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Abstract

In the present article, we implement a new numerical scheme, the quasilinearization
semiorthogonal B-spline wavelets method, combining the semiorthogonal B-spline
wavelets collocation method with the quasilinearization method, for a class of the
multi-term nonlinear fractional order equations. The fractional order equations con-
tain Riemann-Liouville fractional integral operator and Caputo fractional differential
operator. The quasilinearization method is firstly utilized to convert the multi-term
nonlinear fractional order equation into a multi-term linear fractional order equation,
which is solved by means of semiorthogonal B-spline wavelets subsequently. Herein,
we investigate the operational matrix and the convergence of the proposed scheme.
Several numerical results are given to confirm the accuracy and efficiency of our
scheme.
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1 INTRODUCTION

Fractional calculus, generalization of the integer calculus, has been found more appropriate to describe some phenomena in the
field of dynamics1, physics2,3, medicine4, chemical5 and other scientific areas6. There have been plenty of works, especially
in physical systems of the real world, where Caputo type fractional derivatives and Riemann-Liouville fractional integral are
more widely used for describing the materials transport. Since most fractional order equations cannot be resolved analytically,
numerical methods have been taken into account to give their numerical solutions e.g.7–10. In recent years, multi-term fractional
orders equations have received increasing attention because of its more extensive application. A great deal of papers are devoted
to the numerical methods for approximating the multi-term fractional differential equations, such as Bernstein polynomials
method11, B-spline method12, et al. In contrast to this, only a few papers concern multi-term fractional order equations with
fractional integral and derivatives. In13, Kojabad and Rezapour discussed the existence of solutions of multi-term fractional
order equations by the Caputo differentiation, and used the Legendre and Chebyshev method to find the numerical solutions,
respectively. Zheng et al.14 studied the linear multi-term fractional order equations via discontinuous Galerkin finite element
method.
In this paper, we consider the following problem I about multi-term fractional order equations

q
∑

i=1
ai(x)D�iu(x) + aq+1(x)I�u(x) = f

(

x, u(x),⋯ , u(p)(x)
)

(1)
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with p + 1 boundary conditions in [0, b]

gk
(

0, u(0),⋯ , u(p)(0)
)

= 0, k = 1,⋯ , j − 1 (2)

and

gk
(

b, u(b)⋯ , u(p)(b)
)

= 0, k = j,⋯ , p + 1. (3)

where 0 < �1 < �2 < ⋯ < �q , � ≥ 0, p < �q ≤ p + 1 and p, q ∈ ℕ. The functions f , gk(k = 1,⋯ , p + 1) is nonlinear function
of u(x) and its derivatives uk(x)(k = 1,⋯ , p). The operator D�i is Caputo type fractional derivatives operator of order �i, and
I� is Riemann-Liouville fractional integral operator of order �.
Wavelet methods, which are the relatively novel approaches, have been applied for solving fractional calculus. Because

of the structural characteristic that the base of wavelets can be achieved by dilation and translation of the mother wavelet
functions, wavelet methods can also benefit the program operation. At present, some orthogonal wavelet methods have been
developed to estimate the approximate solutions for fractional order equations15,16. Compared with orthogonal wavelet method,
the semiorthogonal B-spline wavelet method (SOBWM) has the following advantages: compact support, explicit analytical form,
and finite basis functions in any wavelet subspaces17. Due to the accuracy and efficiency, SOBWM is applied in several kinds of
differential and integral equations. Maleknejad et al18 adopted this method to solve nonlinear Fredholm-Hammerstein integral
equations of the second kind; Aram et al19 used the method to deal with integral integro-difference equations, and Liu et al20
approximated multi-term linear fractional differential equations by the method.
Quasilinearization method21,22 and homotopy method23,24 are two common approaches for linearizing nonlinear functions

in existing studies. For the multi-term fractional order equations, our simulation results show that the solutions obtained by
homotopy method are easy to diverge. By contrast, the quasilinearization method is more suitable for nonlinear multi-term
fractional order equations. In this paper, we utilize it to linearize the nonlinear fractional equations in problem I. Then, we solve
the linearized fractional order equations with semiorthogonal B-spline wavelet collocation method (SOBWCM).
The remainder of this article is as follows. In Section 2, we introduce some basic notations, definitions, and lemmas about

fractional calculus. The definitions of the semiorthogonal B-spline wavelets (SOBW) and related theorems, properties are shown
in Section 3. Section 4 presents the implementation process of the quasilinearized semiorthogonal B-spline wavelets method
(QSOBWM). The convergence of QSOBWM is analyzed in Section 5. In Section 6, the validity of the presented scheme are
examined by illustrative examples. In Section 7, we draw a concise conclusion.

