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Abstract

In this paper, we consider a nonlinear viscoelastic problem with infinite history
and a nonlinear feedback localized on the domain and a relaxation function satisfying

g′(t) ≤ −ξ(t)G(g(t)).

We establish explicit and general decay rate results, using the multiplier method and
some properties of the convex functions. Our results are obtained without imposing
any restrictive growth assumption on the damping term and without imposing any
assumption on the boundedness of initial data used in many earlier papers in the
literature.
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1 Introduction

In this paper, we consider the following nonlinear viscoelastic problem:
utt −∆u+

∫ +∞
0

g(s)∆u(t− s)ds+ σ(t)h(ut) = 0, in Ω× (0,∞)

u = 0, on ∂Ω× (0,∞)

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), in Ω× (0,∞)

(1.1)

where u denotes the transverse displacement of waves, Ω is a bounded domain of RN(N ≥
1) with a smooth boundary ∂Ω and g, h, σ are specific functions. The viscoelastic prob-
lems with infinite-memory terms have been studied by several authors. Giorgi et al. [1]
considered the following semilinear hyperbolic equation, in a bounded domain Ω ⊂ R3,

utt −K(0)∆u−
∫ +∞

0

K ′(s)∆u(t− s)ds+ g(u) = f

with K(0), K(∞) > 0 and K ′ ≤ 0 and gave the existence of global attractors for the
solutions. Conti and Pata [2] considered the following semilinear hyperbolic equation
with linear memory in a bounded domain Ω ⊂ Rn ,

utt + αut −K(0)∆u−
∫ +∞

0

K ′(s)∆u(t− s)ds+ g(u) = f in Ω× R+ (1.2)
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where the memory kernel is a convex decreasing smooth function such that K(0) >
K(∞) > 0 and g : R→ R is a nonlinear function of at most cubic growth satisfying some
conditions and proved the existence of a regular global attractor. Pata [3] discussed the
decay properties of the semigroup generated by the following equation

utt + αAu(t) + βut(t)−
∫ +∞

0

µ(s)Au(t− s)ds = 0

where A is a strictly positive self-adjoint linear operator and α > 0, β ≥ 0 and the memory
kernel µ is a decreasing function satisfying some specific conditions. He established the
necessary as well as the sufficient conditions for the exponential stability. Al-Mahdi and
Al-Gharabli [4] considered the following viscoelastic problem

utt −∆u+
∫ +∞

0
g(s)∆u(t− s)ds+ |ut|m−2ut = 0, in Ω× (0,+∞)

u(x, t) = 0, on ∂Ω× (0,+∞)

u(x,−t) = u0(x, t), ut(x, 0) = u1(x), in Ω× (0,+∞),

(1.3)

and they established decay results with using a relaxation function g, satisfying the con-
dition

g′(t) ≤ −ξ(t)gp(t), 1 ≤ p <
3

2
, (1.4)

and they obtained a better decay rate than the one of [5] and [6]. Mustafa [7] consider
the following coupled quasilinear system|ut|ρ utt −∆u−∆utt +

∫ t

0

g1(s)∆u(t− s)ds+ f1(u, v) = 0

|vt|ρ vtt −∆v −∆vtt +
∫∞

0
g2(s)∆v(t− s)ds+ f2(u, v) = 0

(1.5)

and established more general decay rate results where the relaxation functions satisfy
g′i(t) ≤ −H(gi(t)), i = 1, 2. He provided more general decay rates for which the usual ex-
ponential and polynomial rates are only special cases. Al-Mahdi [8] consider the following
viscoelastic plate problem with a velocity-dependent material density and a logarithmic
nonlinearity:

|ut|ρutt + ∆2u+ ∆2utt −
∫ +∞

0

g(s)∆2u(t− s)ds = ku ln |u| in Ω× (0,∞), (1.6)

where Ω is a bounded domain of R2, with a smooth boundary ∂Ω. He established an
explicit and general decay rate results with imposing a minimal condition on the relaxation
function, that is,

g′(t) ≤ −ξ(t)H(g(t)), (1.7)

where the two functions ξ and H satisfy some conditions. Recently, Al-Mahdi [9] consid-
ered the following plate problem:

utt − σ∆utt + ∆2u−
∫ +∞

0

g(s)∆2u(t− s)ds = 0,

and proved that the stability of this problem holds for which the relaxation function g
satisfies the condition (1.7). In the present work, we study the asymptotic behavior of
the solution of (1.1), under a wider class of relaxation functions. In fact we intend to
establish a three-fold objective:
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(a) extend the work for the viscoelastic problems with finite memory discussed in the
literature such as the ones in [10, 11, 12] to infinite memory.

(b) generalize the condition, g′(t) ≤ −ξ(t)gp(t), 1 ≤ p < 3
2
, used in many papers in

the literature such as the ones in [13],[14], [4] and the one used in [7] for different
viscoelastic problems to the condition g′(t) ≤ −ξ(t)G(g(t)) where G satisfies some
properties see [(A1)].

(c) drop the boundedness assumptions on the history data considered in many earlier
results in the literature such as the ones in [14], [13], [4] and [15].

The rest of our paper is organized as follows. In section 2, we present some material
needed to prove our result. Some technical lemmas will be given in section 3. We state
and prove our main decay results in Section 4. We also, in Section 4, provide some
examples to illustrate our theoretical results.

