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Abstract
Simulating streamflow in ungauged catchments is a challenge for the management of surface water resources around the world, especially in dry regions. Here, we transfer parameters of two HBV and IHACRES hydrological models from gauged (donor) to ungauged catchments using three main regionalization approaches including Physical Similarity (PS), Multiple Regression (MR), Spatial Proximity (SP) and an integrated approach, which is basically an extension of PS approach through Inverse Distance Weighted (IDW) method (IDW-PS). We use a set of 21 catchments in Hamoun-Jazmourian River Basin in southeast Iran, to compare regionalization approaches. The results indicate that (1) generally, the HBV model performs slightly better than IHACRES model in calibration, verification, and regionalization, (2) the physical similarity method under 2 to 4 donor catchments and multiple regression method provide the best and least satisfactory results respectively. The IDW-PS method improves the performance of IDW method, (3) for the physical similarity, eight Catchment Descriptors (CDs) in four main groups of climate, physiographic, location, and land use perform best in prediction performance, (5) the HBV parameters related to snow and runoff components, are associated with highest and lowest uncertainties respectively. For the IHACRES, the most and least robustness parameters are plant stress threshold factor, f and the proportion of slow flow to total flow, vs respectively. 
Testing the parameter transferability using main approaches of regionalization at two distinct climate regions located in such an extensive river basin is a novelty. The results suggest that the methodology used in this study is rather suitable to simulate streamflow time series of ungauged catchments in the southeast Iran. However, further research is still needed to use this approach in other river basins of Iran.
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1. Introduction
Surface water management requires accurate information about continuous streamflow time series for river gauges, but hydrological observations because of ungauged or poorly gauged are declining and hydrological measurement are unavailable for most rivers of the world (Blöschl et al., 2013; Sivapalan et al., 2003; Mishra & Coulibaly, 2009; Razavi & Coulibaly, 2013). In addition to streamflow data, information about the hydrological regime of catchment requires climatic and physiographic characteristics of the river basin (or catchments) to determine hydrological similarity, in connection with the use of hydrologic rainfall-runoff models. The main objective for accurately determining the amount of water is for practical purposes such as designing and manufacturing flood defensive equipment. There are countless catchments and river basins are poorly gauged or completely ungauged where no streamflow data are available (Sivapalan et al., 2003; Blöschl et al., 2013). However, modeling is a tool to achieve a near realistic amount of available water in gauged and ungauged catchments.
A process by which we can estimate the streamflow time series for ungauged catchment is called regionalization. Regionalization refers to a process of transferring hydrological information (e.g. calibrated parameter sets) from gauged to ungauged or poorly gauged catchment(s) to estimate the streamflow time series (Blöschl & Sivapalan, 1995). The regionalization process may be acceptable if the catchments are similar in terms of climatically, hydrologically, topographically and ecologically characteristics, but error-prone if not (Blöschl & Sivapalan, 1995; Razavi & Coulibaly, 2013). Over the last two decades an increasing number of studies have been used hydrological models by applying different parameter transfer methods (e.g. Perrin et al., 2001; Lee et al., 2005; Vogel, 2005; Reichl et al., 2009; Vaze et al., 2010), however there is a need to improve and understand the effectiveness of different methods (Hrachowitz et al. 2013; Blöschl, 2016).
Despite many recent advances in simulating streamflow in the last decade using regionalization methods in ungauged catchments (Zhang & Chiew, 2009; Götzinger & Bárdossy, 2007) but, there is no global approach for a given region or catchment. So far, different regionalization methods have been applied around the world which have different base and so will have different performance (e.g. Post & Jakeman, 1999; Goswami et al., 2007; He et al., 2011). In the literature, four main kinds of regionalization approaches could be found that each one has its advantages and disadvantages (e.g. Zhang & Chiew, 2009). These approaches are included in this study as follows:
· Spatial proximity (SP) - Based on the implicit hypothesis of this method, two adjacent catchments behave similarly in hydrological response, because they are likely to have similar physical and climatic characteristics (Petheram et al., 2009; Chiew et al., 2008). However, nearby catchments may not behave similarly due to different physiographic and topographic characteristics (Siriwardena et al., 2006; Thornton et al., 2007; Petheram & Bristow, 2008; Kennard et al., 2010).
· Physical similarity (PS) – In this approach the parameter set(s) is transferred from most gauged (donor) catchment(s) to the ungauged (receiver) catchment in terms of CDs to simulate streamflow (McIntyre et al., 2005).
· Multiple Regression (MR) - This approach is based on developing a relationship between CDs (independent variables) and calibrated parameters (dependent variables) (Sefton & Howarth 1998; Cheng et al., 2006). This approach is the most widely used regionalization approach (Magette et al., 1976; McIntyre et al., 2005; Young, 2006).
· Integrated (coupled) method: This method combines spatial proximity and physical similarity approaches. It has shown some improvements in regionalization studies (Zhang & Chiew, 2009).
Lack of sufficient streamflow gauges and the need to estimate the streamflow time series is a serious issue that is encountered in Iran. There are only 1,194 active gauges in Iran, and with respect to the total area of the country (1,648,000 km2), there is only one active gauge per 1,380 km2 (IEM, 2016). It is worth noting that the minimum densities of streamflow gauges recommended by World Meteorological Organization (WMO) (2009) are one gauge per 1,000 km2 and 1,875 km2 for mountains and interior plains respectively. Hence, the arithmetic average of the two values (1,438 km2) determine the density of streamflow gauges in Iran is 1.04 times higher than the global standard (regardless of an area weighted average).
[bookmark: _Hlk25570451]This topic is chosen as an important issue in this study to utilize regionalization process as an alternative way for simulating streamflow and finally achieve a better understanding of the regionalization of hydrological model parameters using the available data and information in the Hamoun-Jazmourian River Basin, that has not ever carried out in such an extensive area in Iran. This study is the first study that considers the use of almost all main regionalization approaches in the conceptual rainfall-runoff models for simulating streamflow in ungauged catchments, to have an accurate prediction of streamflow time series.
There are only two PUB (Prediction in Ungauged Basin) studies in Iran across Karkheh River Basin located in the western part (at local scale). Masih et al. (2010) defined hydrological similarity based on four similarity measures include spatial proximity, drainage area, catchment properties and Flow Duration Curves (FDC) in 11 ungauged catchments. Their results showed that the physical similarity approach based on similarity in quantiles of FDC in the HBV model has the best performance. In other study Choubin et al., (2019) defined the catchment similarity based on morphological, topographic, soil type, land use, and remote sensing-based characteristics in four catchments. They concluded that physical similarity by applying SWAT model (semi-distributed) is an efficient method to estimate streamflow times series in ungauged catchments.
In this study, a work more extensive than the mentioned studies is performed, so that the regionalization of daily streamflow time series in 21 pseudo-ungauged catchments is carried out through transferring of calibrated parameters of the HBV and IHACRES models using four main regionalization approaches. By using some main approaches of parameter transfer we aim to answer two main questions:
(i) Are there any changes in the results of parameter transfer approaches?
(ii) If there are changes, are they significant or negligible? how do they change between different hydro-climate conditions?
To answer these two questions, this study compares four main approaches of hydrological model parameters transfer to achieve a guide in ungauged catchments of southeast Iran. Thus, the main objectives of this study are:
(i) Identifying the most appropriate regionalization method with focus on transferring the HBV and IHACRES parameters.
(ii) Exploring the optimal number of donor catchment(s) for all regionalization methods.
(iii) Determining the optimal set of Catchment Descriptors (CDs) for regionalization.
(iv) Investigating the parameters uncertainty through regional calibration of HBV and IHACRES models.