2 DEFINITONS AND PROPERTIES OF FRACTIONAL CALCULUS

In this section, the definitions of Riemann-Liouville fractional integral and Caputo type derivative are presented first, and then
some related properties are provided25,26.

Definition 1. The Riemann-Liouville fractional integral operator of order � > 0 is defined as

I�u(x) = 1
Γ(�)

x

∫
0

u(t)dt
(x − t)1−�

. (4)

Definition 2. The Caputo fractional derivative of order � > 0 is defined as

D�u(x) =

{

1
Γ(n−�)

∫ x
0

u(n)(t)dt
(x−t)�−n+1

, n − 1 < � < n,
u(n)(t), � = n

(5)

where n ∈ ℕ+.

Definition 3. The function û(s) of the variable s defined by

û(s) =  [u(x)] =

∞

∫
0

e−sxu(x)dx, s ∈ ℝ (6)

is called the Laplace transform of the function u(x).
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Definition 4. The inverse Laplace transform of û(s) is

u(x) = −⨘ [û(s)] =

c+i∞

∫
c−i∞

esxû(s)ds, c = Re(s) > c0 (7)

where c0 lies in the right half plane of the absolute convergence of the Laplace integral Equation (6).

Lemma 1. The Laplace transform of the Riemann-Liouville fractional integral:


[

I�u(x)
]

= s−� û(s). (8)

Lemma 2. The Laplace transform formula for the Caputo fractional derivative:


[

D�u(x)
]

= s� û(s) −
n−1
∑

k=0
s�−k−1u(k)(0). (9)

3 SEMIORTHOGONAL B-SPLINE WAVELETS IN [0, B]

In this section, we describe the construction of SOBW20,27 in [0, b]. The integral and derivative for SOBW in [0, b] are also
presented.

3.1 Construction of semiorthogonal B-spline wavelets

Definition 5. For j ∈ Z, let the knots sequence �(j) ∶=
{

�(j)k
}2j−m+1

k=−m+1
in [0, b], with

�(j)−m+1 = �
(j)
−m+2 =⋯ = �(j)0 = 0, (10)

�(j)k = kb
2j
, k = 1,⋯ , 2j − 1, (11)

�(j)2j = �
(j)
2j+1 =⋯ = �(j)2j+m−1 = b. (12)

The mth order B-spline function is defined by

Bi,m,j(x) = (−1)m(�
(j)
i+m − �

(j)
i )

[

�(j)i , �
(j)
i+1,⋯ , �(j)i+m

]

�
(x − �)m−1+ (13)

here [⋅,⋯ , ⋅]� is the mth divided difference of (x − �)m−1+ in regard to variable �, and (x − �)m−1+ is denoted as

(x − �)m−1+ =
{

(x − �)m−1, x > �,
0, x ≤ �.

(14)

Let j0 be defined by

2j0 ≥ 2m − 1, (15)

which is a minimum to contain one complete wavelet function in [0, b].

Definition 6. For j ≥ j0, the mth order scaling functions of space V
[0,b]
j be defined by

�i,m,j(x) =

⎧

⎪

⎨

⎪

⎩

Bi,m,j0(2
j−j0x), i = −m + 1,⋯ ,−1,

B2j−m−i,m,j0(b∕2 − 2
j−j0x), i = 2j − m + 1,⋯ , 2j − 1,

B0,m,j0(2
j−j0x − 2−j0 i), i = 0,⋯ , 2j − 1.