2 Preliminaries

In this section, we present some materials needed in the proof of our results. We use the
standard Lebesgue space L2(Ω) and the Sobolev space H1

0 (Ω) with their usual scalar prod-
ucts and norms. Throughout this paper, c is used to denote a generic positive constant.
We consider the following hypotheses:

(A1) g : R+ → R+ is a C1 nonincreasing function satisfying, for some β0 > 0,

−β0g(s) ≤ g′(s), g(t) > 0 and 1−
∫ +∞

0

g(s)ds = ` > 0, (2.1)

and there exists a C1 function G : (0,∞) → (0,∞) which is linear or it is strictly
increasing and strictly convex C2 function on (0, r1] for some r1 > 0 with G(0) =
G′(0) = 0, lims→+∞G

′(s) = +∞, s 7→ sG′(s) and s 7→ s (G′)−1 (s) are convex on
(0, r1]. Moreover, there exists a positive nonincreasing differentiable function ξ such
that

g′(t) ≤ −ξ(t)G(g(t)), ∀t ≥ 0. (2.2)

(A2) h : R→ R is a nondecreasing C0 function such that there exists a strictly increasing
function h0 ∈ C1(R+), with h0(0) = 0, and positive constants c1, c2, ε such that

h0(|s|) ≤ |h(s)| ≤ h−1
0 (|s|) for all |s| ≤ ε

c1|s| ≤ |h(s)| ≤ c2|s| for all |s| ≥ ε
(2.3)

In addition, we assume that the function H, defined by H(s) =
√
sh0(
√
s), is a strictly

convex C2 function on (0, r2], for some r2 > 0, when h0 is nonlinear.

(A3) σ : R+ → R+ is a nonincreasing differentiable function.

Remark 2.1. Hypothesis (A2) implies that sh(s) > 0, for all s 6= 0.
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Remark 2.2. [16] If G is a strictly increasing and strictly convex C2 function on (0, r1],
with G(0) = G′(0) = 0, then it has an extension G, which is strictly increasing and strictly
convex C2 function on (0,∞). For instance, if G(r1) = a,G′(r1) = b,G′′(r1) = C, we can
define G, for t > r1, by

G(t) =
C

2
t2 + (b− Cr1)t+

(
a+

C

2
r1

2 − br1

)
. (2.4)

The same remark can be established for H. For simplicity, in the rest of this paper, we
use G and H instead of G and H respectively.

Remark 2.3. [16] Since G is strictly convex on (0, r1] and G(0) = 0, then

G(θz) ≤ θG(z), 0 ≤ θ ≤ 1 and z ∈ (0, r1]. (2.5)

Remark 2.4. We establish our decay results when the function H and G are nonlinear.
Because, the other cases were discussed in [17].

We introduce the ”modified” energy associated to problem (1.1)

E(t) =
1

2
||ut||22 +

1− `
2
|| ∇u||22 +

1

2
(go∇u)(t) (2.6)

where

(go∇u)(t) =

∫ +∞

0

g(s)||∇u(t)−∇u(t− s)||22ds

Direct differentiation, using (1.1), leads to

E ′(t) =
1

2
(g′o∇u)(t)− σ(t)

∫
Ω

uth(ut)dx ≤ 0 (2.7)

For completeness we state, without proof, the following standard existence and regularity
result (see [18], [19]).

Proposition 2.5. Let (u0(., 0), u1) ∈ H1
0 (Ω)× L2(Ω) be given. Assume (A1)− (A3) are

satisfied, then problem (1.1) has a unique global (weak) solution

u ∈ C(R+, H1
0 (Ω)) ∩ C1(R+, L2(Ω)).

Moreover, if
(u0(., 0), u1) ∈

(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω)

then the solution satisfies

u ∈ L∞
(
R+, H2(Ω) ∩H1

0 (Ω)
)
∩W 1,∞ (R+, H1

0 (Ω)
)
∩W 2,∞ (R+, L2(Ω)

)
.

3 Technical Lemmas

In this section, we state and establish several lemmas needed for the proof of our main
result.
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Lemma 3.1. For u ∈ H1
0 (Ω), we have∫

Ω

(∫ +∞

0

g(s)(u(t)− u(t− s))ds
)2

dx ≤ (1− `)C2
p(go∇u)(t),

where Cp is the Poincaré constant.

Proof.∫
Ω

(∫ +∞

0

g(s)(u(t)− u(t− s))ds
)2

dx =

∫
Ω

(∫ +∞

0

√
g(s)

√
g(s)(u(t)− u(t− s))ds

)2

dx.

By applying Cauchy-Schwarz’ and Poincaré’s inequalities, we can show that∫
Ω

(∫ +∞

0

g(s)(u(t)− u(t− s))ds
)2

dx

≤
∫

Ω

(∫ +∞

0

g(s)ds

)(∫ +∞

0

g(s)(u(t)− u(t− s))2ds

)
dx

≤ (1− `)C2
p(go∇u)(t).

