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[bookmark: OLE_LINK26]Abstract: Heterogeneity is crucial for predication of flow and contaminant transport in subsurface formations. To characterize the heterogeneous architecture, the relationship between multimodal correlation of hydraulic conductivity (K) and plume dispersion is investigated through integration of experimental, theoretical, and numerical simulation approaches. The spatial correlation structure of K in a heterogeneous sedimentary column is investigated by analyzing the covariance components and transition probability structures. The detailed sedimentary facies data of the column ensures the accuracy of heterogeneous sediment characterization. Lagrangian-based transport models were developed to estimate solute dispersion in non-reactive tracer injection experiments. The results show that the model successively predict the solute transport when the spatial correlation structure is well-defined. Dispersivity estimated by the Lagrangian-based model slightly larger than those obtained from the measurements of tracer experiments. Further, the upscaled dispersivity that derived from transition probability is dominated determined by the cross-transition probability structure, while the contribution of auto-transition terms are quite small. The contribution of the cross-transition terms increases with the increasing contrast in mean permeability between different facies. Numerical modeling results confirm that upscaled dispersivity values well capture solute breakthrough behavior along the heterogeneous sediment column.
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1. Introduction
	The spatial variability of physical and geochemical attributes of sediments has a significant impact on flow and solute transport in subsurface by controlling the scale-dependence of parameters in flow and transport model (e.g., dispersivity, α) (Cirpka, Chiogna, Rolle, & Bellin, 2015; Dentz, & de Barros, 2015; Dentz, de Barros, Le Borgne, & Lester, 2018; Fiori et al., 2015; Libera, Henri, & de Barros, 2019; Rajaram, 1997; Ramanathan, Ritzi, & Allen-King, 2010; Soltanian, Ritzi, Huang, & Dai, 2015a; Soltanian, Sun, & Dai, 2017). Numerous laboratory- and field-scale studies have investigated the spatial and temporal scaling of dispersivity in the past three decades (Abgaze & Sharma, 2015; Disley, Gharabaghi, Mahboubi, & McBean, 2014; Kim, Kim, Yun, & Lee, 2002; Kim, Jo, Kim, & Jury, 2004; Porro, Wierenga, & Hills, 1993; Thibodeaux & Donald, 2011; Scaini, Amvrosiadi, Hissler, Pfister, & Beven, 2019). Most of these studies show that the dispersivity scale-dependency is common (Dou, Zhou, Wang, & Huang, 2018; Godoy, Zuquette, & Gómez-Hernández, 2018; Tu, Ercan, & Levent Kavvas, 2018; Vik, Bastesen, & Skauge, 2013; Zhang, Huang, & Xiang, 1994; Zheng & Wang, 2018), and a few show that there is no obvious relationship between the dispersivity and the travel distance (Sternberg, 2004; Taylor, & Howard, 1987). These works indicate that the dispersivity is on the order of cm or less using nearly-homogeneous and repacked soils in column experiments (Khan & Jury, 1990; Sternberg, Cushamn, & Greenkorn, 1996). However, dispersivities measured with large-scale field tracer tests are orders of magnitude larger than those measured in lab-scale experiments (Dong, Dai, Li, & Zhou, 2018; Jury & Sposito, 1985; Fiori, & de Barros, 2015; Mackay, Freyberg, Roberts, & Cherry, 1986; Roberts, Goltz, & Mackay, 1986). Moreover, the pre-asymptotic behavior of dispersivity was observed in above studies. 
[bookmark: OLE_LINK17][bookmark: OLE_LINK18][bookmark: OLE_LINK19][bookmark: OLE_LINK20][bookmark: OLE_LINK2]	Alongside laboratory and field experiments, theoretical models have been used to study the scale-dependence of transport parameters. These models include stochastic methods (Dagan, 1989; Dai, Wolfsberg, Lu, & Reimus, 2007b; Dai, Zhan, Soltanian, Ritzi, & Zhang, 2019; Gelhar, 1993; Lu, Wolfsberg, Dai, & Zheng, 2010; Lu & Zhang, 2002; Rubin, 1995; Rubin, 2003), multiscale asymptotic analysis (Bensoussan & Alain, 1978; Igreja, Lima, & Klein, 2017), method of moments (Brenner, 1982; Wu et al., 2011), filtering methods (Zhang, Li, Chow, Li, & Danielescu, 2012; Zhao & Liu, 2016), and continuous-time random walk (Berkowitz, Cortis, Dentz, & Scher, 2006; Dentz, Kang, & Le Borgne, 2015; Dentz, Lester, Le Borgne, & de Barros, 2016; Hakoun, Comolli, & Dentz, 2019; Noetinger et al., 2016). In this context, Lagrangian-based models are adopted to study the solute transport in heterogeneous media. Lagrangian-based models were initially developed by Dagan (1982), and have gained significant attention in the past three decades (Dai, Ritzi, Huang, Rubin, & Dominic, 2004a; Fiori & Dagan, 2000; Lu & Zhang, 2002; Rubin, Sun, Maxwell, & Bellin, 1999; Soltanian, Ritzi, Dai, Huang, & Dominic, 2015d). Their powerful feature is the ability to directly link sedimentary architecture data and the spatial bivariate correlation structure of log-permeability (Y=ln(k)) to velocity correlation structures, and thus to dispersivity (Soltanian et al., 2015a, 2017). 
	Recent work has sought to characterize the spatial correlation structure of Y in hierarchical and multiscale geological media (Dai et al., 2019; Ramanathan, Ritzi, & Huang, 2008; Ramanathan et al., 2010; Ritzi, Dai, Dominic, & Rubin, 2004; Ritzi & Soltanian, 2015; Soltanian & Ritzi, 2014; Soltanian, Ritzi, Huang, & Dai, 2015b; Soltanian et al., 2017). Dai et al. (2004a) derived dispersion coefficients for non-reactive solute transport in heterogeneous sedimentary with hierarchical organization across different scales considering a multimodal hierarchical domain. Multiscale Lagrangian-based models for reactive solute dispersion and retardation have also been developed (Deng et al., 2013; Soltanian et al. 2015b; Soltanian, Ritzi, Dai, & Huang, 2015c). These models provide a more fundamental understanding on how the hierarchical and multiscale architecture of a given aquifer control mass transport. These models were compared and validated against data from field tracer tests as well as numerical simulations (Soltanian et al. 2015a).
	Though prior studies have constructed the fundamental principles of the dispersion scaling, the verification of models against field measurements is still rare accounted for the uncertainties associated with sedimentary architecture data, concentration measurements, and mass recovery (Dai, Wolfsberg, Lu, & Deng, 2009; Soltanian, Behzadi, & de Barros, 2020). For example, the measured sedimentary data are generally obtained from limited core analysis or at locations away from the tracer tests (e.g., adjacent outcrops) (Davis, Lohmann, Phillips, Wilson, & Love, 1993; Ritzi, Huang, Ramanathan, & Allen-King, 2013; Soltanian et al., 2015a, b; Sudicky & Illman, 2011). Therefore, the spatial correlation structure built using the data may not accurately represent the heterogeneity of the tracer test site. Here, laboratory-scale tracer experiments were performed in multimodal heterogeneous media. The experiments include detailed geological data, ensuring the accuracy of heterogeneous characterizations for sedimentary structures and the measurements of corresponding solute concentrations. 
	In this paper, the Lagrangian-based model is first developed to calculate the dispersivity at different solute travel distances with probability transition. Next, the effective dispersivities are calculated by fitting the experimental data to the one-dimensional solute transport model. The relationship between the multimodal spatial correlation structure and the plume dispersion is then evaluated by comparing the results obtained from Lagrangian-based models and tracer experiments. The Lagrangian-based models are then analyzed to advance the effects of small-scale heterogeneity on solute transport. Meanwhile, the applicability of the Lagrangian models is as well as discussed for sites with highly resolved and accurate geologic data.