(16)

Definition 7. For j ≥ j0, the wavelet subspaceW
[0,b]
j is spanned by inner wavelets

 j,i(x) = 1∕2m−1+(j+1)
m
2m−2
∑

k=0
(−1)kN2m(k + 1)B

(m)
2i+k,2m,j+1(x), (17)
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i = 0,⋯ , 2j − 2m + 1, the boundary wavelets for 0,

 j,i(x) =1∕2m−1+(j+1)
m

−1
∑

k=−m+1
(B̃−1ri)kB

(m)
k,2m,j+1(x)

+ 1∕2m−1+(j+1)
m
2m−2+2i
∑

k=0
(−1)kN2m(k + 1 − 2i)B

(m)
k,2m,j+1(x), (18)

i = −m + 1,⋯ , 1, and the boundary wavelets for b,

 j,2j−2m+1−i(x) =  j,i(x), (19)

i = −m + 1,⋯ , 1.

3.2 Fractional integral and derivative of semiorthogonal B-spline wavelets
From the Definition 5, 6 and 7, the fractional integral and derivative of SOBW can be reduced to solving fractional integral and
derivative of function (ax − b)k+, here k > 0, a > 0 and b > 0.

Lemma 3. For � > 0, k > 0, a > 0, b > 0, we can get

I�(ax − b)k+ = a
−� Γ(1 + k)
Γ(1 + k + �)

(ax − b)k+�+ . (20)

Proof. According to Lemma 1 and Definition 3,


[

I�(ax − b)k+
]

= s−�
[

(ax − b)k+
]

= s−�−1−kake−
b
a
sΓ(1 + k)

= ak
Γ(1 + k)

Γ(1 + k + �)

[

(x − b
a
)k+�+

]

= a−�
Γ(1 + k)

Γ(1 + k + �)

[

(ax − b)k+�+

]

,

(21)

then utilizing the properties of Laplace transform, we get

I�(ax − b)k+ = a
−� Γ(1 + k)
Γ(1 + k + �)

(ax − b)k+�+ . (22)

Lemma 4. For n − 1 < � < n, n ∈ ℕ+, k > 0, a > 0, b > 0, if � ≤ k, we have

D�(ax − b)k+ = a
� Γ(1 + k)
Γ(1 + k − �)

(ax − b)k−�+ . (23)

Proof. See28.

4 FUNCTION APPROXIMATION

The first step is to apply the quasilineaeization approach29 to approximate u(x) in the problem I. To write concisely, we note

L(�) ≡
q
∑

i=1
ai(x)D�iu(x) + aq+1(x)I�u(x), so problem I is transformed into problem II as

L(�)ur+1(x) =f
(

x, ur(x),⋯ , u(p)r (x)
)

+
p
∑

l=0

(

u(l)r+1(x) − u
(l)
r (x)

)

fu(l)
(

x, ur(x),⋯ , u(p)r (x)
)

,
(24)

with linearized nonlinear boundary conditions
p
∑

l=0

(

u(l)r+1(0) − u
(l)
r (0)

)

gku(l)
(

0, ur(0),⋯ , u(p)r (0)
)

= 0, k = 1,⋯ , j − 1, (25)
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and p
∑

l=0

(

u(l)r+1(b) − u
(l)
r (b)

)

gku(l)
(

b, ur(b),⋯ , u(p)r (b)
)

= 0, k = j,⋯ , p + 1, (26)

here u(0)r (x) = ur(x), f (l)u (x, u(x),⋯ , u(p)(x)) = )f (x, u(x),⋯ , u(p)(x))∕)u(l)(x) and gku(l)(x, u(x),⋯ , u(p)(x)) =
)gk(x, u(x),⋯ , u(p)(x))∕)u(l)(x), l = 0, 1,⋯ , p. The initial value u0(x) can be selected frommathematical or physical conditions,
and ur+1(x) is further obtained by the iteration.
The Equations (24)-(26) are linear equations about ur+1(x), therefore problem II is of multi-term linear fractional order

equations which can be addressed efficiently by SOBWCM. For simplicity, problem II is sorted into equivalent problem III as
p+q+1
∑

i=1
ℎi(x)D�iur+1(x) + ℎp+q+2(x)I�ur+1(x) = b(x), (27)

with the boundary consitions
p
∑

l=0
ℎb1k (l)D

lur+1(0) = 0, k = 1,⋯ , j − 1, (28)

p
∑

l=0
ℎb2k (l)D

lur+1(b) = 0, k = j,⋯ , p + 1. (29)

here ℎi(x), ℎ
b1
k (l), ℎ

b2
k (l), b(x) are related to functions and values of rth iterative by quasilineaeization approach.