Lemma 3.2. There exists a positive constant M such that∫ +∞

t

g(s)||∇u(t)−∇u(t− s)||22ds ≤M

∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds, (3.1)

Proof. The proof is identical to the one in [20]. Indeed, we have∫ +∞

t

g(s)||∇u(t)−∇u(t− s)||22ds ≤ 2||∇u(t)||2
∫ +∞

t

g(s)ds+ 2

∫ +∞

t

g(s)||∇u(t− s)||2ds

≤ 2 sup
s≥0
||∇u(s)||2

∫ +∞

0

g(t+ s)ds+ 2

∫ +∞

0

g(t+ s)||∇u(−s)||2ds

≤ 4E(s)

(1− `)

∫ +∞

0

g(t+ s)ds+ 2

∫ +∞

0

g(t+ s)||∇u0(s)||2ds

≤ 4E(0)

(1− `)

∫ +∞

0

g(t+ s)ds+ 2

∫ +∞

0

g(t+ s)||∇u0(s)||2ds

≤M

∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds.

(3.2)

where M = max
{

2, 4E(0)
(1−`)

}
.

Lemma 3.3. Under the assumptions (A1)− (A3), the functional

ψ(t) :=

∫
Ω

uutdx

satisfies, along the solution, the estimate

ψ′(t) ≤ − `
2
|| ∇u||22 + ||ut||22 + c(go∇u)(t) + c

∫
Ω

h2(ut)dx (3.3)
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Proof. Direct computations, using (1.1), yield

ψ′(t) =

∫
Ω

u2
tdx+

∫
Ω

u∆udx−
∫

Ω

u

∫ +∞

0

g(s)∆u(t− s)dsdx

− σ(t)

∫
Ω

uh(ut)dx

=

∫
Ω

u2
tdx− `

∫
Ω

|∇u|2dx− σ(t)

∫
Ω

uh(ut)dx

+

∫
Ω

∇u.
∫ +∞

0

g(s)(∇u(t− s)−∇u(t))dsdx.

(3.4)

Using Young’s inequality and Lemma 3.1, we obtain∫
Ω

∇u.
∫ +∞

0

g(s)(∇u(t− s)−∇u(t))dsdx

≤ δ

∫
Ω

|∇u|2dx+
1

4δ

∫
Ω

(∫ +∞

0

g(s)|∇u(t− s)−∇u(t)|ds
)2

dx

≤ δ

∫
Ω

|∇u|2dx+
c

δ
(go∇u)(t).

(3.5)

Also, the use of Young’s and Poincaré’s inequalities gives

− σ(t)

∫
Ω

uh(ut)dx ≤ cδ

∫
Ω

u2dx+
c

4δ

∫
Ω

h2(ut)dx

≤ cδ

∫
Ω

|∇u|2dx+
c

4δ

∫
Ω

h2(ut)dx.

(3.6)

Combining (3.4)-(3.6) and choosing δ small enough give (3.3).

Lemma 3.4. Under the assumptions (A1)− (A3), the functional

χ(t) := −
∫

Ω

ut

∫ +∞

0

g(s)(u(t)− u(t− s))dsdx (3.7)

satisfies, along the solution, the estimate

χ′(t) ≤ `

4
|| ∇u||22 − (1− `− `

4
)||ut||22 +

4c

`
(go∇u)(t)

− 4c

`
(g′o∇u)(t) + c

∫
Ω

h2(ut)dx
(3.8)

Proof. By differentiating (3.7), using (1.1), and performing integration by parts, we arrive
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at

χ′(t) =

∫
Ω

∇u.
∫ +∞

0

g(s)(∇u(t− s)−∇u(t))dsdx

−
∫

Ω

(∫ +∞

0

g(s)∇u(t− s)ds
)
.

(∫ +∞

0

g(s)(∇u(t− s)−∇u(t))ds

)
dx

+

∫
Ω

(∫ +∞

0

g(s)(u(t− s)− u(t))ds

)
h(ut)dx

−
∫

Ω

ut

∫ +∞

0

g′(s)(u(t− s)− u(t))dsdx− (1− `)
∫

Ω

ut
2dx

= `

∫
Ω

∇u.
∫ +∞

0

g(s)(∇u(t− s)−∇u(t))dsdx

+

∫
Ω

∣∣∣∣ ∫ +∞

0

g(s)(∇u(t− s)−∇u(t))ds

∣∣∣∣2dx
+

∫
Ω

(∫ +∞

0

g(s)(u(t− s)− u(t))ds

)
h(ut)dx

−
∫

Ω

ut

∫ +∞

0

g′(s)(u(t− s)− u(t))dsdx− (1− `)
∫

Ω

u2
tdx.

Using Young’s inequality and Lemma 3.1, we obtain

`

∫
Ω

∇u.
∫ +∞

0

g(s)(∇u(t− s)−∇u(t))dsdx ≤ δ

∫
Ω

|∇u|2dx+
c

δ
(go∇u)(t)

∫
Ω

(∫ +∞

0

g(s)(u(t− s)− u(t))ds

)
h(ut)dx ≤ c(go∇u)(t) + c

∫
Ω

h2(ut)dx

and

−
∫

Ω

ut

∫ +∞

0

g′(s)(u(t− s)− u(t))dsdx ≤ δ

∫
Ω

u2
tdx−

c

δ
(g′o∇u)(t).

Combining all the above estimates and putting δ = `
4
, (3.8) is established.