2. Methodology
2.1. Rainfall-runoff models and dataset
We use HBV and IHACRES rainfall-runoff models. HBV is a semi-distributed conceptual rainfall-runoff model, following the structure of the HBV (Bergström, 1992; Bergström, 1976; Lindström et al., 1997). This model has been widely used in semi-arid (Lidén & Harlin, 2000; Love et al., 2010; Masih et al., 2010; Choubin et al., 2019) and humid (Merz & Blöschl, 2004; Samuel et al., 2011; Clark et al., 2017) regions. The model concept is similar to Merz and Blöschl (2004), but the version used here is modified by Parajka & Viglione (2012). This modified version has 15 parameters (SCF, DDF, Tr, Ts, Tm, Lprat, FC, BETA, K0, K1, K2, lsuz, Cperc, bmax, Croute) and four routines (soil, runoff, snow, and routing) (Table 5). The IHACRES model is developed in Australian catchments (Jakeman et al., 1990; Jakeman & Hornberger, 1993). The Catchment Moisture deficit (CMD) version (using the linear transfer function), that has not yet been judged on its general performance in a particular climate, use in this study (Croke & Jakeman, 2004). This version has six parameters (d, e, f, τq, νs, τs) (Table 6). 
Two commonly used efficiency coefficients consider in this study: (1) Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliff, 1970) and (2) Kling-Gupta Efficiency (KGE) (Gupta et al., 2009). To assess the performance of regionalization methods, we use the leave-one-out cross-validation approach (Leclerc & Ouarda, 2007). To optimize the objective function (NSE), we use Differential Evolution optimization algorithm (DEoptim), as described by Mullen et al. (2011).
We select 21 unregulated catchments in two climates across two provinces of Iran. These catchments have not been studied in any comprehensive study using the HBV and IHACRES models. The dataset used in this study includes precipitation, evaporation, temperature and streamflow time series, are obtained from the Iran Energy Ministry (IEM) and Iran Meteorological Organization (IMO). The time-span for daily dataset is selected from water year (WY) 2004 to 2018 (i.e. September 21, 2004 to September 21, 2018) (14 years). A swapped analysis (Klemeš, 1986; Samuel et al., 2011) is applied to calibrate the HBV and IHACRES models. We split the timeline from WY 2004 to 2018 into the following two periods: WY 2004-2013 and WY 2010-2018 are used for calibration, as well as WY 2013-2018 and WY 2004-2010 are used for verifications. The first year in each period is used for model warm up. A detailed stepwise implementation of all processes and regionalization methods is presented in Fig. 1. 

2.2. Checking procedure of data and preparation of the precipitation data
Checking procedure of data is implemented by applying homogeneity and normality tests. The precipitation and streamflow data are carefully screened and outliers are removed by slightly smoothing their time series. The normality test showed that time series of three input data can be considered as being normally distributed. 
The Standard Normal Homogeneity Test (SNHT) (Haimberger, 2007) is demonstrated that the time series of three model inputs are homogenous and no breakpoints is observed. The missing values in the data sets are estimate based on the values from neighboring gauges using regression method. Overall, precipitation data of a gauge showed good correlation with corresponding data from the neighboring gauges (R2 > 0.91), used for infilling of the missing records. In case of temperature data this correlation is R2 > 0.89. On average, there are 6.8% and 7.2% infilled precipitation and temperature time series respectively, for all 21 study catchments.
In Hamoun-Jazmourian elevation has a strong influence on the spatial distribution of precipitation, especially in the western mountains where rain gauge densities are not in good condition (Sarhadi et al., 2012; WRI, 2016). This conclusion is in line with other mountainous regions of Iran (Masih et al., 2010, 2011). In this study, areal precipitation is considered as an input of models. The areal precipitation is obtained by using IDW and Elevation method (IDEW). The IDEW is an interpolation technique and offers also the possibility of defining elevation weighting along with the distance weighting, making it more suitable for mountainous regions like the Hamoun-Jazmourian River Basin where topographic impacts on precipitation are important. The IDEW has already proven to perform better than the other standard interpolation method for the Hamoun-Jazmourian (WRI, 2016). This technique has also been provided more suitable results for mountainous catchments Karkheh River Basin and southwestern of Iran (Modallaldoust et al., 2008; Masih et al. 2010; 2011). Daily temperature time series are generated from the IEM and IMO observations using multiple regression (MR) by applying elevation as explanatory variable. The Potential Evapotranspiration (PET) is estimated by the Hargreaves method (Hargreaves et al., 1985) using maximum, minimum, and average temperature from 73 meteorological gauges.
2.3. Regionalization approaches
Three main groups of regionalization approaches used in this study are as follows: 
(1) Spatial proximity - This approach consists of transferring parameters from neighboring catchments to the ungauged catchment (Parajka et al., 2005). Two interpolation methods in this approach are: (ii) inverse distance weighted (IDW) - In this method calibrated parameter sets of gauged catchments are transferred to ungauged catchment through IDW method (Shepard, 1968). (iii) Top Kriging (TK) - Top kriging or topological kriging, is a geostatistical method for estimating streamflow-related variables in ungauged catchments. This method combines two groups of hydrological variability. The first group consists of variables that are continuous in space such as rainfall, which are related to local runoff generation. The variability of these continuous processes in space is represented by the variogram. The second group of variables, such as runoff, is related to routing in the stream network (Skøien et al., 2006; Skøien & Blöschl, 2007). 
(2) Physical similarity – In this approach parameter sets are transferred from gauged catchment(s) to ungauged catchment in term of CDs. Catchment similarity is defined based on Euclidian distance (Kay et al., 2006, 2007). 
(3) Multiple regression - In this method one catchment is considered ungauged, then its model parameters are estimated using correlation equations constructed based on relationship between all catchment descriptors and calibrated parameters of remaining 20 catchments (gauged) (Sefton & Howarth 1998). This process is repeated for all 21 catchments in turn.
(4) IDW-PS integrated (coupled) method - This method, that is considered a separate method, is basically an extension of PS approach where the spatial distance between catchments is an added input variable through IDW method (IDW-PS) (so-called multiregionalization scheme by Chouaib et al., 2018) (Zhang & Chiew, 2009). 
All these approaches perform under two modes of spatial (transferring between same calibration periods but different sites) and spatiotemporal (transferring across different periods and different sites).

