (12) can be rewrite as

				(13)

where 
The iteration formula for Eq. (13) using Eq. (9) as

		(14)
Due to the initial conditions in Eq. (11), Eq. (14) gets the form


After applying Laplace and inverse Laplace transform, we have

							(15)

In order to get the approximate nonlinear frequency, substitute Eq. (15) into Eq. (14)


After simple calculations, we get


(16)
We can solve Eq. (16) by the following formula 

			(17)
Substituting Eq. (17) into Eq. (16) 

       (18)

Here requires that the coefficient ofmust be zero

     		                 		(19)
Substituting Eq. (19) into Eq. (18), the approximate analytic solution is obtained as

      (20)


To get this the value of, Letthen the Eq. (19) gets the form

						(21)
we can use Cardano’s formula to solve Eq. (21) 

Let 								(22)
Substitute Eq. (22) into Eq. (21), we have the reduced form

			(23)
or the depressed cubic equation form

								(24)
where

			(25)

The discriminant of Eq. (24) isand its value can be calculated

					(26) 
The corresponding solution of Eq. (24) can be calculated as

			(27)
Finally ,the approximate nonlinear frequency can be obtained as

       (28)

The nonlinear frequency can be obtained from Eq. (28) for different values of the parameter.The analytic approximate solution can be obtained from Eq. (15) and Eq. (20).

4. Results and discussion

In this section, the influence of the parameters on the analytic frequency and approximate analytic solutions is shown. we will give the comparison between the approximate solutions and with exact one for different values of k by illustrated in Fig.1 .

Fig.1:The blue line is exact one, while the red is the approximate solution of Eq.(15)(left) and Eq.(20)(right).

5. Conclusion

[bookmark: OLE_LINK6]In this article,we study the microelectromechanical system (MEMS), and its approximate analytical solution is obtained according to Variational iteration method, Laplace transform. This is an effective method to find the approximate analytical solution for zero-condition MEMS oscillators, and can be easily extended to other cases.
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