2. Materials and methods
2.1 Geologic data and experimental setup 
The study site is located in the west Songnen plain along the Nen River in Tsitsihar, Heilongjiang province, China (Figure 1), which consists of multiple interbedded layers of medium sand and fine sand. The thickness of Cenozoic strata can reach 203 to 246 m. The main water-bearing strata is quaternary strata with a thickness of 150 to 200 m, which is composed of medium-fine sand, coarse sand, gravelly sand, and clay. 
Sediment samples were collected at a depth of 1.5m, and divided into three types, fine sand with particle sizes of 0.1 to 0.25 mm, medium sand with particle sizes of 0.25 to 0.5 mm, and coarse sand with particle sizes of 0.5 to 1 mm. The sediments were immersed in hydrochloric acid for 24 hours to eliminate the effects of organic matter before experiments.
	Based on the sedimentary structure at field site, soil columns are randomly layered packed with three different facies, which correspond to three sediment types, fine sand, medium sand, and coarse sand (Figure 2). The length of the column is 1 m with a diameter of 6 cm. Detailed information on the heterogeneous soil column can be found in Appendix A. Figure 2 shows a schematic of the experimental apparatus. A steady flow rate was generated by a peristaltic pump. To ensure a tightly compacted soil column, the column was subsequently layered packed with an increment of 1 cm. Different facies were separated by a gauze of 200 mesh to avoid small particles passing through the pores of larger particle during the experiment. The thickness of the gauze has a negligible influence on the flow rate. Measuring electrodes were installed at 10, 20, 30, 50, 60, 70 and 100 cm from the inlet. Distilled water was slowly fed into the soil column by imposing a constant positive head at the inlet position through a Mariotte bottle to remove entrapped air. 
Before starting the tracer experiment, a stable flow velocity was established by adjusting the peristaltic pump. The flow rate at the outlet is 6 ml/min. Sodium chloride (NaCl) solution with a concentration of 330 mg/L is used as a conservative tracer. A leaching process was also conducted after tracer experiment by replacing sodium chloride solution with distilled water. Tracer experiments were repeated three times to ensure the reliability of the results. The NaCl concentrations are indirectly calculated through the electrical conductance measured by the platinum electrode embedded in the column. 