2.4. Averaging options
In this study, regionalization approaches are implemented under two averaging options to combine the information from donor catchments. 
2.4.1. Parameter Averaging
A regional set of parameters is calculated as mean of parameters from donor gauged catchments applied to ungauged catchments. The Streamflow for day j is computed as:
                                                                                                                           (1) 
where: m is the number of donor catchments and Xi is the vector of model parameters for the donor catchment i.

2.4.2. Output Averaging
A regional simulated streamflow is derived from the simulations obtained with the sets of parameters of the donor catchments. The Streamflow for day j is computed as:
                                                                                                                     (2)
where: m is the number of donor catchments and Xi is the vector of model parameters for the donor catchment i (Oudin et al., 2008). 

2.5. Catchment descriptors
To select the CDs, we consider two principles of (i) data availability and (ii) commonly used CDs in other regionalization studies. Eight CDs are considered in four categories (Table 1). Different types of land use are obtained from Iran Land Use Dataset and Iran Geographic Information System Dataset. Physiographic and geographical descriptors are calculated from Digital Elevation Model (DEM) map. Statistics of CDs are presented in Table 1. 

2.6. Evaluation of uncertainty analysis of parameter sets on regionalization results
[bookmark: _Hlk25749652]There are many sources of uncertainty in hydrological modeling. One of these sources of uncertainty is parameter uncertainty (Beven, 2001). Since parameter values are not unique, they cause uncertainty in streamflow simulations. In hydrological modeling, there may be many acceptable parameter sets that provide same results, which is termed as equifinality (Beven, 2001), but their predictions may differ when simulating streamflow (Seibert, 1997). This added uncertainty can be estimated. Thus, in this study, we investigate: (1) the parameter uncertainty by comparing the calibrated parameters from two periods and (2) its impact on the regionalization performance.

3. Study area
The Hamoun-Jazmourian River Basin is located in the southeastern part of Iran in provinces of Kerman and Sistan. Its area is about 69,375 km2. The Hamoun-Jazmourian is the one out of 30 major River Basins in Iran. Agriculture (21.8%) and rangeland (33.2%) (dominant land use type) are mainly found in this region. Other classes of land use are rocky (21.4%), seasonal wetland (4%), residential (5.6%), scattered forest lands (3.1%), waterbody (0.9%), and salt pan and desert (9.1%). The mountainous regions are located in the west, northwest and parts of the east (55.3%). Elevation ranges from 351 to 4,359 m a.s.l. The longest river in this area is the Halil River, with a total drainage area of about 4,700 km2. This river in northwestern mountainous parts of this area (Hezar and Shah mountains), is one of the vulnerable areas to flood damages (Sarhadi et al., 2012; Sarhadi, 2008). Shour, Esfand and Bampour are other major rivers in this region. 
The climate is arid in the lowlands (eastern part) and mountainous semi-arid in the uplands (western and northwestern parts). The precipitation exhibits large temporal and spatial variability. The mean annual precipitation is about 70 mm in the east and almost 290 mm in the west. The temperature also exhibits large variability, so that the minimum and maximum annual temperature is about 4 °C in the west and almost 22 °C degrees in the east. It can be said that this temperature variability between west and east is related to elevation changes. The mean annual potential evaporation recorded in long-term for this region are 1,500 mm (west) and 5,062 mm (east) (WRI, 2016).
There are only 21 active streamflow gauges in this region. All 21 gauged catchments (118.6 - 7,654 km2), located in the western (Kerman province) and eastern (Sistan province) parts of Hamoun-Jazmourian, are selected for this study. The density of 21 streamflow gauges shows a weak distribution (one gauge per 3,303 km2) in this region, that is about 2.29 times lower than the global standard provided by WMO (2009). However, removing the area of salt pan and desert (9.1%) improves the value of 2.29 to 2.08 (one gauge per 3,003 km2). The spatial distribution of the weather and streamflow gauges and location of the catchments are shown in Fig. 2. Thirteen out of 21 catchments are nested within others (about 62%) and all nested catchments are about 26% of the larger catchment’s area. 

4. Results and discussion
4.1. Calibration and verification for gauged catchments (at-site)
The median values of NSE and KGE coefficients in gauged catchments for the HBV and IHACRES models in the calibration (2005-2013 and 2011-2018) and verification (2014-2018 and 2005-2010) periods are presented in Table 2. The median values of efficiency coefficients (NSE and KGE) for calibration and verification periods show that there is a reasonable agreement between them. For both HBV and IHACRES models in calibration periods, the NSE results are somewhat reasonable for most of the catchments (0.39 to 0.83 and 0.31 to 0.81, respectively). In addition, in line with NSE, similar values shown by KGE, represents somewhat suitable performance of the model, too. In the calibration periods, the median NSE values are 0.62 and 0.63 for HBV and 0.56 and 0.58 for IHACRES. In verification periods, these values are 0.53 and 0.56 for HBV and 0.51 and 0.5 for IHACRES. As expected, during verification, both efficiency coefficients decreased compared to calibration periods. The minimum and maximum values of NSE and KGE shows the ranges in HBV model is slightly smaller than those in IHACRES model.
By comparing individual catchments, it was found that the IHACRES has better performance than the HBV for six catchments in calibration period. For all western snow-covered catchments in mountainous part of the study area, the HBV performs better than the IHACRES model. This superiority is likely due to the fact that contrary to IHACRES model, the HBV model has a snow routine in its structure. Three out of the 21 study catchments in the eastern part of the study area have poorer performance in calibration for both models. Low efficiencies for these three catchments are likely due to input data, because about 19% of their precipitation data have been constructed from neighboring rain gauges. 

