REFERENCES

Allen, C. D., Macalady, A. K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., . . . Cobb, N. (2010). A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259 (4), 660-684. doi:https://doi.org/10.1016/j.foreco.2009.09.001
Anadon-Rosell, A., Rixen, C., Cherubini, P., Wipf, S., Hagedorn, F., & Dawes, M. A. (2014). Growth and phenology of three dwarf shrub species in a six-year soil warming experiment at the alpine treeline. PLOS ONE, 9 (6). doi:http://dx.doi.org/10.1371/journal.pone.0100577
Arft, A., Walker, M., Gurevitch, J., Alatalo, J., Bret-Harte, M., Dale, M., . . . Jones, M. (1999). Responses of tundra plants to experimental warming: Meta‐analysis of the international tundra experiment.Ecological Monographs, 69 (4), 491-511.
Bernareggi, G., Carbognani, M., Mondoni, A., & Petraglia, A. (2016). Seed dormancy and germination changes of snowbed species under climate warming: The role of pre- and post-dispersal temperatures. Annals of Botany, 118 (3), 529-539. doi:10.1093/aob/mcw125
Bjorkman, A. D., Elmendorf, S. C., Beamish, A. L., Vellend, M., & Henry, G. H. (2015). Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.Global Change Biology, 21 (12), 4651-4661.
Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H., & White, J.-S. S. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution, 24 (3), 127-135. doi:10.1016/j.tree.2008.10.008
Bonser, S. P. (2013). High reproductive efficiency as an adaptive strategy in competitive environments. Functional Ecology, 27 (4), 876-885. doi:10.1111/1365-2435.12064
Briceño, V. F., Harris-Pascal, D., Nicotra, A. B., Williams, E., & Ball, M. C. (2014). Variation in snow cover drives differences in frost resistance in seedlings of the alpine herb Aciphylla glacialis.Environmental and Experimental Botany, 106 , 174-181. doi:https://doi.org/10.1016/j.envexpbot.2014.02.011
Brown, J. S., & Venable, D. L. (1986). Evolutionary Ecology of Seed-Bank Annuals in Temporally Varying Environments. The American Naturalist, 127 (1), 31-47. doi:10.1086/284465
Cadman, C. S. C., Toorop, P. E., Hilhorst, H. W. M., & Finch-Savage, W. E. (2006). Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant Journal, 46 . doi:10.1111/j.1365-313X.2006.02738.x
Cao, Y., Xiao, Y., Huang, H., Xu, J., Hu, W., & Wang, N. (2016). Simulated warming shifts the flowering phenology and sexual reproduction of Cardamine hirsuta under different planting densities.Scientific Reports, 6 , 27835. doi:10.1038/srep27835
CaraDonna, P. J., Iler, A. M., & Inouye, D. W. (2014). Shifts in flowering phenology reshape a subalpine plant community.Proceedings of the National Academy of Sciences, 111 (13), 4916-4921. doi:10.1073/pnas.1323073111
Cleland, E. E., Chuine, I., Menzel, A., Mooney, H. A., & Schwartz, M. D. (2007). Shifting plant phenology in response to global change.Trends in Ecology & Evolution, 22 (7), 357-365.
Cochrane, A., Hoyle, G. L., Yates, C. J., Wood, J., & Nicotra, A. B. (2015). The phenotypic response of co-occurring Banksia species to warming and drying. Plant Ecology, 216 (1), 27-39. doi:10.1007/s11258-014-0414-z
Cochrane, A., Yates, C. J., Hoyle, G. L., & Nicotra, A. B. (2015). Will among-population variation in seed traits improve the chance of species persistence under climate change? Global Ecology and Biogeography, 24 (1), 12-24. doi:10.1111/geb.12234
Debouk, H., de Bello, F., & Sebastià, M.-T. (2015). Functional trait changes, productivity shifts and vegetation stability in mountain grasslands during a short-term warming. PLOS ONE, 10 (10), e0141899. doi:10.1371/journal.pone.0141899
Donat, M. G., & Alexander, L. V. (2012). The shifting probability distribution of global daytime and night-time temperatures.Geophysical Research Letters, 39 (14), n/a-n/a. doi:10.1029/2012GL052459
Donohue, K. (1998). Maternal environmental effects in plants: Adaptive plasiticity. In T. A. Mousseau & C. W. Fox (Eds.), Maternal Effects as Adaptations . New York: Oxford university press.