A function ur+1(x) in L2[0, b] can be expanded by the semiorthogonal B-spline scaling functions and wavelets27 as

ur+1(x) =
2j0−1
∑

k=−m+1
cj0,k�j0,k(x) +

∞
∑

j=j0

2j−m
∑

k=−m+1
dj,k j,k(x). (30)

To meet the needs of practical application, the higher frequency components are cut off, so that the infinite series in Equation
(30) is truncated atM as

ur+1(x) ≈
2j0−1
∑

k=−m+1
cj0,k�j0,k(x) +

M
∑

j=j0

2j−m
∑

k=−m+1
dj,k j,k(x)=CTΨ(x), (31)

here C and Ψ are the (2M+1 + m − 1) × 1 vectors:

C =
[

cj0,−m+1,⋯ , cj0,2j0−1, dj0,−m+1,⋯ , dM,2j−m
]T,

Ψ =
[

�j0,−m+1,⋯ , �j0,2j0−1,  j0,−m+1,⋯ ,  M,2j−m
]T.

Substituting ur+1(x) of Equation (31) into Equations (25-29) of problem III, we obtain:
p+q+1
∑

i=1
ℎi(x)CTD�iΨ(x) + ℎp+q+2(x)CTI�Ψ(x) = b(x), (32)

with the boundary consitions
p
∑

l=0
ℎb1k (l)C

TDlΨ(0) = 0, k = 1,⋯ , j − 1, (33)

p
∑

l=0
ℎb2k (l)C

TDlΨ(b) = 0, k = j,⋯ , p + 1. (34)

In order to increase the computation efficiency, Equation (32) is rewritten in matrix form as:

CT
p+q+1
∑

i=1
D�iΨHi + CTI�ΨHp+q+2 = B, (35)

here

Hi =

⎡

⎢

⎢

⎢

⎢

⎣

ℎi(x1) 0 ⋯ 0
0 ℎi(x2) ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ ℎi(xn)

⎤

⎥

⎥

⎥

⎥

⎦

(36)

and
B =

(

b(x1), b(x2),⋯ , b(xn)
)

. (37)
The D�iΨ and I�Ψ can be implemented on computer based on Lemma 3 and Lemma 4. Therefore, problem III is converted

into the solution of system of linear equations which consist of Equations (33)-(35).
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5 CONVERGENCE ANALYSIS

The QSOBWM is a hybrid numerical method which combines quasilinearization method and SOBWCM. Thus we respectively
analyze the convergence of the two basic methods first, then the convergence of the method in this paper is obtained by the
process of function approximation.

Theorem 1. Suppose u(x) ∈ Cp+1[0, b], and fu(l)u(n)
(

x, u(x),… , u(p)(x)
)

∈ L2[0, b], l, n = 0, 1,⋯ , p, the difference function
�ur+1(x) = ur+1(x) − ur(x) is considered in quasilinearization method for problem II, then there exists a positive constant CM ,
such that

‖�ur+1‖ ≤ CM‖�ur‖
2 (38)

here ‖�ur‖ is maximum value of any of ‖�u(l)r ‖ in [0, b], l = 0, 1,⋯ , p.