4.2. The interdependence of model parameters
The interdependence of HBV and IHACRES model parameters are investigated to analyze their possible overparameterization. For HBV the lowest and highest values of correlation coefficient between calibrated parameters are -0.64 (between maximum base at low flows, bmax and snow correction factor, SCF) and 0.54 (between threshold storage state, lsuz and threshold temperature below which precipitation is snow, Ts) respectively, whereas for IHACRES these values are -0.47 (between time constant governing rate of recession of slow flow, τs and temperature to PET conversion factor, e) and 0.41 (between CMD threshold for producing flow, d and plant stress threshold factor, f). Average of r median values for HBV and IHACRES are -0.038 and 0.008, respectively. Overall, the interdependences are weak, if at all present.
4.3. Comparison of regionalization methods in two modes of spatial and spatiotemporal under the optimal number of donor catchment(s)
Tables 3 and 4 summarize the NSEs for all regionalization methods in three modes of temporal, spatial and spatiotemporal under the optimal number of donor catchment(s). As expected, the calibration and verification results outperform the regionalization results, with the highest median NSE (for PS method with four donors (PS-4)) being 0.09 to 0.13 lower than the calibration and verification results. The results of averaging option show that a suitable number of donor catchments lies between two and four (the OA option has better performance than the PA option for all methods but details not mentioned). The average of median NSE values of spatial modes for PS-4 method is about 0.12 lower than the average of median NSE values of calibration periods in the HBV model, while for IHACRES model this difference is 0.11. These same differences in the spatiotemporal modes for HBV and IHACRES models are 0.11 and 0.13 respectively. The performance decreased above four donors for the PS method, while for other methods the number of donors is different. We can see that the two models differ slightly in the results. For example, IHACRES requires three donor catchments for the PS method in the 2005-2010 period (spatiotemporal), whereas HBV requires four donor catchments to achieve the best performance. This finding shows this approach (multiple-donor catchments under OA) is a necessary option in regionalization in this area. It allows decreasing some errors and model uncertainty in streamflow simulation by smoothing simulation results with other similar catchments (Merz et al., 2009; Nester et al., 2011, 2012; Zhang et al., 2015). The optimal number of donor catchments in this study is different from the number of donor catchments in some PUB studies by Oudin et al. (2008) (four and seven donors for OA in GR4J and TOMO models respectively), Zhang and Chiew (2009) (eight to ten donors for OA), Bao et al. (2012) (five donors for IDW and IDW-PS methods), and Arsenault and Brissette (2014) (three to ten donors for regression-based approach and two to eleven for PS under OA), This difference may be caused by: (1) the number of tested catchments, (2) the hydro-climatic conditions are not similar (here is drier), (3) selected CDs are different, and (4) the regionalization methods are different. Therefore, the regionalization results presented in this paper are based on OA option from two to four donor catchments (except MR). Since the KGE efficiency coefficients behave similarly and showed a marginal difference with the NSE, we present the regionalization results only based on the NSE criterion. As seen in Tables 3 and 4, the IDW-PS and MR are chosen as the second-best and the worst methods for both models respectively, in both spatial and spatiotemporal modes. The IDW and TK show relatively weak performance and are chosen as the best and worst methods in SP approach respectively. 
To construct regression equations of MR, eight CDs (Table 1) and calibrated parameters (15 and 6 parameters for HBV and IHACRES respectively) are used for creating regression equations (Oudin et al., 2008; Wilkerson & Merwade, 2010; Bao et al., 2012). The R2 value of the regression equations between the CDs and calibrated model parameters (averages of the two calibration periods) show relatively weak relationships (at least for some cases). The highest R2 values for HBV and IHACRES are 0.51 and 0.52 respectively. These poor R2 values are consistent with other correlation results presented by Merz and Blöschl (2004), Oudin et al. (2008), McIntyre et al. (2005), Merz et al. (2006) and Parajka et al. (2005, 2007), but are contrary to the results by Clark et al. (2017), who showed the regression-based approach has a good performance in 15 subbasins in the Deerfield River Basin, in USA. Contrary to our study, Yadav et al. (2007) showed that regression-based (based on relationships between physical characteristics and dynamic response characteristics of catchments) approach in regionalization of catchment signatures in 30 UK catchments has better performance than a five parameters rainfall-runoff model and is suitable to overcome constraints in model parameters. One of the reasons for the low correlation and poor performance of MR is that CDs may not be relevant for the dominant processes in study catchments, which result in the model parameters may not be well defined. Other reasons are due to (i) high parameter uncertainty (SCF, parameter related to the limit for potential evaporation, Lprat, and threshold temperature above which melt starts, Tm for HBV and plant stress threshold factor, f for IHACRES), and (ii) the interdependence amongst some of the parameters (Section 4.2), so that even the IHACRES model with less parameters than the HBV model, does not work well, (iii) the small number of study catchments can be a reason for poor performance, (iv) the selected CDs failed to be a good estimator for the parameters of two models. This is the reason why spatial proximity is used, as it is a proxy for all these variables that are unknown for physical similarity approach. However, the relationships between calibrated parameters and CDs are more complicated than it seems and failed to represent dynamic response characteristics of the 21 study catchments. 