Donohue, K. (2009). Completing the cycle: Maternal effects as the missing link in plant life histories. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364 (1520), 1059-1074.
Donohue, K., de Casas, R. R., Burghardt, L., Kovach, K., & Willis, C. G. (2010). Germination, postgermination adaptation, and species ecological ranges. Annual Review of Ecology and Systematics, 41 (1), 293-319. doi:DOI 10.1146/annurev-ecolsys-102209-144715
Donohue, K., Dorn, L., Griffith, C., Kim, E., Aguilera, A., Polisetty, C. R., & Schmitt, J. (2005). The evolutionary ecology of seed germination of arabidopsis thaliana: Variable natural selection on germination timing. Evolution, 59 (4), 758-770. doi:10.1111/j.0014-3820.2005.tb01751.x
Dunnell, K. L., & Travers, S. E. (2011). Shifts in the flowering phenology of the northern Great Plains: Patterns over 100 years.American Journal of Botany, 98 (6), 935-945. doi:10.3732/ajb.1000363
Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., . . . Folland, C. K. (1997). Maximum and minimum temperature trends for the globe. Science, 277 (5324), 364.
Farnsworth, E. J., Nunez-Farfan, J., Careaga, S. A., & Bazzaz, F. A. (1995). Phenology and growth of three temperate forest life forms in response to artificial soil warming. Journal of Ecology, 83 (6), 967-977. doi:10.2307/2261178
Footitt, S., & Finch-Savage, W. E. (2017). Dormancy and Control of Seed Germination. In S. Clemens (Ed.), Plant Physiology and Function(pp. 1-30). New York, NY: Springer New York.
Franks, S. J., Sim, S., & Weis, A. E. (2007). Rapid evolution of flowering time by an annual plant in response to a climate fluctuation.Proceedings of the National Academy of Sciences, 104 (4), 1278-1282. doi:10.1073/pnas.0608379104
Galloway, L. F. (2001a). The effect of maternal and paternal environments on seed characters in the herbaceous plant Campanula americana (Campanulaceae). American Journal of Botany, 88 (5), 832-840.
Galloway, L. F. (2001b). Parental environmental effects on life history in the herbaceous plant Campanula americana Ecology, 82 (10), 2781-2789. doi:10.1890/0012-9658(2001)082[2781:PEEOLH]2.0.CO;2
Galloway, L. F. (2005). Maternal effects provide phenotypic adaptation to local environmental conditions. New Phytologist, 166 (1), 93-100. doi:10.1111/j.1469-8137.2004.01314.x
Galloway, L. F., & Etterson, J. R. (2007). Transgenerational plasticity is adaptive in the wild. Science, 318 . doi:10.1126/science.1148766
Geange, S. R., Briceño, V. F., Aitken, N. C., Ramirez-Valiente, J. A., Holloway-Phillips, M.-M., & Nicotra, A. B. (2017). Phenotypic plasticity and water availability: responses of alpine herb species along an elevation gradient. Climate Change Responses, 4 (1), 5. doi:10.1186/s40665-017-0033-8
Geange, S. R., Holloway-Phillips, M.-M., Briceño, V. F., & Nicotra, A. B. (2020). Aciphylla glacialis mortality, growth and frost resistance: a field warming experiment. Australian Journal of Botany , -. doi:https://doi.org/10.1071/BT19034
Grabherr, G., Gottfried, M., & Pauli, H. (2010). Climate change impacts in alpine environments. Geography Compass, 4 (8), 1133-1153. doi:10.1111/j.1749-8198.2010.00356.x
Gutterman, Y. (2000). Maternal effects on seeds during development. In M. Fenner (Ed.), Seeds: The ecology of regeneration in plant communities (pp. 59-84). Wallingford, UK: CABI.
Hedhly, A., Hormaza, J. I., & Herrero, M. (2009). Global warming and sexual plant reproduction. Trends in Plant Science, 14 (1), 30-36. doi:10.1016/j.tplants.2008.11.001
Hennessy, K., Whetton, P., Smith, I., Bathols, J., Hutchinson, M., & Sharples, J. (2003). The impact of climate change on snow conditions in mainland Australia . Aspendale, Victoria: CSIRO Atmospheric Research.