Proof. From iterations of Equations (24)-(26), we have

L(�)�ur+1(x) =f
(

x, ur(x),… , u(p)r (x)
)

− f
(

x, ur−1(x),… , u(p)r−1(x)
)

+
p
∑

l=0

[

�u(l)r+1(x)fu(l)
(

x, ur(x),… , u(l)r (x)
)

−�u(l)r (x)fu(l)
(

x, ur−1(x),… , u(l)r−1(x)
)]

,

(39)

with the corresponding boundary conditions:
p
∑

l=0

[

�u(l)r+1(0)gku(l)
(

0, ur(0),… , u(p)r (0)
)

−�u(l)r (0)gku(l)
(

0, ur−1(0),… , u(p)r−1(0)
)]

= 0,

k = 1,… , j − 1,

(40)

and
p
∑

l=0

[

�u(l)r+1(b)gku(l)
(

b, ur(b),… , u(p)r (b)
)

−�u(l)r (b)gku(l)
(

b, ur−1(b),… , u(p)r−1(b)
)]

= 0,

k = j,… , p + 1.

(41)

According to the mean value theorem from30

f
(

x, ur(x),… , u(p)r (x)
)

− f
(

x, ur−1(x),… , u(p)r−1(x)
)

=
p
∑

l=0
�u(l)r (x)fu(l)

(

x, ur−1(x),… , u(p)r−1(x)
)

+ 1
2

p
∑

l,n=0
�u(l)r (x)�u

(n)
r (x)fu(l)u(n)

(

x, ūr−1(x),… , ū(p)r−1(x)
)

,

(42)

here ū(l)r−1(x) is between u
(l)
r−1(x) and u

(l)
r (x), k = 0, 1,… , p. Substituting Equation (42) into Equation (39) yields

L(�)�ur+1(x) −
p
∑

l=0
�u(l)r+1(x)fx,u(l)

(

x, ur(x),… , u(p)r (x)
)

=1
2

p
∑

l,n=0
�u(l)r (x)�u

(n)
r (x)fu(l)u(n)

(

x, ūr−1(x),… , ū(p)r−1(x)
)

.
(43)
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In the view of n-term linear fractional Green’s function properties in26, there is a Green function G(x, y) such that

�ur+1(x) =
1
2

b

∫
0

G(n)r (x, y)

⋅
p
∑

l,n=0
�u(l)r (y)�u

(n)
r (y)fu(l)u(n)

(

y, ūr−1(y),… , ū(p)r−1(y)
)

dy.

(44)

Therefore

|

|

�ur+1(x)|| =
1
2

b

∫
0

|G(x, y)|

⋅
p
∑

l,n=0

|

|

|

�u(l)r (y)
|

|

|

|

|

|

�u(n)r (y)
|

|

|

|

|

|

|

fu(l)u(n)
(

y, ūr−1(y),… , ū(p)r−1(y)
)

|

|

|

|

dy

≤
‖�ur‖2

2

b

∫
0

|G(x, y)|
p
∑

l,n=0

|

|

|

|

fu(l)u(n)
(

y, ūr−1(y),… , ū(p)r−1(y)
)

|

|

|

|

dy

≤
‖�ur‖2

2

p
∑

l,n=0
‖G(x, y)‖2

‖

‖

‖

‖

fu(l)u(n)
(

y, ūr−1(y),… , ū(p)r−1(y)
)

‖

‖

‖

‖2
,

(45)

here ‖ ⋅ ‖ is 2-norm. As the properties of Green functions and the boundedness of fu(l)u(n)
(

y, u(y),… , u(p)(y)
)

, there exist a
positive constant CM depends on G(x, y) and fu(l)u(n)

(

y, ūr−1(y),… , ū(p)r−1(y)
)

and p, such that

CM ≥ 1
2

p
∑

l,n=0
‖G(x, y)‖2

‖

‖

‖

‖

fu(l)u(n)
(

y, ūr−1(y),… , ū(p)r−1(y)
)

‖

‖

‖

‖2
. (46)

Hence
‖

‖

�ur+1‖‖ ≤ CM‖�ur‖
2. (47)

Convergence of the quasilinearization method is shown in Theorem 1. Then, to estimate the error of SOBWCM, we use the
following theorem from20.

Theorem 2. Suppose ũr+1(x) ∈ Cm[0, b] is approximation by SOBWCM of order m in problem III, the truncation error for
j =M is

|

|

ur+1(x) − ũr+1(x)|| = O(2
−mM)). (48)

Theorem 2 implies that |
|

ur+1(x) − ũr+1(x)|| → 0 whenM → ∞, reflects the SOBWCM is convergent. As both each iteration
from ur(x) to ur+1(x) and the process of the approximate of ur+1(x) are convergent, QSOBWM in this paper is convergent.