4.4. Uncertainty analysis
4.4.1. Uncertainty analysis of the HBV and IHACRES model parameters
The parameters uncertainty (parameter stability) of models is assessed by comparing the calibrated parameters for two calibration periods (Tables 5 and 6). We plot the calibrated parameters of the two in scatter plots (Figs. 3 and 4). Here two criteria are investigated, coefficient of determination (R2) and the fraction of catchments exhibiting differences (ΔP) in calibrated parameters for two periods less than, 5, 10 and 50% of the possible parameter ranges (Merz & Blöschl, 2004). The results show that the most uncertain parameters are SCF and Lprat, and the least uncertain parameters are K1 (storage coefficient for fast response), Tr (threshold temperature above which precipitation is rain) and FC (field capacity) for HBV model. In Seibert (1997), Uhlenbrook et al. (1999), Merz and Blöschl (2004), the most uncertain parameters were Cperc, FC, and K2 respectively, while the least uncertain ones were DDF, DDF and K1 respectively. For the IHACRES model, the most and least robustness parameters are vs (the proportion of slow flow to total flow) and f (plant stress threshold factor) respectively (Tables 5 and 6). In Guo et al. (2018) study in Lijiang River Basin (southern China) the results showed that the most uncertain parameters are d, f and τs. Therefore, it can be concluded that the degree of parameter uncertainty depends on the characteristics of study catchment in each region. It should be noted that three lowest R2 values are for three catchments with small size (mountainous catchments in western part), where due to (1) the inaccessibility of the rain gauge within them and (2) complicated conditions of karstic aquifers (WRI, 2016), as well as three lowland catchments in the eastern part due to reconstruction of precipitation and temperature data showed poorer performance compared to other catchments. The most uncertain parameter among all parameters of both models is snow correction factor, SCF (R2 = 0.2). Therefore, according to the facts about the last six catchments, the high uncertainty of SCF is likely due to the possible uncertainty of input data (precipitation and temperature). 

4.4.2 Effect of model parameter uncertainty on regionalization results and changing the normal range of parameters
In order to determine the impact of regional uncertainty of model parameters on PS (the best performance) and MR (the worst performance), the impact of 25 random parameter sets, out of the 400 parameters sets generated by DEoptim scheme for each catchment, assess on the regionalization results. Due to the calibration NSE values for each catchment are in different ranges and we could not consider the same threshold value to select these parameter sets, thus, we consider 25 random parameter sets for all catchments.
The PS method is performed using these 25 random parameter sets. The median NSEs show that there is a slight difference between the best and the worst performances in both spatial and spatiotemporal (Figs. 6 and 7). The largest difference between the best and worst performances in both spatial and spatiotemporal modes are 0.11 and 0.095 for HBV, while for IHACRES are 0.096 and 0.086. These differences for the PS method are 0.157 and 0.164 for HBV, while for IHACRES are 0.184 and 0.213, as well as for MR method are 0.162 and 0.172 for HBV, while for IHACRES are 0.181 and 0.202. The median NSEs for 25 random parameter sets for the PS are presented in Fig. 5. We can conclude that the results of IHACRES have relatively more uncertainty than those of HBV. 
To examine the effects of changing normal range of parameters on results, the normal range (upper and lower bands) of some parameters are changed for the HBV model (the best performance). First, for each calibrated parameter, 525 values are generated (21 catchments * 25 values for each catchment), then the normalized values of these 525 random parameter sets are plotted (not shown here). Some parameters with a higher uncertainty show high dispersion value ranging between 0 and 1. For example, the lowest and highest values for SCF, Lprat, and Tm are located near the lower and upper bounds of the plots (near the values of 0 and 1 in a normalized plot). Finally, to reduce the uncertainty, the normal range of the parameters with greater uncertainty (SCF, Lprat, Tm, BETA, K0, and K2) are increased for the minimum and maximum values obtained from the total 525 values for each parameter. The calibration results using new defined ranges show that despite improvements in the performance of some catchments, but no significant change was observed in the median NSE values for such a small number of catchments. The normal and new defined ranges of each parameter are presented in Table 7.

4.5. The importance of catchment descriptors in the regionalization results
We define the PS (apparent similarity by Oudin et al. 2010) on the basis of all available CDs using similarity index. Our object is to select the most relevant control(s) on spatial transfer of hydrological model parameters. Apparently similar catchments in terms of CDs are assumed to have a similar hydrological behavior (simulation in ungauged catchments) (Oudin et al., 2010). To measure the PS between all study catchments, we use the methodology applied by Kay et al. (2007), where Euclidean distances are considered for defining the similarity in PS. In this method the weights are optimized (Oudin et al. 2008, 2010; Zhang & Chiew, 2009). The distance calculated by this method is used to determine a set of catchments that are the most physically similar to each catchment considered in turn. The median NSEs for PS method when choosing 20 combinations of CDs for clustering are presented in Table 8. The results show that eight out of the ten CDs are sufficient to obtain the best performance. Due to the inadequate connection of these CDs on hydrological response of catchments, increasing the number of CDs from eight does not impact on the PS performance. We could not find the rational relationship between adding any catchment descriptor and improving performance, maybe the main reasons are: (1) the small number of study catchments and (2) less relevant CDs. Thus, the most relevant catchment descriptor is not determined, but the aridity index (AI) seems to have a higher influence on the performance of the PS method than other CDs, which reflects a stronger impact of climate characteristics than physical and geographical characteristics in catchment similarity. Therefore, catchment similarity performs with the combination of eight CDs (Table 1). Other CDs are not accessible in the Hamoun-Jazmourian (e.g. soil characteristics, lithology and geology).

4.6. Regional patterns of calibration and regionalization performance
The regional patterns of calibration and the PS and IDW (the best SP method) methods are assessed in two different hydro-climatic conditions (Table 9). According to these Table, the performance of the two models in the calibration period (averages of the two periods) is relatively better in mountainous semi-arid catchments in western part than the arid catchments in eastern part. Moreover, by decreasing the aridity index from east to the west, the performance of the PS-4 and IDW methods increased. This finding shows that regionalization results tend to become better in wetter catchments compared to drier catchments. Ten out of 13 nested catchments, located in the western part (Fig. 1), show relatively better results in the IDW method compared to the east (Table 9). Generally, eight out of 21 catchments, show better performance in the IDW compared to the PS.