Herman, J. J., & Sultan, S. E. (2011). Adaptive transgenerational plasticity in plants: Case studies, mechanisms, and implications for natural populations. Frontiers in Plant Science, 2 , 102. doi:10.3389/fpls.2011.00102
Hoffmann, A. A., Camac, J. S., Williams, R. J., Papst, W., Jarrad, F. C., & Wahren, C.-H. (2010). Phenological changes in six Australian subalpine plants in response to experimental warming and year-to-year variation. Journal of Ecology, 98 (4), 927-937. doi:10.1111/j.1365-2745.2010.01667.x
Hoffmann, A. A., & Sgrò, C. M. (2011). Climate change and evolutionary adaptation. Nature, 470 (7335), 479. doi:10.1038/nature09670
Hovenden, M. J., Newton, P. C. D., Wills, K. E., Janes, J. K., Williams, A. L., Vander Schoor, J. K., & Nolan, M. J. (2008). Influence of warming on soil water potential controls seedling mortality in perennial but not annual species in a temperate grassland. New Phytologist, 180 (1), 143-152. doi:10.1111/j.1469-8137.2008.02563.x
Hoyle, G., Cordiner, H., Good, R. B., & Nicotra, A. B. (2014). Effects of reduced winter duration on seed dormancy and germination in six populations of the alpine herb Aciphyllya glacialis (Apiaceae).Conservation Physiology 2 (1), cou015-cou015. doi:10.1093/conphys/cou015
Hoyle, G., Steadman, K., Good, R., McIntosh, E., Galea, L., & Nicotra, A. B. (2015). Seed germination strategies: An evolutionary trajectory independent of vegetative functional traits. Frontiers in Plant Science, 6 , 731. doi:10.3389/fpls.2015.00731
Hoyle, G. L., Steadman, K. J., Daws, M. I., & Adkins, S. W. (2008). Pre- and post-harvest influences on seed dormancy status of an Australian Goodeniaceae species, Goodenia fascicularis .Annals of Botany, 102 (1), 93-101. doi:10.1093/aob/mcn062
Hoyle, G. L., Venn, S. E., Steadman, K. J., Good, R. B., McAuliffe, E. J., Williams, E. R., & Nicotra, A. B. (2013). Soil warming increases plant species richness but decreases germination from the alpine soil seed bank. Global Change Biology, 19 (5), 1549-1561. doi:10.1111/gcb.12135
Huang, Z., Footitt, S., Tang, A., & Finch-Savage, W. E. (2018). Predicted global warming scenarios impact on the mother plant to alter seed dormancy and germination behaviour in Arabidopsis. Plant, Cell & Environment, 41 (1), 187-197. doi:10.1111/pce.13082
Jin, B., Wang, L., Wang, J., Jiang, K.-Z., Wang, Y., Jiang, X.-X., . . . Teng, N.-J. (2011). The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana. BMC plant biology, 11 , 35-35. doi:10.1186/1471-2229-11-35
Kimball, S., Angert, A. L., Huxman, T. E., & Venable, D. L. (2010). Contemporary climate change in the Sonoran Desert favors cold-adapted species. Global Change Biology, 16 (5), 1555-1565. doi:10.1111/j.1365-2486.2009.02106.x
Kimball, S., Angert, A. L., Huxman, T. E., & Venable, D. L. (2011). Differences in the timing of germination and reproduction relate to growth physiology and population dynamics of Sonoran Desert winter annuals. American Journal of Botany, 98 (11), 1773-1781. doi:10.3732/ajb.1100034
King, J. S., Pregitzer, K. S., & Zak, D. R. (1999). Clonal variation in above-and below-ground growth responses of Populus tremuloidesMichaux: Influence of soil warming and nutrient availability.Plant and Soil, 217 (1-2), 119-130.
Körner, C. (2003). Alpine Plant Life: Functional Plant Ecology of High Mountain Ecosystems . New York; Berlin: Springer.
Körner, C., & Basler, D. (2010). Phenology under global warming.Science, 327 (5972), 1461.
Kozłowski, J. (1992). Optimal allocation of resources to growth and reproduction: Implications for age and size at maturity. Trends in Ecology & Evolution, 7 (1), 15-19. doi:https://doi.org/10.1016/0169-5347(92)90192-E
Kudernatsch, T., Fischer, A., Bernhardt-Römermann, M., & Abs, C. (2008). Short-term effects of temperature enhancement on growth and reproduction of alpine grassland species. Basic and Applied Ecology, 9 (3), 263-274.