Lemma 3.5. Assume that (A1)− (A3) hold. Then there exist constants M1,M2,m, c > 0
such that the functional

L(t) = M1E(t) +M2χ(t) + ψ(t)

satisfies, for all t ∈ R+,

L′(t) ≤ −mE(t) + c(go∇u)(t) + c

∫
Ω

h2(ut)dx (3.9)

Proof. By using (2.7), (3.3), (3.8), we easily see that

L′(t) ≤ − `
4
|| ∇u||22 −

(
M2

(
1− `− `

4

)
− 1

)
||ut||22 +

(
4c

`
M2

2 + c

)
(go∇u)(t)

+

(
1

2
M1 −

4c

`
M2

2

)
(g′o∇u)(t) + (cM2 + c)

∫
Ω

h2(ut)dx.
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At this point, we choose M2 large enough so that

α := M2

(
1− `− `

4

)
− 1 > 0,

and then M1 large enough that

1

2
M1 −

4c

`
M2

2 > 0.

So, we arrive at

L′(t) ≤ − `
4
|| ∇u||22 − α||ut||

2
2 + c(g′o∇u)(t) + c

∫
Ω

h2(ut)dx (3.10)

Therefore, (3.10) reduces to (3.9) for two positive constants m and c. On the other hand
(see [21]), we can choose M1 even larger (if needed)
so that

L ∼ E (3.11)

Lemma 3.6. Under the assumptions (A2) and (A3), then we have

σ(t)

∫
Ω

h2(ut)dx ≤ cH−1(J(t))− cE ′(t), if H is nonlinear (3.12)

where

J(t) :=
1

|Ω2|

∫
Ω2

uth(ut)dx ≤ −cE ′(t) (3.13)

and
Ω2 = {x ∈ Ω : |ut| ≤ ε1}.

Proof. In case H is nonlinear on [0, ε]. We assume that max {r2, h0(r2)} < ε; otherwise
we take r2 smaller. Let ε1 = min {r2, h0(r2)}. Now, using (A2), we have, for ε1 ≤ |s| ≤ ε,

|h(s)| ≤ h−1
0 (|s|)
|s|

|s| ≤ h−1
0 (|ε|)
|ε1|

|s|

and

|h(s)| ≥ h0(|s|)
|s|
|s| ≥ h0(|ε1|)

|ε|
|s|

So, we deduce that {
h0(|s|) ≤ |h(s)| ≤ h−1

0 (|s|) for all |s| < ε1

c′1|s| ≤ |h(s)| ≤ c′2|s| for all |s| ≥ ε1

(3.14)

Using (3.14), we get for all |s| ≤ ε1

H(h2(s)) = |h(s)|h0(|h(s)|) ≤ sh(s)

which gives
h2(s) ≤ H−1(sh(s)) for all |s| ≤ ε1 (3.15)

8



Now, we define the following partition which was introduced by Komornik [22]:

Ω1 = {x ∈ Ω : |ut| > ε1}, Ω2 = {x ∈ Ω : |ut| ≤ ε1}

Using (3.14), we get on Ω2

uth(ut) ≤ ε1h
−1
0 (ε1) ≤ h0(r2)r2 = H(r2

2) (3.16)

Then, Jensen’s Inequality gives

H−1 (J(t)) ≥ c

∫
Ω2

H−1(uth(ut))dx (3.17)

Thus, combining (2.7), (3.14) and (3.17), we arrive at

σ(t)

∫
Ω

h2(ut)dx = σ(t)

∫
Ω2

h2(ut)dx+ σ(t)

∫
Ω1

h2(ut)dx

≤ σ(t)

∫
Ω2

H−1 (uth(ut)) dx+ σ(t)

∫
Ω1

h2(ut)dx

≤ cH−1(J(t))− cE ′(t).

(3.18)

This finishes the proof of (3.12).

Lemma 3.7. If (A1) and (A3) are satisfied, then we have, for all t > 0, the following
estimate ∫ t

0

g(s)||∇(t)−∇(t− s)||22ds ≤
(t+ 1)

q0

G−1

(
q0µ(t)

(t+ 1)ξ(t)

)
(3.19)

where q0 small positive number, G is defined in Remark (2.4) and

µ(t) := −
∫ t

0

g′(s)||∇(t)−∇(t− s)|22ds ≤ −cE ′(t), (3.20)

.

Proof. To establish (3.19), we introduce the following functional

λ(t) :=
q0

t+ 1

∫ t

0

||∇(t)−∇(t− s)||22ds. (3.21)

Then, using the fact that E is nonincreasing and (2.6) to get

λ(t) ≤ 2q0

t+ 1

(∫ t

0

||∇(t)||22 +

∫ t

0

||∇(t− s)||22ds
)
.

≤ 4q0

(1− `)(t+ 1)

(∫ t

0

(
E(t) + E(t− s)

)
ds

)
≤ 8q0

(1− `)(t+ 1)

∫ t

0

E(s)ds

≤ 8q0

(1− `)(t+ 1)

∫ t

0

E(0)ds

< +∞.