4.7. Interpretation and discussion of parameter transferability and comparison with the body of literature
To better understand the results of this study, we compare our results with a comprehensive study by Parajka et al. (2013) and other PUB studies.
According to the results (Tables 3, 4 and 5), in general the HBV was found to be superior to the IHACRES in calibration, verification, and regionalization (spatial and spatiotemporal modes), but by comparing individual catchments it was found that the IHACRES has better performance than the HBV for six and five catchments in calibration and verification modes respectively.
By testing average options, we found the use of output averaging improved regionalization performance compared to PA option and produces much less uncertainty in the results. Because it reduced the impacts of poorly calibrated catchments. These results are the same for all donor-based methods. Using multiple donor catchments decreases the errors in the streamflow simulation (Arsenault & Brissette, 2014). Therefore, for PS and SP approaches, the choice of two to four donor catchments based on the trained methods under the OA option are preferred. This finding is in accordance with the finding by some PUB studies in Europe, Australia and the U.S.A (e.g. McIntyre et al., 2005; Parajka et al., 2005; Oudin et al., 2008; Patil & Stieglitz, 2012; Zhang et al., 2015; Yang et al., 2019). 
Generally, the model results in terms of performance in regionalization show that the HBV model, although displays higher uncertainties in some parameters, have a higher applicability in regionalization than the IHACRES model across Hamoun-Jazmourian River Basin. The better performance of HBV is likely due to the more significant effect of averaging option on its results and a possible high degree of covariance between HBV parameters compensate degradation effect of higher values of uncertainty of some parameters (e.g. SCF and Lprat) compared to IHACRES. 
The differences between the results of the IDW, PS and IDW-PS methods are not significant. The physical similarity approach outperforms all the spatial proximity methods (IDW and TK) for both models and modes (spatial and spatiotemporal) (the results of individual regions are presented in Section 4.6). This finding is not consistent with the results of some other studies. For instance, Zhang and Chiew (2009) in 210 Australian catchments, Merz and Blöschl (2004) and Parajka et al. (2005) in 308 catchments in Austria, Oudin et al. (2008) in 913 catchments in France, Li et al. (2014) in eight catchments in Tibetan Plateau (TP) in southern and eastern Asia, Yang et al. (2019) in 108 catchments in Norway. The 21 study catchments in this study covers a different range of areas and hydro-climatic conditions compared to those mentioned above. For instance, the 308 selected catchments in Austria, vary in size from 3 to 5,000 km2 with a median of 162 km2, for 913 French catchments vary from 10 to 9,390 km2 with a median of 148 km2, for 210 catchments in Australia varying from 51 to 2,000 km2 with a median of 333 km2, for eight catchments in TP vary from 3,761 to 49,739 km2 with a median of 12,549 km2. In contrast to them, the catchments investigated here vary from 118.6 to 7,654 km2 with a median of 379.65 km2.
The IDW method has better performance due to higher densities of meteorological gauges’ network in the western part of Hamoun-Jazmourian than the eastern part. It’s worth noting that 13 out of 21 catchments in Hamoun-Jazmourian are nested (about 62%), where mostly located in the western part. These 13 nested catchments show relatively better results in the IDW method than those in the eastern part. This finding shows that spatial proximity approach is affected by nested catchments and higher density of gauge networks. This finding is in accordance with previous results by Merz and Blöschl (2004), Parajka et al. (2005), Oudin et al. (2008), but is contrary to the findings in two Canadian PUB studies by Arsenault and Brissette (2014) (268 catchments in Quebec) and Samuel et al. (2011) (94 catchments in Ontario), who showed that for less dense network of stations the SP performs better than the PS. Similar to the IDW, the TK method indicates better performance in the western part of Hamoun-Jazmourian compared to east, but in general, its results are not satisfactory at all and is chosen as the second-worst method. Maybe the poorer performance of TK than the IDW is due to the more complex structure of it than the less complex structure of IDW method. This finding is not in consistent with the finding in a PUB study by Vormoor et al. (2011). They showed that the TK has better performance in streamflow regionalization compared to IDW and geostatistical method (ordinary kriging) for 117 Norwegian catchments.
Since the base version of IHACRES model has been developed in Australia (Jakeman et al., 1990), it is assumed to be superior to the warmer regions in this study (eastern part), but the results does not approve this hypothesis and the results show that its performance in the western part is slightly better than the east, although the CMD version (Croke & Jakeman, 2004) is used in this study. The results show the slight impact of the catchments area on the model performance in regionalization results. Overall, the performance of regionalization methods for both models increases with the catchment area but it is not significant for such a small number of catchment sample. This finding is not consistent with the PUB study by Petheram et al. (2012). They explored that there is a weak inverse correlation between catchment area and model performance for IHACRES-Classic - Sacramento multi-model ensemble (-0.31) in 105 tropical catchments in Australia.
The catchments selected in this study are drier than those in PUB studies. The minimum, maximum and median aridity index are 0.76, 2.98 and 1.55 for 210 Australian catchments, 0.23, 1.2 and 0.68 for 913 French catchments, 0.99, 0.31, and 0.61 (average) for 268 Canadian catchments respectively, whereas these values for our 21 study catchments are 1.48, 2.66 and 1.85 respectively. Overall, the performance of all regionalization methods decreases with increasing aridity, this is in line with the overall results presented by PUB studies in Parajka et al. (2013). 
The CDs used in this study are slightly different from than those in the previous PUB studies (e.g. Bárdossy, 2007, Kult et al., 2014, Singh et al., 2014, Patil & Stieglitz 2015, Yang et al., 2019, Masih et al., 2010, Choubin et al., 2019), but our eight CDs here similar to their studies, fall into four main groups of geographical location, physiographic, climatic, and land use. Thus, this difference can affect the results of PS and IDW-PS methods.
This study expanded two Iranian PUB studies (Masih et al., 2010; Choubin et al., 2019). In contrast to them, this study is conducted in 21 catchments in a wider area (69,375 km2) with wider hydro-climatic conditions and with more approaches. Here, the uncertainty of the parameters of two models are investigated, too.
Our results show that the simpler model does not perform better than the more complex one. One key difference between these two models is that HBV has an embedded snow routine, whereas IHACRES has not. This difference can be one of the reasons for the different performances of the models if snow accumulation/melt is an important process in wet/cold catchments. Therefore, this finding can be attributed to the fact that a greater number of parameters of the HBV model have a higher ability to represent the more complex conditions of the study catchments. This finding is not in line with Oudin et al. (2008), who showed that simpler models outperform the more complex models.