Kudo, G., & Suzuki, S. (2003). Warming effects on growth, production, and vegetation structure of alpine shrubs: a five-year experiment in northern Japan. Oecologia, 135 (2), 280-287.
Leblans, N. I. W., Sigurdsson, B. D., Vicca, S., Fu, Y., Penuelas, J., & Janssens, I. A. (2017). Phenological responses of Icelandic subarctic grasslands to short-term and long-term natural soil warming.Global Change Biology, 23 (11), 4932-4945. doi:10.1111/gcb.13749
Lin, D., Xia, J., & Wan, S. (2010). Climate warming and biomass accumulation of terrestrial plants: a meta-analysis. New Phytologist, 188 (1), 187-198. doi:10.1111/j.1469-8137.2010.03347.x
Liu, Y., Mu, J., Niklas, K. J., Li, G., & Sun, S. (2012). Global warming reduces plant reproductive output for temperate multi-inflorescence species on the Tibetan plateau. New Phytologist, 195 (2), 427-436. doi:10.1111/j.1469-8137.2012.04178.x
Lu, J. J., Tan, D. Y., Baskin, C. C., & Baskin, J. M. (2016). Effects of germination season on life history traits and on transgenerational plasticity in seed dormancy in a cold desert annual. Scientific Reports, 6 , 25076. doi:10.1038/srep25076
Menzel, A., Sparks, T. H., Estrella, N., Koch, E., Aasa, A., Ahas, R., . . . Zust, A. N. A. (2006). European phenological response to climate change matches the warming pattern. Global Change Biology, 12 (10), 1969-1976. doi:10.1111/j.1365-2486.2006.01193.x
Merilä, J., & Hendry, A. P. (2014). Climate change, adaptation, and phenotypic plasticity: the problem and the evidence. Evolutionary Applications, 7 (1), 1-14. doi:10.1111/eva.12137
Milbau, A., Vandeplas, N., Kockelbergh, F., & Nijs, I. (2017). Both seed germination and seedling mortality increase with experimental warming and fertilization in a subarctic tundra. AoB Plants, 9 (5), plx040-plx040. doi:10.1093/aobpla/plx040
Moore, L. M., & Lauenroth, W. K. (2017). Differential effects of temperature and precipitation on early- vs. late-flowering species.Ecosphere, 8 (5), e01819. doi:10.1002/ecs2.1819
Munson, S. M., & Sher, A. A. (2015). Long-term shifts in the phenology of rare and endemic Rocky Mountain plants. American Journal of Botany, 102 (8), 1268-1276. doi:10.3732/ajb.1500156
Nicotra, A. B., Atkin, O. K., Bonser, S. P., Davidson, A. M., Finnegan, E. J., Mathesius, U., . . . van Kleunen, M. (2010). Plant phenotypic plasticity in a changing climate. Trends in Plant Science, 15 (12), 684-692. doi:https://doi.org/10.1016/j.tplants.2010.09.008
Nicotra, A. B., Segal, D. L., Hoyle, G. L., Schrey, A. W., Verhoeven, K. J. F., & Richards, C. L. (2015). Adaptive plasticity and epigenetic variation in response to warming in an Alpine plant. Ecology and Evolution, 5 (3), 634-647. doi:10.1002/ece3.1329
Nonogaki, H. (2017). Seed Biology Updates – Highlights and New Discoveries in Seed Dormancy and Germination Research. Frontiers in Plant Science, 8 (524). doi:10.3389/fpls.2017.00524
Oberbauer, S. F., Elmendorf, S. C., Troxler, T. G., Hollister, R. D., Rocha, A. V., Bret-Harte, M. S., . . . Welker, J. M. (2013). Phenological response of tundra plants to background climate variation tested using the International Tundra Experiment. Philosophical Transactions of the Royal Society B: Biological Sciences, 368 (1624).
Ooi, M. K. J., Auld, T. D., & Denham, A. J. (2009). Climate change and bet-hedging: Interactions between increased soil temperatures and seed bank persistence. Global Change Biology, 15 (10), 2375-2386. doi:10.1111/j.1365-2486.2009.01887.x
Panetta, A. M., Stanton, M. L., & Harte, J. (2018). Climate warming drives local extinction: Evidence from observation and experimentation.Science Advances, 4 (2), eaaq1819. doi:10.1126/sciadv.aaq1819
Parmesan, C., & Hanley, M. E. (2015). Plants and climate change: Complexities and surprises. Annals of Botany, 116 (6), 849-864. doi:10.1093/aob/mcv169
Peñuelas, J., & Filella, I. (2001). Responses to a warming world.Science, 294 (5543), 793.