(3.22)
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Thus, q0 can be chosen so small so that, for all t > 0,

λ(t) < 1. (3.23)

Without loss of the generality, for all t > 0, we assume that λ(t) > 0, otherwise we get an
exponential decay from (3.9). The use of Jensen’s inequality and using (2.5), (3.20) and
(3.23) gives

µ(t) =
1

q0λ(t)

∫ t

0

λ(t)(−g′(s))
∫

Ω

q0|∇(t)−∇(t− s)|2dxds

≥ 1

q0λ(t)

∫ t

0

λ(t)ξ(s)G(g(s))

∫
Ω

q0|∇(t)−∇(t− s)|2dxds

≥ ξ(t)

q0λ(t)

∫ t

0

G(λ(t)g(s))

∫
Ω

q0|∇(t)−∇(t− s)|2dxds

≥ (t+ 1)ξ(t)

q0

G

(
q0

(t+ 1)

∫ t

0

g(s)

∫
Ω

|∇(t)−∇(t− s)|2dxds
)

=
(t+ 1)ξ(t)

q0

G

(
q0

(t+ 1)

∫ t

0

g(s)

∫
Ω

|∇u(t)−∇u(t− s)|2dxds
)
,

(3.24)

hence (3.19) is established.

4 Stability result

In this section, we state and prove a new general decay result. For this purpose, we
introduce the following functions:

G1(t) :=

∫ 1

t

1

sW ′(s)
ds, (4.1)

G2(t) = tW ′(t), G3(t) = t(W ′)−1(t), G4(t) = G∗3(t). (4.2)

where W = (G−1 +H−1)
−1
. Further, we introduce the class S of functions χ : R+ → R∗+

satisfying for fixed c1, c2 > 0 (should be selected carefully in (4.24)):

χ ∈ C1(R+), χ ≤ 1, χ′ ≤ 0, (4.3)

and

c2G4

[ c
d
q(t)f0(t)

]
≤ c1

(
G2

(
G5(t)

χ(t)

)
− G2 (G5(t))

χ(t)

)
, (4.4)

where d > 0, c is a generic positive constant which may change from line to line, f0 and
q will be defined in the proof of our main theorem and

G5(t) = G−1
1

(
c1

∫ t

0

ξ(s)ds

)
. (4.5)

Remark 4.1. Thanks to (A1), G2 is convex increasing and defines a bijection from R+

to R+, G1 is decreasing defines a bijection from (0, 1] to R+, and G3 and G4 are convex
and increasing functions on (0, r]. Then the set S is not empty because it contains χ(s) =
εG5(s) for any 0 < ε ≤ 1 small enough. Indeed, (4.3) is satisfied (since (4.1) and (4.5)).
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On the other hand, we have q(t)f0(t) is nonincreasing, 0 < G5 ≤ 1, and G′ and G4 are
increasing, then (4.4) is satisfied if

c2G4

[
c

d
q0f0(0)

]
≤ c1

ε

(
G′
(

1

ε

)
−G′(1)

)
which holds, for 0 < ε ≤ 1 small enough, since limt→+∞G

′(t) = +∞. But with the choice
χ = εG5, (4.6) (below) does not lead to any stability estimate. The idea is to choose χ
satisfy (4.3) and (4.4) such that (4.6) gives the best possible decay rate for E.

Theorem 4.2. Assume that (A1) − (A3) hold and both H(t) and G(t) are non-linear
functions, then there exists a strictly positive constant C such that, for any χ satisfying
(4.3) and (4.4), the solution of (1.1) satisfies, for all t ≥ 0,

E(t) ≤ CG5(t)

χ(t)q(t)
. (4.6)

Proof. Using (3.9), (3.12) and (3.19), we obtain

L′(t) ≤ −mE(t) + c

(
t+ 1

q0

)
G−1

(
q0µ(t)

(t+ 1)ξ(t)

)
(t) + c

∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds

+ cH−1(J(t))− cE ′(t).
(4.7)

Since 1
t+1

< 1 whenever t > 0. Combining this with the strictly increasing and strictly

convex properties of H, setting θ = 1
t+1

< 1 and using Remark (2.4), we obtain

L′(t) ≤ −mE(t) + c

(
t+ 1

q0

)
G−1

(
q0µ(t)

(t+ 1)ξ(t)

)
(t) + c

∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds

+ c
(t+ 1)

q0

H−1

(
J(t)

t+ 1

)
− cE ′(t).

(4.8)
Let L1(t) = L(t) + cE(t) E, then (4.8) becomes

L′1(t) ≤ −mE(t) + c

(
t+ 1

q0

)
G−1

(
q0µ(t)

(t+ 1)ξ(t)

)
(t) + c

∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds

+ c
(t+ 1)

q0

H−1

(
J(t)

t+ 1

)
.

(4.9)

Let r0 = min{r1, r2}, χ(t) = max{ q0µ(t)
(t+1)ξ(t)

, J(t)
t+1
} and W = (G−1 +H−1)

−1
. Then, we get

L′1(t) ≤ −mE(t) + c

(
t+ 1

q0

)
W−1(χ(t)) + c

∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds. (4.10)

Now, for ε0 < r0 and the fact that E ′ ≤ 0, W ′ > 0,W ′′ > 0 on (0, r0], we find that the
functional L2, defined by

L2(t) := W ′
(

ε0

(t+ 1)
· E(t)

E(0)

)
L1(t)

satisfies, for some α1, α2 > 0.