5. Conclusions
In this study, that is the most extensive streamflow regionalization study in Iran, we compared four main approaches including physical similarity, spatial proximity, multiple regression, and integrated method for transferring the 15 and 6 parameters of HBV and IHACRES models respectively, over 21 unregulated catchments in Hamoun-Jazmourian River Basin in southeast Iran.
The main conclusions are sixfold. First, use of conceptual rainfall-runoff models is relatively applicable for simulating streamflow in some ungauged catchments in the Hamoun-Jazmourian (at least more applicable for wetter catchments in western part). Second, the physical similarity method (choosing donor catchment(s) based on its similarity to target catchment in terms of eight catchment descriptors) under output averaging option and the MR, showed the best and worst performance among all the tested methods respectively. The integrated method (IDW-PS) performed the second-best. It improved the performance of the IDW to some extent. Third, the geographic distance plays a major role in transferring parameters. This is the main reason why spatial proximity is better in dense network of stations (wet catchments in western part) compared to drier catchments with less dense network of stations. Fourth, the regionalization results showed that using a single donor catchment result in more errors than multiple donors. This finding showed that the donor catchments and their numbers, have important role in regionalization performance. Fifth, some uncertainties are observed in the performance of regionalization results, that can be attributed to some extent to the uncertainty of model parameters. Sixth, in humid and cold mountainous catchments (western part), the regionalization performance tends to be better than in dry catchments (eastern part), as the performance of all methods increases with decreasing aridity.
Poor performance in some catchments could be due to (1) low quality of input data for the calibration period(s) and (2) lack of adequate measuring gauges (lack of precipitation gauge within some catchments). It is advised that the future regionalization studies in Iran focus on: (1) more catchments with more diverse hydro-climatic regions to get more comprehensive and more precise results in streamflow regionalization and (2) assess impact of parameter reduction strategies on the regionalization results (but not easy to do).
Regarding the application of the results, it can be noted that, since the Ministry of Energy in Iran is suffering from the lack of adequate streamflow gauges, thus, the conclusion from this study provide guidelines for selecting the best methods of model parameter transfer in ungauged catchments of southeast Iran, and guide similar research to be implemented in other Iranian catchments where climatic conditions are different. However, further research is still needed to use the parameter transfer approaches in other river basins.
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Table 1 Statistics of catchment descriptors (CDs)
	Categories
	Catchment descriptors
	Label
	Minimum
	Maximum
	Average

	Physiographic
	Catchment area (km2)
	Ar
	48.65
	7654
	1173.4

	
	Mean elevation (m)
	Me
	351
	4359
	1954

	
	Mean slope (%)
	Ms
	0
	21.1
	8.61

	
	Length of mainstream (km)
	Lm
	47.9
	555.4
	165.7

	Geographical location
	Latitude of centroid point (o)
	Lat
	26.5
	29.1
	28.3

	Climatic
	Aridity Index (-)
	AI
	1.48
	2.66
	1.88

	Land use
	Rangeland area (%)
	Rang
	3.2
	83.4
	33.2

	
	Agriculture area (%)
	Agr
	3.81
	44.52
	21.8



Table 2 Median efficiency coefficients of rainfall-runoff models for gauged catchments (at-site). Numbers in parentheses are minimum and maximum values.
	Model
	Efficiency coefficient
	Calibration
	Verification (temporal)

	
	
	2005-2013
	2011-2018
	2014-2018
	2005-2010

	HBV
	NSE
	0.62
(0.39-0.81)
	0.63
(0.42-0.83)
	0.53
(0.37-0.77)
	0.56
(0.38-0.76)

	
	KGE
	0.62
(0.38-0.8)
	0.63
(0.4-0.81)
	0.53
(0.36-0.75)
	0.56
(0.37-0.75)

	IHACRES
	NSE
	0.56
(0.35-0.8)
	0.58
(0.39-0.81)
	0.51
(0.31-0.72)
	0.5
(0.33-0.73)

	
	KGE
	0.56
(0.34-0.78)
	0.59
(0.39-0.8)
	0.48
(0.3-0.7)
	0.47
(0.31-0.72)


Note: NSE in Nash Sutcliff Efficiency; KGE is Kling Gupta Efficiency.

Table 3 Calibration and regionalization results (spatial mode). Numbers in parentheses are minimum and maximum values
	Model
	Efficiency coefficient
	Calibration (2005-2013)
	Spatial

	
	
	
	PS
	IDW
	IDW-PS
	TK
	MR

	HBV
	Median NSE
	0.62
	0.49c
(0.36-0.78)
	0.41
(0.3-0.71)
	0.44c
(0.34-0.73)
	0.24
(0.19-0.64)
	0.15
(0.09-0.5)

	IHACRES
	
	0.56
	0.44c
(0.3-0.75)
	0.36
(0.24-0.67)
	0.37c
(0.27-0.7)
	0.2
(0.14-0.58)
	0.11
(0.05-0.45)

	Model
	Efficiency coefficient
	Calibration (2011-2018)
	PS
	IDW
	IDW-PS
	TK
	MR

	HBV
	Median NSE
	0.63
	0.52b
(0.38-0.79)
	0.38
(0.28-0.71)
	0.45c
(0.35-0.75)
	0.2
(0.13-0.56)
	0.14
(0.06-0.46)

	IHACRES
	
	0.58
	0.48c
(0.33-0.75)
	0.33
(0.24-0.63)
	0.4c
(0.31-0.7)
	0.19
(0.11-0.5)
	0.09
(0-0.38)


 Note: a indicates two donor-catchments; b indicates three donor-catchments; c indicated four donor-catchments. Negative values are considered zero.








Table 4 Verification and regionalization results (spatiotemporal mode). Numbers in parentheses are minimum and maximum values
	Model
	Efficiency coefficient
	Verification
(2014-2018)
	Spatiotemporal

	
	
	
	PS
	IDW
	IDW-PS
	TK
	MR

	HBV
	Median NSE
	0.53
	0.44c
(0.3-0.72)
	0.36
(0.22-0.59)
	0.31b
(0.25-0.63)
	0.18
(0.11-0.49)
	0.13
(0.05-0.37)

	IHACRES
	
	0.51
	0.38c
(0.25-0.68)
	0.3
(0.18-0.57)
	0.29c
(0.2-0.61)
	0.16
(0.07-0.4)
	0.09
(0-0.34)

	Model
	Efficiency coefficient
	Verification
(2005-2010)
	PS
	IDW
	IDW-PS
	TK
	MR

	HBV
	Median NSE
	0.56
	0.43c
(0.33-0.71)
	0.34
(0.22-0.57)
	0.42b
(0.31-0.66)
	0.15
(0.09-0.37)
	0.17
(0.04-0.37)

	IHACRES
	
	0.5
	0.37b
(0.29-0.68)
	0.25
(0.19-0.52)
	0.37c
(0.26-0.61)
	0.12
(0.03-0.4)
	0.14
(0-0.36)


Note: Description are presented in Table 3.