2.2 Spatial correlation structure 
	The spatial correlation structure is investigated by (1) obtaining the sedimentary structure data from the heterogeneous soil column, (2) calculating geostatistical variables (i.e., mean, variance of log permeability within each facies), (3) quantifying the transition probability between any two facies and fitting them to obtain the indicator correlation scale, (4) fitting the calculated sample auto-covariances to obtain the integral scale, and (5) formulating the global covariance to quantify the spatial bivariate correlation structure for the whole heterogeneous soil column. After yielding a group of spatial correlation variables, the Lagrangian-based model is introduced to calculate the dispersivity in heterogeneous sediments with multimodal permeability.
The indicator space function, Ii(x), is used to describe the spatial organization of facies and is defined as:
 	(1)
The global log-permeability, Y(x), can then be written as:
	(2)
where Yi(x) denotes log permeability, ln(k), at location x for i-th face. The global mean, MY, and variance, σY2, can be written as:
	(3)
	(4)
[bookmark: OLE_LINK1]where pi denotes the volume proportion of facies i, and mi and σi2 represent the mean and variance of Yi(x), respectively (Ritzi et al., 2004; Soltanian et al., 2015c; Soltanian, Ritzi, Dai, Huang, & Dominic, 2015d). When measuring the spatial continuity of facies distributions, the transition probability can represent the conditional probability by using indicator variables (Carle & Fogg, 1996; Ritzi, 2000). The transition probability tij(hɸ) in direction ɸ is given by: 
 	 (5)
	In this study, the sample transition probabilities are calculated based on indicator information from the heterogeneous soil column using T-PROGS (Carle, LaBolle, Weissmann, Van Brocklin, & Fogg, 1998). The analytical formulation for transition probabilities is derived by Dai et al. (2007a) based on two assumption: (1) the transition probability depends on volume proportions; (2) the juxtapositional tendencies between categories k and i are symmetric in the direction ɸ. Therefore, the transition probabilities can be written in the following form:
  (for i, j =)  	(6)
where δij denotes the Kronecker delta, and λI is the indicator correlation scale. Field studies have shown that the correlation structure can simply be expressed as an exponential structure (Ritzi et al., 2004; Dai, Ritzi, & Dominic, 2005; Ritzi & Soltanian, 2015). Therefore, the auto-covariance, Cii(hɸ), is regarded as an exponential function:
  (for i = ) 	(7)
where λi denotes the integral scale. A common assumption supported by Ritzi et al. (2004) is that the cross-covariances can be neglected, i.e., Cij(hɸ) = 0, ∀ i ≠ j. As a consequence, the global covariance of log permeability, CY(hɸ), can be represented as (Dai at al., 2004a; Dai, Ritzi, & Dominic, 2004b):
 	(8)
Substituting (6) with (7) into (8), the global covariance function in direction ɸ can thus be written as (Dai et al., 2004a):
 