6 NUMERICAL EXAMPLES

This section presents some numerical examples to demonstrate the validity of the proposed scheme. We denote u as the exact
solution, and ũ as the numerical solution. To assess the performance of the method, we calculate the absolute error, L2-error
and L∞-error.
The absolute error in [0, b] is

E(i) = |u(xi) − ũ(xi)|, k = 1,⋯ , Nx, (49)
the L2-error is defined asÂčÂż

‖u − ũ‖L2 =

√

√

√

√
1
Nx

Nx
∑

i=1

[

u
(

xi
)

− ũ
(

xi
)]2, (50)

and the L∞-error is defined asÂčÂż
‖u − ũ‖L∞ = max

1≤i≤Nx

E(i), (51)
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whereNx is the number of collocation points in [0, b].

Example 1. Consider the fractional integro-differential equation with weakly singular kernel8,9:

D
1
3 u(x) = g(x) + p(x)u(x) + Γ

(1
2

)

I
1
2 u(x), 0 < x < 1, (52)

with the initial condition
u(0) = 0,

here g(x) = 6x8∕3

Γ
(

11
3

) +

(

32
35
−

Γ
(

1
2

)

Γ
(

7
3

)

Γ
(

17
6

)

)

x
11
6 + Γ

(

7
3

)

x, p(x) = − 32
35
x
1
2 . The exact solution of the problem is u(x) = x

4
3 + x3.

TABLE 1 Absolute errors of QSOBWM of Example 1.

x M = 3 M = 4 M = 5 M = 6

0.1 1.0243 × 10−4 2.5517 × 10−5 6.2542 × 10−6 1.5552 × 10−6

0.2 8.5807 × 10−5 2.1381 × 10−5 5.3596 × 10−6 1.3452 × 10−6

0.3 8.2395 × 10−5 2.0939 × 10−5 5.2812 × 10−6 1.3263 × 10−6

0.4 8.4718 × 10−5 2.1482 × 10−5 5.4225 × 10−6 1.3631 × 10−6

0.5 8.8306 × 10−5 2.2454 × 10−5 5.6693 × 10−6 1.4254 × 10−6

0.6 9.2957 × 10−5 2.3665 × 10−5 5.9766 × 10−6 1.5029 × 10−6

0.7 9.8386 × 10−5 2.5041 × 10−4 6.3258 × 10−6 1.5909 × 10−6

0.8 1.0422 × 10−4 2.6547 × 10−5 6.7080 × 10−6 1.6871 × 10−6

0.9 1.1058 × 10−4 2.8165 × 10−5 7.1174 × 10−6 1.7902 × 10−6

TABLE 2 Example 1: L2-errors of QSOBWM, SKCPM in8 and FEFM in9.

N SKCPM FEFsM(� = 1) FEFsM(� = 1.5) M QSOBWM

2 1.3426 × 10−2 1.0502 × 10−2 1.7511 × 10−4 3 9.6130 × 10−5

4 5.1379 × 10−4 2.6252 × 10−4 2.4436 × 10−4 4 2.5255 × 10−5

6 1.5578 × 10−4 6.6216 × 10−5 3.0232 × 10−5 5 6.5901 × 10−6

8 6.4612 × 10−5 4.8349 × 10−4 9.4123 × 10−5 6 1.7168 × 10−6

We adopt the QSOBWM with m = 4 for several truncation values M , and the absolute errors for each case are exhibited
in Table 1 , respectively. The numerical results of the proposed scheme in Table 1 illustrate that the absolute errors decrease
when the value of truncationM increases. More intuitively, we describe the absolute errors of the present scheme for various
values ofM in Figure 1 . The results accord with the convergence analysis of the present scheme.
In order to compare with the SKCPM in8 and FEFsM in9, we compute the L2-errors of the present scheme with various

values of M and list the results in Table 2 . N denotes the maximal degree of the polynomials in the space spanned by all
polynomials for SKCPM and FEFM, andM indicates the truncation of the present scheme. The degree of all polynomials for
the present scheme is not more than three when m = 4. Table 2 displays that L2-errors of the present scheme with m = 4 are
relatively smaller.