α1L2(t) ≤ E(t) ≤ α2L2(t) (4.11)
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and

L′2(t) =

(
−ε0

(t+ 1)2

E(t)

E(0)
+

ε0

(t+ 1)

E ′(t)

E(0)

)
W ′′

(
ε0

t+ 1
· E(t)

E(0)

)
L1(t)

+W ′
(

ε0

t+ 1
· E(t)

E(0)

)
L1
′(t)

≤ −mE(t)W ′
(

ε0

t+ 1
· E(t)

E(0)

)
+ c(t+ 1)W ′

(
ε0

t+ 1
· E(t)

E(0)

)
W−1(χ(t))

+ cW ′
(

ε0

(t+ 1)
· E(t)

E(0)

)∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds.

(4.12)

Let W ∗ be the convex conjugate of W in the sense of Young (see [23]), then

W ∗(s) = s(W ′)−1(s)−W
[
(W ′)−1(s)

]
, if s ∈ (0,W ′(r0)] (4.13)

and W ∗ satisfies the following Young inequality

AB ≤ W ∗(A) +W (B), if A ∈ (0,W ′(r0)], B ∈ (0, r0]. (4.14)

With A = W ′
(

ε0
t+1
· E(t)
E(0)

)
and B = W−1(χ(t)), using (2.7) and (4.12)-(4.14), we arrive at

L′2(t) ≤ −mE(t)W ′
(

ε0

t+ 1
· E(t)

E(0)

)
+ c(t+ 1)W ∗

(
W ′
(

ε0

t+ 1
· E(t)

E(0)

))
+ c(t+ 1)χ(t)

+ cW ′
(

ε0

(t+ 1)
· E(t)

E(0)

)∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds

≤ −mE(t)W ′
(

ε0

t+ 1
· E(t)

E(0)

)
+ c(t+ 1)

ε0

t+ 1
· E(t)

E(0)
W ′
(

ε0

t+ 1
· E(t)

E(0)

)
+ c(t+ 1)χ(t)

+ cW ′
(

ε0

(t+ 1)
· E(t)

E(0)

)∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds.

(4.15)
Using (3.13) and (3.20), we observe that

(t+ 1)ξ(t)χ(t) ≤ q0µ(t) + ξ(t)J(t)

≤ q0µ(t) + ξ(0)J(t)

≤ −cE ′(t)− cE ′(t)
≤ −cE ′(t).

(4.16)

So, multiplying (4.15) by ξ(t) and using the fact that, ε0
E(t)
E(0)

< r0, give

ξ(t)L′2(t) ≤ −mξ(t)E(t)W ′
(

ε0

t+ 1
· E(t)

E(0)

)
+ cε0ξ(t) ·

E(t)

E(0)
W ′
(

ε0

t+ 1
· E(t)

E(0)

)
− cE ′(t) + cξ(t)W ′

(
ε0

(t+ 1)
· E(t)

E(0)

)∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds.

(4.17)

Using the non-increasing property of ξ, we obtain, for all t ≥ 0,

(ξ(t)L2 + cE)′(t) ≤ −mξ(t)E(t)W ′
(

ε0

t+ 1
· E(t)

E(0)

)
+ cξ(t) · E(t)

E(0)
W ′
(

ε0

t+ 1
· E(t)

E(0)

)
+ cξ(t)W ′

(
ε0

(t+ 1)
· E(t)

E(0)

)∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds.

(4.18)
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Therefor, by setting L3 := ξ(t)L2 + cE. Then, for some α3, α4 > 0, we have

α3L3(t) ≤ E(t) ≤ α4L3(t). (4.19)

Therefor, we get

L′3(t) ≤ −mξ(t)E(t)W ′
(

ε0

t+ 1
· E(t)

E(0)

)
+ cξ(t)

ε0E(t)

E(0)
W ′
(

ε0

t+ 1
· E(t)

E(0)

)
+ cξ(t)W ′

(
ε0

(t+ 1)
· E(t)

E(0)

)∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds

≤ ε0(
mE(0)

ε0

− c) ξ(t)

(t+ 1)

E(t)

E(0)
W ′
(

ε0

t+ 1
· E(t)

E(0)

)
+ cξ(t)W ′

(
ε0

(t+ 1)
· E(t)

E(0)

)∫ +∞

0

g(t+ s)
(
1 + ||∇u0(s)||2

)
ds.

(4.20)

For simplicity, let f0(t) =
∫ +∞

0
g(t+s) (1 + ||∇u0(s)||2) ds and q(t) = 1

t+1
then by recalling

the definition of G2 and selecting ε0 small enough

L′3(t) ≤ −kξ(t)
q(t)

G2

(
ε0

(t+ 1)
· E(t)

E(0)

)
+ cξ(t)f0(t)W ′

(
ε0

(t+ 1)
· E(t)

E(0)

)
. (4.21)

Since G′2(t) = W ′(t)+ tW ′′(t), then, using the strict convexity of G on (0, r0], we find that
G′2(t), G2(t) > 0 on (0, r0]. Using the general Young inequality (4.14) on the last term in

(4.21) with A = W ′
(
ε0

E(t)q(t)
E(0)

)
and B = [ c

d
f0(t)], we have for d > 0,

cf0(t)W ′
(
ε0
E(t)q(t)

E(0)

)
=

d

q(t)

[ c
d
q(t)f0(t)

](
W ′
(
ε0
E(t)q(t)

E(0)

))
≤ d

q(t)
G3

(
W ′
(
ε0
E(t)q(t)

E(0)

))
+

d

q(t)
G∗3

[ c
d
q(t)f0(t)

]
≤ d

q(t)

(
ε0
E(t)q(t)

E(0)

)(
W ′
(
ε0
E(t)q(t)

E(0)

))
+

d

q(t)
G4

[ c
d
q(t)f0(t)

]
≤ d

q(t)
G2

(
ε0
E(t)q(t)

E(0)

)
+

d

q(t)
G4

[ c
d
q(t)f0(t)

]
.