  	(9)
Then, the global integral scale, λY, can be defined as (Dagan, 1989; Soltanian & Ritzi, 2014):
 	(10)
Substituting (9) into (10), the global integral scale can be written as:
 	(11)
By using the global integral scale, λY, the unimodal global covariance can then be modeled by a single exponential function:
 		                                               	   (12)

2.3 Lagrangian-based model
	With the following assumptions: (a) steady-state flow, (b) uniform mean velocity field, (c) variance of the log permeability is no more than unity, (d) flow domain is unbounded, (e) the permeability field is weakly stationary, and (f) the mean fluid velocity can be approximated by the mean displacement velocity of solute in the first order, dispersivities in different directions can be expressed as (Dagan, 1988; Dai et al., 2004a):
 	(13)
where  	
 	(14)
 	(15)
where , , , ,,  denotes the mean velocity, n denotes the porosity, g denotes the mean hydraulic gradient, K denotes the integral variable, λvi and λhi denotes the vertical and horizontal integral scale, respectively. The expressions of coefficients ξdi and ψdi can be found in Table 1. J0 and J1 represent the zero- and first-order Bessel functions, respectively. The unimodal longitudinal dispersivity can be expressed in terms of the global integral scale, λY and variance σY2, in following form (Soltanian et al., 2015d):
 	(16)
where . Furthermore, (13), (14) and (16) can be simplified to two dimensions for a two-dimensional velocity field. The longitudinal, ,  and transverse dispersivity  can be written as:
 	(17)
 	(18)
 	(19)

2.4 Advection-dispersion Model
The one-dimensional advection-dispersion model is used to calculated dispersivities () based on experimental data. The advection-dispersion equation can be expressed as (Freeze and Cherry, 1979):
 	(20)
where R is the retardation factor, C is solute concentration, D is the hydrodynamic dispersion coefficient, v is the pore water velocity, x is the spatial coordinate and t denotes transport time. When the initial condition is C(x, 0) = 0 for the entire study area, and the boundary conditions are C = C0 at the inlet and C = 0 at an infinite distance from the inlet, the analytical solution of advection-dispersion equation can be represented as (Lapidus and Amundson, 1952):
 	(21)
where erfc denotes the complementary error function. The hydrodynamic dispersion can be represented with dispersivity in following form (Freeze and Cherry, 1979):
 	(22)
Dispersivity () is calculated through fitting Eq. (21) to observed breakthrough curve in the experiment. The dispersivities based on the Lagrangian-based model,  and  are compared with . The breakthrough curves based on Lagrangian-based model are also presented through HYDRUS-1D, and compared with the results of tracer experiment in Section 3.

3. Result and discussion
3.1 Geostatistical analysis 
	The heterogeneous soil column consists of three mutually exclusive facies of fine, medium, and coarse sand. The distribution of the Y of each facies approximately follows a normal distribution (see Figure 3). The mean and variance of log-permeability within each facies are shown in Table 2. Here, the statistical information for each facies is assumed to be expressed as the properties of corresponding facies in the heterogeneous soil column. 