Example 2. Consider the following fractional Langevin equation14:

D�1u(x) +D�2u(x) + I�u(x) = f (x), 0 < x < 1, (53)

with the initial condition
u(0) = 0,
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FIGURE 1 The absolute errors of Example 1 for QSOBWM withM = 3, 4, 5, 6.

here f (x) =
(

2.0x2−�1
Γ(3.0−�1) −

x1−�1
Γ(2.0−�1)

)

+
(

2.0x2−�2
Γ(3.0−�2) −

x1−�2
Γ(2.0−�2)

)

+
(

2.0x2+�

Γ(3.0+�)
− x1+�

Γ(2.0+�)

)

and �1, �2, � ∈ (0, 1). The exact solution is
given by u(x) = x2 − x.
We solve this problem by using the QSOBWM with m = 4,M = 3 for fixed step size ℎ = 1

20
. Table 3 exhibits the absolute

errors, which demonstrates that the absolute errors of various values of �1, �2 and � are less than 10−13 and the computation
only takes 4.10 seconds. Also, the results confirm the effectiveness of this method. Figure 2 and 3 depict the absolute errors of
the present scheme for different �1 and �, respectively. Figure 2 presents absolute errors of the present scheme with �2 = 0.8,
� = 0.3 for various values of �1, and Figure 3 displays absolute errors of the present scheme with �1 = 0.5, �2 = 0.8 for several
values of �. These graphs demonstrate that the approximate solutions are highly agree with the analytical result for various
values of �1 and �, and absolute errors are less than 10−13.
In order to verify the performance of QSOBWM, in Table 4 , we calculate L2-error and L∞-error of the present scheme and

method in14 for �1 = 0.5, �2 = 0.8, � = 0.3 with different sizes of grid. The results demonstrate that the approximate results for
the present scheme are closer to the analytical solutions than the method in14.

Example 3. Consider the following fractional Duffing-Holmes model for a nonlinear oscillator31:

D2u(x) + 0.5D�u(x) − u(x) + u3(x) = g(x), 0 < x < 1 (54)

with the initial value:

u(0) = u′(0) = 0.

From31, u(x) = x�+2 sin x is the given exact solution.
We approximate the solution using QSOBWM with m = 4 and different M , where M = 3, 4, 5, 6. This problem is also

solved by the spectral collocation method (SCM) in31 with � = 0.5, N = 5, 6, 7, 8 , where N denotes the maximal degree of
polynomials in the space formed by the basis of method. In Table 5 , we compare the L2-errors and L∞-errors of the above two
methods. N in the present scheme is three. L2-errors and L∞-errors of the present scheme are much smaller than those of the
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FIGURE 2 Absolute errors of Example 2 for QSOBWM with �1 = 0.1, 0.3, 0.5, 0.7, 0.9.
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TABLE 3 Absolute errors of QSOBWM when ℎ = 1
20

for Example 2.

x �1 = 0.99, �2 = 0.6, � = 0.5 �1 = 0.5, �2 = 0.8, � = 0.3 �1 = 0.1, �2 = 0.4, � = 0.99

0.1 1.9582 × 10−14 2.0539 × 10−15 4.1633 × 10−17

0.2 1.6986 × 10−14 1.5266 × 10−15 2.7756 × 10−17

0.3 1.4932 × 10−14 1.1657 × 10−15 1.1102 × 10−16

0.4 1.3323 × 10−14 9.7145 × 10−16 1.6653 × 10−16

0.5 1.2046 × 10−14 8.8818 × 10−16 2.7756 × 10−17

0.6 1.0880 × 10−14 7.2164 × 10−16 5.5511 × 10−17

0.7 9.7700 × 10−15 5.2736 × 10−16 2.7756 × 10−17

0.8 8.6042 × 10−15 3.6082 × 10−16 8.3267 × 10−17

0.9 7.6328 × 10−15 2.9143 × 10−16 9.7145 × 10−17

TABLE 4 Comparison of the errors of QSOBWM and the method in14 of Example 2.