Table 5 Coefficient of determination (R2) and (ΔP) for HBV calibrated parameters
	HBV parameter
	Model part
	R2
	ΔP < 5%
	ΔP < 10%
	ΔP < 15%

	SCF [-]
	Snow
	0.2
	0.31
	0.6
	0.92

	DDF [mm/oC day]
	
	0.33
	0.3
	0.52
	0.9

	Tr [oC]
	
	0.7
	0.89
	0.92
	0.94

	Ts [oC]
	
	0.51
	0.62
	0.84
	0.91

	Tm [oC]
	
	0.29
	0.28
	0.46
	0.89

	Lprat [-]
	Soil
	0.21
	0.32
	0.49
	0.88

	FC [mm]
	
	0.7
	0.88
	0.91
	0.93

	BETA [-]
	
	0.39
	0.42
	0.58
	0.92

	K0 [day]
	Runoff
	0.31
	0.36
	0.61
	0.91

	K1 [day]
	
	0.75
	0.52
	0.74
	0.94

	K2 [day]
	
	0.5
	0.49
	0.62
	0.95

	lsuz [mm]
	
	0.54
	0.62
	0.84
	0.9

	Cperc [mm/day]
	
	0.69
	0.73
	0.8
	0.91

	bmax [day]
	
	0.3
	0.33
	0.54
	0.92

	Croute [d2/mm]
	Routing
	0.48
	0.48
	0.59
	0.9



Table 6 Coefficient of determination (R2) and (ΔP) for IHACRES calibrated parameters
	IHACRES parameter
	Description
	R2
	ΔP < 5%
	ΔP < 10%
	ΔP < 15%

	d [mm]
	Flow threshold
	0.37
	0.6
	0.86
	0.93

	e [-]
	Factor of temperature to PET conversion 
	0.38
	0.51
	0.67
	0.95

	f [-]
	Factor of plant stress threshold 
	0.3
	0.52
	0.71
	0.91

	τq [day]
	Time constant governing the rate of recession of quick flow
	0.36
	0.65
	0.89
	0.95

	νs [-]
	The proportion of slow flow to total flow
	0.5
	0.73
	0.81
	0.93

	τs [day]
	Time constant governing rate of recession of slow flow
	0.49
	0.69
	0.83
	0.92





Table 7 Normal and new defined parameter ranges for HBV model
	HBV parameter
	Model routine
	Normal range 
	New defined range

	
	
	Lower
	Upper
	Lower
	Upper

	SCF [-]
	Snow
	0.9
	1.5
	0.85
	1.8

	Tm [oC]
	
	-2
	2
	-2.2
	2.2

	Lprat [-]
	Soil
	0
	1
	Without change
	1.4

	BETA [-]
	
	0
	20
	Without change
	20.2

	K0 [day]
	Runoff
	0
	2
	Without change
	2.4

	K2 [day]
	
	30
	250
	28
	Without change




Table 8 Performance of the different combinations of catchment descriptors (CDs) for the physical similarity (PS) method
	Number of CDs
	Catchment descriptors
	Median NSE 

	
	
	HBV
	IHACRES

	
	
	(2005-2013)c
	(2011-2018)b
	(2005-2013)c
	(2011-2018)c

	10
	Ar, Me, Ms, Lm, Long, Lat, AI, Rang, Agr, Frst
	0.49
	0.52
	0.44
	0.48

	9
	Ar, Me, Ms, Lm, Long, Lat, AI, Rang, Agr
	0.49
	0.52
	0.44
	0.48

	8
	Ar, Me, Ms, Lm, Lat, AI, Rang, Agr
	0.49
	0.52
	0.44
	0.48

	7
	Ar, Me, Ms, Lm, Lat, AI, Rang
	0.48
	0.51
	0.43
	0.47

	6
	Ar, Ms, Lm, Lat, AI, Rang
	0.48
	0.51
	0.43
	0.47

	6
	Ar, Me, Lm, Lat, AI, Rang
	0.46
	0.5
	0.43
	0.47

	5
	Ar, Ms, Lm, Lat, AI
	0.45
	0.49
	0.42
	0.47

	5
	Ar, Me, Lm, Lat, AI
	0.45
	0.49
	0.42
	0.46

	4
	Ar, Me, Lat, AI
	0.44
	0.48
	0.42
	0.46

	4
	Ar, Me, Lm, AI
	0.44
	0.48
	0.41
	0.46

	3
	Ar, Me, AI
	0.43
	0.47
	0.41
	0.46

	3
	Ar, Ms, AI
	0.42
	0.47
	0.41
	0.45

	3
	Ar, Ms, Ms
	0.42
	0.47
	0.41
	0.45

	2
	Ar, AI
	0.41
	0.46
	0.4
	0.45

	2
	AI, Ms
	0.4
	0.46
	0.4
	0.44

	2
	AI, Me
	0.4
	0.46
	0.4
	0.44

	2
	AI
	0.39
	0.45
	0.39
	0.43

	1
	Ms
	0.38
	0.45
	0.39
	0.43

	1
	Me
	0.38
	0.45
	0.39
	0.43

	1
	Ar
	0.38
	0.45
	0.39
	0.43


Note: AI is aridity index; Ar is catchment area; Me is Mean elevation; Lm is Length of mainstream; Ms is Mean slope; Lat is latitude of centroid point; Long is longitude of centroid point; Frst is forest area; Rang is rangeland area; Agr is agriculture area; b indicates three donor-catchments; c indicates four donor-catchments. 


Table 9
Median NSE values in each type of climate region
	Hydro-climatic
type
	Province
	No. of catchments
	AI
	rc
	Calibration
	PS-4
	IDW

	
	
	
	
	
	HBV
	IHACRES
	HBV
	IHACRES
	HBV
	IHACRES

	Mountainous semi-arid (west)
	Kerman
	15
	1.57
	0.55
	0.635
	0.58
	0.512
	0.465
	0.427
	0.37

	Arid (east)
	Sistan
	6
	2.19
	0.39
	0.61
	0.552
	0.492
	0.452
	0.36
	0.305


Note: AI is Aridity index; rc is Runoff coefficient; PS is physical similarity; IDW is Inverse Distance Weighted.
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