3.2 Spatial bivariate correlation structure
3.2.1 Transition probabilities
	The indicator correlation scale that calculated from the transition probabilities is 2.03 cm, and the fitting results are shown in Figure 4. Gray dots represent the transition probability samples calculated based on the indicator information from heterogeneous soil column, and solid lines represent fitted results of Eq. (6). Detailed geological data ensure sufficient transition probability samples, which has a direct impact on estimation accuracy of indicator correlation scale. Therefore, using sufficient indicator data of soil column provides a better estimation of transition probabilities and a good representation of the facies distribution structure. As see from Eq. (16), dispersivities are controlled by the indicator correlation scale. Using sensitivity analysis, Dai et al. (2004a) found that dispersivities increase non-linearly with the indicator scale. Therefore, the exact value of the indicator correlation scale is benefit to assess plume dispersion. 

3.2.2 Covariances
	The sample covariances are calculated based on the log permeability within each facies first, then the integral scale and the log permeability variances are obtained by fitting the exponential function (7) to individual sample covariances. The estimated parameters are listed in Table 3 and the fitting results are shown in Figure 5. Note that the variances of log permeability (Table 3) are similar with the corresponding statistical value (Table 2), which confirms that the accuracy of geological data. Only auto-covariances are plotted because the cross-covariance is fitted to a straight line with zero values (Ritzi et al., 2004; Dai et al., 2004b; Dai et al, 2019). The dispersivities also increases with the integral scale, but are less sensitive to the integral scale than the indicator correlation scale. 

3.2.3 Global covariance model
	The multimodal global covariance is modeled by Eq. (9) using estimated volume proportions, variances, integral scales of log permeability, and the indicator correlation scale. The first two terms of this multimodal global covariance are called the auto-term, and are weighted by auto-transition probabilities and volume proportion. Then the third term in Eq. (9) is the cross-term for representing the expected difference of log permeability across the unit boundaries. The global integral scale is simultaneously calculated with Eq. (11), where λY of the heterogeneous soil column is 2.22 cm. The unimodal global covariance is modeled with Eq. (12). The corresponding unimodal and multimodal global covariances are plotted in Figure 6. The relative contribution of auto-term and cross-term to the global covariance are also shown in Figure 6. One can see that the cross-term contribute more significantly to the global covariance than the auto-term. The covariance model (Model CY) is similar to the unimodal model with a single, global integral scale, and both of them well represent the sample covariance structure. Therefore, it indicates that the covariance model is a useful tool to obtain an upscaled integral scale, which can be used to represent the permeability spatial correlation structure using a unimodal model when there is sufficient sedimentary structure data. Moreover, the model can provide a more fundamental understanding of scale-dependence in flow and transport parameters (e.g., dispersivity).

3.3 Dispersivity
	Based on the indicator correlation scale and integral scale obtained through fitting the model functions to the transition probabilities and covariances, respectively, the multimodal dispersivity,  is modeled with Eq. (17). The unimodal dispersivity,  is modeled with Eq. (19). In addition, the dispersivities,  are also calculated through fitting experimental data (breakthrough curves) to Eq. (21). Comparison between different dispersivities are shown in Figure 7. The multimodal dispersivity () is similar to the unimodal dispersivity () with a single, upscaled integral scale, and both of them well generally predict the longitudinal dispersivity in heterogeneous sediments. The dispersivities calculated from the Lagrangian-based dispersion model are roughly 1 cm larger than those computed from experimental data. There are two possible reasons for the result: (i) the boundary of the column limits the generation of transverse dispersion, which reduces the longitudinal dispersivity; (ii) the difference of log permeability in the heterogeneous soil column is smaller than the estimated value of the statistical data, which leads to overestimation of the cross-term of dispersivity. Moreover, though the area (0-10 cm) in the model where the dispersivity increased significantly is not measured because of the large measurement interval, the dispersivity approached an asymptotic value with solute transport distance, consistent with the experiment result. 
	Similar to the global covariance, the dispersivity model (Eq. 17) consists of auto-terms (the sum of ) and cross-term (). The contribution of these terms to the dispersivity are also shown in Figure 7. Here, we clearly observe that the dispersivity is primarily controlled by the cross-term. The auto-term may even be ignored when there are high contrasts in mean permeability. As seen in Eq. (17), the auto-term is weighted by the integral scale, while the cross-terms, which dominate the dispersivity, are weighted by the indicator correlation scale. Thus, the dispersivities are less sensitive to the integral scale than to the indicator correlation scale. Additionally, the contrast of mean permeability also contributes significantly to the cross-term. The dispersivities will increase with contrasts in mean permeability.
	Breakthrough curves based on the Lagrangian-based model are presented in Figure 8. In general, the model fits well with the experimental results, which indicates that the multimodal and unimodal (upscaled) dispersivity both capture solute breakthrough behavior along the heterogeneous sediment column well. The difference between experimental and model results is mainly observed at the end of the breakthrough curves: the trailing phenomenon in the model is more obvious than in the experiment, and the difference tends to increase with solute transport distance. 
 