Method of14 QSOBWM

Errors ℎ = 1
40

ℎ = 1
80

ℎ = 1
160

ℎ = 1
20

ℎ = 1
40

‖u − ũ‖L2 2.3198 × 10−3 8.3037 × 10−4 9.9886 × 10−6 1.2270 × 10−15 5.7478 × 10−16

‖u − ũ‖L∞ 7.2983 × 10−3 2.7903 × 10−3 2.3399 × 10−5 3.4556 × 10−15 1.1102 × 10−17

SCM with the minimal degree from Table 5 . Moreover, the L2-errors and L∞-errors of the present scheme decrease whenM
increases. Thus, it accords with the convergence analysis discussed in the previous section.
Figure 4 depicts the analytical and numerical results of the present scheme withM = 3 for � = 0.01, 0.3, 0.5, 0.7, 0.99. This

figure demonstrates that the numerical results tend to the analytical solution for different values of �.

TABLE 5 Example 3: L2-errors and L∞-errors of � = 0.5 for SCM and QSOBWM.

Methods ‖u − ũ‖L2 ‖u − ũ‖L∞

SCM
N = 5 8.237 × 10−5 2.204 × 10−5

N = 6 2.291 × 10−5 8.859 × 10−6

N = 7 1.467 × 10−5 4.763 × 10−6

N = 8 6.885 × 10−6 2.714 × 10−6

QSOBWM
M = 3 1.310 × 10−5 5.950 × 10−5

M = 4 1.284 × 10−6 5.115 × 10−7

M = 5 1.119 × 10−7 4.511 × 10−8

M = 6 1.077 × 10−8 4.026 × 10−9

Example 4. Consider the following multi-term fractional nonlinear boundary value problem11,12:

D2u(x) + Γ
(4
5

)

5
√

x6D
6
5 u(x) + 11

9
Γ
(6
5

)

6
√

xD
1
6 u(x) − (Du(x))2 = 2 + 1

10
x2, (55)

with boundary conditions:
u(0) = 1, u(1) = 2.

The exact solution of this problem is u(x) = x2 + 1.
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FIGURE 4 Analytical and approximate results of QSOBWM forM = 3 with � = 0.01, 0.3, 0.5, 0.7, 0.99 for Example 3.

TABLE 6 The L2-errors and L∞-errors of QSOBWM, BSOMM in12 and BOMM in11 of Example 4.

BSOMM BOMM QSOBWM

Errors M = 5 M = 7 N = 16 N = 20 M = 3 M = 4

‖u − ũ‖L2 1.2 × 10−4 7.6 × 10−6 2.3 × 10−8 7.9 × 10−9 7.315 × 10−14 1.335 × 10−14

‖u − ũ‖L∞ 3.3 × 10−4 2.1 × 10−5 5.5 × 10−8 1.9 × 10−8 1.112 × 10−13 2.043 × 10−14

The problem was resolved by the B-spline operational matrix method (BSOMM)12, and the Bernstein operational matrix
method (BOMM)11, respectively. We solve the example by applying the present scheme with m = 4, and list the values of
L2-errors and L∞-errors of the three methods in Table 6 . The L2-errors of the present scheme can achieve 10−14 within 7.98
seconds. As showing in Table 6 , the present scheme is most accurate.

7 CONCLUSION

In the article, the quasilinearized semiorthogonal B-spline wavelets method is proposed to approximate the multi-term nonlinear
fractional order equations contained fractional integral and derivatives. The present scheme significantly reduced the computa-
tional complexity of solving the nonlinear fractional order equations by the semiorogonal B-spline wavelets collocation method.
The solution procedure has been described for approximating the nonlinear fractional equations. Furthermore, we discussed the
convergence property of the present scheme. As the initial and boundary conditions have been both considered during the pro-
cess of function approximation, the method can be applied for solving initial and boundary value problems of fractional order.
Illustrative examples and comparison results testified the efficiency and accuracy of the present scheme.
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