(4.22)
Now, combining (4.21) and (4.22) and choosing d small enough k1 = (k − d) > 0, we
arrive at

L′3(t) ≤ −kξ(t)
q(t)

G2

(
ε0
E(t)q(t)

E(0)

)
+
dξ(t)

q(t)
G2

(
ε0
E(t)q(t)

E(0)

)
+
dξ(t)

q(t)
G4

[ c
d
q(t)f0(t)

]
≤ −k1

ξ(t)

q(t)
G2

(
ε0
E(t)q(t)

E(0)

)
+
dξ(t)

q(t)
G4

[ c
d
q(t)f0(t)

]
.

(4.23)
Using the equivalent property in (4.19) and the increasing of G2, we have, for some
d0 = α3

E(0)
> 0,

G2

(
ε0
E(t)q(t)

E(0)

)
≥ G2

(
d0L3(t)q(t)

)
.
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Letting F(t) := d0L3(t)q(t) and recalling q′ ≤ 0, then for some constant c1 = d0k1 > 0
and c2 = d0d > 0, we arrive at

F ′(t) ≤ −c1ξ(t)G2(F(t)) + c2ξ(t)G4

[ c
d
q(t)f0(t)

]
. (4.24)

Since d0q(t) is is nonincreasing. Using the equivalent property F ∼ E implies that there
exists b0 > 0 such that F(t) ≥ b0E(t)q(t). Let t ∈ R+ and χ(t) satisfying (4.3) and (4.4).

If b0q(t)E(t) ≤ 2G5(t)
χ(t)

, then, we have

E(t) ≤ 2

b0

G5(t)

χ(t)q(t)
. (4.25)

If b0q(t)E(t) > 2G5(t)
χ(t)

. Then, for any 0 ≤ s ≤ t, we get

b0q(s)E(s) > 2
G5(t)

χ(t)
, (4.26)

since, q(t)E(t) is nonincreasing function. Therefore, we have for any 0 ≤ s ≤ t,

F(s) > 2
G5(t)

χ(t)
. (4.27)

Using (2.5), 0 < χ ≤ 1 and the fact that G2 is convex, we have, for any 0 < ε1 ≤ 1,

G2

(
ε1χ(s)F(s)− ε1G5(s)

)
= G2

(
ε1χ(s)F(s)− ε1χ(s)G5(s)

χ(s)

)
≤ ε1χ(s)G2

(
F(s)− G5(s)

χ(s)

)
.

(4.28)

Recalling the definition of G2, that is G2(t) = tW ′(t), we have

G2

(
ε1χ(s)F(s)− ε1G5(s)

)
≤ ε1χ(s)

(
F(s)− G5(s)

χ(s)

)
W ′
(
F(s)− G5(s)

χ(s)

)
≤ ε1χ(s)F(s)W ′

(
F(s)− G5(s)

χ(s)

)
− ε1χ(s)

G5(s)

χ(s)
W ′
(
F(s)− G5(s)

χ(s)

)
.

(4.29)

Now, using (4.27) and the fact that W ′ is increasing, for any 0 ≤ s ≤ t, we have

W ′
(
F(s)− G5(s)

χ(s)

)
< W ′

(
F(s)

)
, W ′

(
F(s)− G5(s)

χ(s)

)
> W ′

(
G5(s)

χ(s)

)
. (4.30)

Therefor, we have

G2

(
ε1χ(s)F(s)− ε1G5(s)

)
≤ ε1χ(s)F(s)W ′

(
F(s)

)
− ε1χ(s)

G5(s)

χ(s)
W ′
(
G5(s)

χ(s)

)
.

(4.31)
Now, we let

F3(s) = ε1χ(s)F(s)− ε1G5(s), (4.32)
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where ε1 small enough so that F3(0) ≤ 1. Using the definition of G2; that is G2(t) =
tW ′(t). Then (4.31) becomes, for any 0 ≤ s ≤ t,

G2

(
F3(s)

)
≤ ε1χ(s)G2

(
F(s)

)
− ε1χ(s)G2

(
G5(s)

χ(s)

)
. (4.33)

Further, we have

F ′3(t) = ε1χ
′(t)F(t) + ε1χ(s)F ′2(t)− ε1G′5(t). (4.34)

Since χ′ ≤ 0 and using (4.24), then for any 0 ≤ s ≤ t, 0 < ε1 ≤ 1, we obtain

F ′3(t) ≤ ε1χ(t)F ′2(t)− ε1G′5(t)

≤ −c1ε1ξ(t)χ(t)G2(F(t)) + c2ε1ξ(t)χ(s)G4

[ c
d
q(t)f0(t)

]
− ε1G′5(t).