Rathcke, B., & Lacey, E. P. (1985). Phenological patterns of terrestrial plants. Annual Review of Ecology and Systematics, 16 (ArticleType: research-article / Full publication date: 1985 / Copyright © 1985 Annual Reviews), 179-214. doi:10.2307/2097047
Reinhardt, S., & Odland, A. (2012). Soil temperature variation in calciphile mountain plant communities in Southern Norway.Oecologia Montana, 21 , 21-35.
Richards, C. L., Alonso, C., Becker, C., Bossdorf, O., Bucher, E., Colomé-Tatché, M., . . . Verhoeven, K. J. F. (2017). Ecological plant epigenetics: Evidence from model and non-model species, and the way forward. Ecology Letters, 20 (12), 1576-1590. doi:10.1111/ele.12858
Roach, D. A., & Wulff, R. D. (1987). Maternal Effects in Plants.Annual Review of Ecology and Systematics, 18 (1), 209-235. doi:10.1146/annurev.es.18.110187.001233
Root, T. L., Price, J. T., Hall, K. R., Schneider, S. H., Rosenzweig, C., & Pounds, J. A. (2003). Fingerprints of global warming on wild animals and plants. Nature, 421 (6918), 57-60. doi:http://www.nature.com/nature/journal/v421/n6918/suppinfo/nature01333_S1.html
Saatkamp, A., Cochrane, A., Commander, L., Guja, Lydia K., Jimenez-Alfaro, B., Larson, J., . . . Walck, J. L. (2018). A research agenda for seed-trait functional ecology. New Phytologist, 0 (0). doi:10.1111/nph.15502
Satyanti, A. (2018). A multi-scale exploration of the drivers and implications of germination strategy in Australian alpine plants.(PhD), The Australian National University, Canberra.
Satyanti, A., Guja, L. K., & Nicotra, A. B. (2019). Temperature variability drives within-species variation in germination strategy and establishment characteristics of an alpine herb. Oecologia . doi:10.1007/s00442-018-04328-2
Scherrer, D., Schmid, S., & Körner, C. (2011). Elevational species shifts in a warmer climate are overestimated when based on weather station data. International Journal of Biometeorology, 55 (4), 645-654. doi:10.1007/s00484-010-0364-7
Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9 (7), 671-675.
Schütz, W. (2000). Ecology of seed dormancy and germination in sedges (Carex ). Perspectives in Plant Ecology, Evolution and Systematics, 3 (1), 67-89. doi:10.1078/1433-8319-00005
Schütz, W., & Milberg, P. (1997). Seed dormancy in Carex canescens : Regional differences and ecological consequences.Oikos, 78 (3), 420-428. doi:10.2307/3545604
Sherry, R. A., Zhou, X. H., Gu, S. L., Arnone, J. A., Schimel, D. S., Verburg, P. S., . . . Luo, Y. Q. (2007). Divergence of reproductive phenology under climate warming. Proceedings of the National Academy of Sciences of the United States of America, 104 (1), 198-202. doi:10.1073/pnas.0605642104
Simons Andrew, M. (2009). Fluctuating natural selection accounts for the evolution of diversification bet hedging. Proceedings of the Royal Society B: Biological Sciences, 276 (1664), 1987-1992. doi:10.1098/rspb.2008.1920
Slatyer, R. A. (2016). Geographic Range and the Mountain Niche: Ecology, Adaptation and Environmental Change. (PhD), The University of Melbourne, Melbourne.