(4.35)

Then, using (4.33), we get

F ′3(t) ≤ −c1ξ(t)G2(F3(t)) + c2ε1ξ(t)χ(t)G4

[ c
d
q(t)f0(t)

]
− c1ε1ξ(t)χ(t)G2

(
G5(t)

χ(t)

)
− ε1G′5(t).

(4.36)

From the definition of G1 and G5, we have

G1 (G5(s)) = c1

∫ s

0

ξ(τ)dτ,

hence,
G′5(s) = −c1ξ(s)G2 (G5(s)) . (4.37)

Now, we have

c2ε1ξ(t)χ(t)G4

[ c
d
q(t)f0(t)

]
− c1ε1ξ(t)χ(t)G2

(
G5(t)

χ(t)

)
− ε1G′5(t)

= c2ε1ξ(t)χ(t)G4

[ c
d
q(t)f0(t)

]
− c1ε1ξ(t)χ(t)G2

(
G5(t)

χ(t)

)
+ c1ε1ξ(t)G2 (G5(t))

= ε1ξ(t)χ(t)

(
c2G4

[ c
d
q(t)f0(t)

]
− c1G2

(
G5(t)

χ(t)

)
+ c1

G2 (G5(t))

χ(t)

)
.

(4.38)

Then, according to (4.4), we get

ε1ξ(t)χ(t)

(
c2G4

[ c
d
q(t)f0(t)

]
− c1G2

(
G5(t)

χ(t)

))
− c1

G2 (G5(t))

χ(t)

)
≤ 0

Then (4.36) gives
F ′3(t) ≤ −c1ξ(t)G2(F3(t)). (4.39)

Thus from (4.39) and the definition of G1 and G2 in (4.1) and (4.2), we obtain(
G1 (F3(t))

)′
≥ c1ξ(t). (4.40)
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Integrating (4.40) over [0, t], we get

G1 (F3(t)) ≥ c1

∫ t

0

ξ(s)ds+G1 (F3(0)) . (4.41)

Since G1 is decreasing, F3(0) ≤ 1 and G1(1) = 0, then

F3(t) ≤ G−1
1

(
c1

∫ t

0

ξ(s)ds

)
= G5(t). (4.42)

Recalling that F3(t) = ε1χ(t)F(t)− ε1G5(t), we have

F(t) ≤ (1 + ε1)

ε1

G5(t)

χ(t)
, (4.43)

Similarly, recall that F(t) := d0L3(t)q(t), then

F1(t) ≤ (1 + ε1)

d0ε1

G5(t)

χ(t)q(t)
, (4.44)

Since L3 ∼ E, then for some b > 0, we have E(t) ≤ bF1; which gives

E(t) ≤ b(1 + ε1)

d0ε1

G5(t)

χ(t)q(t)
, (4.45)

From (4.25) and (4.45), we obtain the following estimate

E(t) ≤ c3

(
G5(t)

χ(t)q(t)

)
, (4.46)

where c3 = max{ 2
b0
, b(1+ε1)

d0ε1
}.

Example 1 [20]: Let g(t) = a
(1+t)ν

, where ν > 1 and 0 < a < ν − 1 so that (A1)

is satisfied. In this case ξ(t) = νa
−1
ν and G(t) = t

ν+1
ν . For the fractional damping, let

h0 = ctν and H(t) =
√
th0(
√
t) = ct

ν+1
ν . We will discuss two cases:

Case 1: if
m0(1 + t)r ≤ 1 + ||∇u0||2 ≤ m1(1 + t)r (4.47)

where 0 < r < ν − 1 and m0,m1 > 0. We recall the definition of the functions G′is and
for simplicity, we choose ν = 2 and then 0 < r < 1, then we find that

W (t) = (G
−1

+H
−1

)−1(t) = ct
3
2 , G2(t) = tW ′(t) = ct

3
2

G3(t) = ct3, G4(t) = ct
3
2 , G1(t) = ct

−1
2 , G5(t) = ct−2

Therefore, we have, for some positive constants ai depending only on a,m0,m1, r, the
following

a1(1 + t)−1+r ≤ f0(t) ≤ a2(1 + t)−1+r, (4.48)

a3(1 + t)r ≤ q(t) ≤ a4(1 + t)r, (4.49)
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We notice that condition (4.4) is satisfied if

(t+ 1)2q(t)f0(t)χ(t) ≤ a5

(
1− (χ)

1
2

) 2
3

. (4.50)

where a5 > 0 depending only on a. Choosing χ(t) as the following

χ(t) = λ(1 + t)−1, 0 < r < 1, (4.51)

so that (4.3) is valid. Moreover, using (4.48) and (4.49), we see that (4.50) is satisfied if
0 < λ ≤ 1 is small enough, and then (4.4) is satisfied. Hence (4.6) implies that, for any
t ∈ R+

E(t) ≤ c(1 + t)−(r+1), 0 < r < 1. (4.52)

Thus, the estimate (4.52) gives limt→+∞E(T ) = 0. Case 2: if m0 ≤ 1 + ||∇u0||2 ≤ m1.
That is r = 0 in (4.47) (as it was assumed in [5], [17], [6] and [24]), then (4.52) holds with
r = 0.
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