Springate, D. A., & Kover, P. X. (2014). Plant responses to elevated temperatures: a field study on phenological sensitivity and fitness responses to simulated climate warming. Global Change Biology, 20 (2), 456-465. doi:10.1111/gcb.12430
Starr, G. R. e., Oberbauer, S. F., & Pop, E. R. I. C. W. (2000). Effects of lengthened growing season and soil warming on the phenology and physiology of Polygonum bistorta. Global Change Biology, 6 (3), 357-369. doi:10.1046/j.1365-2486.2000.00316.x
Starrfelt, J., & Kokko, H. (2012). Bet‐hedging a triple trade‐off between means, variances and correlations. Biological Reviews, 87 (3), 742-755. doi:10.1111/j.1469-185X.2012.00225.x
Steadman, K. J., Ellery, A. J., Chapman, R., Moore, A., & Turner, N. C. (2004). Maturation temperature and rainfall influence seed dormancy characteristics of annual ryegrass (Lolium rigidum). Australian Journal of Agricultural Research, 55 (10), 1047-1057. doi:https://doi.org/10.1071/AR04083
Stevens, N., Seal, C. E., Archibald, S., & Bond, W. (2014). Increasing temperatures can improve seedling establishment in arid-adapted savanna trees. Oecologia, 175 (3), 1029-1040. doi:10.1007/s00442-014-2958-y
Stinson, K. A. (2004). Natural selection favors rapid reproductive phenology in Potentilla pulcherrima (Rosaceae) at opposite ends of a subalpine snowmelt gradient. American Journal of Botany, 91 (4), 531-539.
Topham, A. T., Taylor, R. E., Yan, D., Nambara, E., Johnston, I. G., & Bassel, G. W. (2017). Temperature variability is integrated by a spatially embedded decision-making center to break dormancy in <em>Arabidopsis</em> seeds. Proceedings of the National Academy of Sciences, 114 (25), 6629. doi:10.1073/pnas.1704745114
Valdés, A., Marteinsdóttir, B., & Ehrlén, J. (2019). A natural heating experiment: Phenotypic and genotypic responses of plant phenology to geothermal soil warming. Global Change Biology, 25 (3), 954-962. doi:10.1111/gcb.14525
Venable, D. L., & Brown, J. S. (1988). The selective interactions of dispersal, dormancy, and seed size as adaptations for reducing risk in variable environments. The American Naturalist, 131 (3), 360-384.
Venable, D. L., & Lawlor, L. (1980). Delayed germination and dispersal in desert annuals: Escape in space and time. Oecologia, 46 (2), 272-282. doi:10.1007/BF00540137
Vidigal, D. S., Marques, A. C. S. S., Willems, L. A. J., Buijs, G., Méndez-Vigo, B., Hilhorst, H. W. M., . . . Alonso-Blanco, C. (2016). Altitudinal and climatic associations of seed dormancy and flowering traits evidence adaptation of annual life cycle timing in Arabidopsis thaliana. Plant, Cell & Environment, 39 (8), 1737-1748. doi:10.1111/pce.12734
Visser, M. E., & Both, C. (2005). Shifts in phenology due to global climate change: the need for a yardstick. Proceedings of the Royal Society B: Biological Sciences, 272 (1581), 2561-2569. doi:10.1098/rspb.2005.3356
Wagner, I., & Simons, A. M. (2009). Intraspecific divergence in seed germination traits between high- and low-latitude populations of the arctic-alpine annual Koenigia islandica . Arctic, Antarctic, and Alpine Research, 40 (1), 233-239. doi:10.1657/1523-0430%2807-003%29%5bwagner%5d2.0.co%3b2
Walker, M. D., Wahren, C. H., Hollister, R. D., Henry, G. H. R., Ahlquist, L. E., Alatalo, J. M., . . . Wookey, P. A. (2006). Plant community responses to experimental warming across the tundra biome.Proceedings of the National Academy of Sciences, 103 (5), 1342. doi:10.1073/pnas.0503198103
Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., . . . Bairlein, F. (2002). Ecological responses to recent climate change. Nature, 416 (6879), 389-395.
Willis, C. G., Baskin, C. C., Baskin, J. M., Auld, J. R., Venable, D. L., Cavender-Bares, J., . . . The, N. G. W. G. (2014). The evolution of seed dormancy: environmental cues, evolutionary hubs, and diversification of the seed plants. New Phytologist, 203 (1), 300-309. doi:10.1111/nph.12782
Willis, C. G., Ruhfel, B., Primack, R. B., Miller-Rushing, A. J., & Davis, C. C. (2008). Phylogenetic patterns of species loss in Thoreau’s woods are driven by climate change. Proceedings of the National Academy of Sciences, 105 (44), 17029-17033. doi:10.1073/pnas.0806446105
Wolkovich, E. M., Cook, B. I., Allen, J. M., Crimmins, T. M., Betancourt, J. L., Travers, S. E., . . . Cleland, E. E. (2012). Warming experiments underpredict plant phenological responses to climate change.Nature, 485 (7399), 494-497. doi:http://www.nature.com/nature/journal/v485/n7399/abs/nature11014.html#supplementary-information