[bookmark: OLE_LINK21]4. Conclusions
Conservative solute transport experiments are conducted in a heterogeneous soil column comprised of fine, medium and coarse sand. The detailed measurements of physically quantifiable attributes of the column’s sedimentary facies are collected to estimate the spatial correlation structure of the soil column, which is then used to estimate non-reactive dispersivity by the Lagrangian-based model. The well-defined spatial structure and dispersivities calculated by solute transport experiment measurements provide a detailed investigation of the Lagrangian-based transport model. On the other hand, the Lagrangian-based transport model also gives more fundamental insights into what might actually control the processes of the plume dispersion.
The results indicate that the Lagrangian-based model can provide a viable explanation of plume dispersion processes observed in the conservative solute transport experiments. The pre-asymptotic behavior of the dispersivity is well captured by the model. Though, it might due to boundary effects and the bias of the log permeability, the estimated behavior of dispersivity at time infinity is not consistent with the observations of the column transport experiments. 
With an abundance of indicator data, the unimodal covariance model with upscaled parameters can represent the spatial correlation structure of the soil column. Based on these upscaled parameters, the corresponding upscaled Lagrangian-based model can provide nearly the same dispersivity estimated by the multiscale model. That is to say, the Lagrangian-based transport model provides a useful tool to obtain the upscaled dispersivity by incorporating the attributes of facies in smaller scale. However, unimodal do not provide the relative contributions of auto-term and cross-term to dispersion processes which is important to understand the solute transport processes.
Since the cross term contributes mostly to the dispersivity, while the auto-term’s influence is not significant, the plume dispersion is found mostly controlled by heterogeneity in permeability. The dispersivity become steady when the centroid of dispersion plume travels a distance beyond the correlation ranges of cross-transition probability structures. Thus, the dispersivity is less sensitive to the integral scale within the auto-term than the indicator correlation scale within the cross-term. Furthermore, the contrast of permeability in media can introduce fluctuations in velocity field, which induces dispersion. The contribution of the cross-term in dispersivity increases with increasing contrast in mean permeability between different facies. In this context, it is valuable to identify a more accurate spatial correlation structure of log permeability when it comes to study the processes of plume dispersion.

Data Availability Statement
The data used to support the findings of this study are available from the corresponding author upon request
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Tables

Table 1. Coefficients for  and .
	m
	1
	2
	3

	
	
	
	

	
	
	
	




Table 2. Mean and variance of log permeability, porosities and proportions of the facies.
	facies type
	n
	Pi
	mi
	

	Fine sand
	0.35
	0.33
	2.19
	0.02

	Medium sand
	0.34
	0.31
	3.34
	0.02

	Coarse sand
	0.33
	0.36
	4.25
	0.01




Table 3. Estimated parameters for each facies 
	Material
	k
	
	 (cm)
	 (cm)

	Fine sand
	1
	0.0218
	28
	2.03

	Medium sand
	2
	0.0213
	25
	

	Coarse sand
	3
	0.0113
	24
	






Figure legend

Figure 1. Location of the study area in Tsitsihar, northeast China.
Figure 2. Diagram of the experimental setup and the picture of heterogeneous soil column.
Figure 3. (a) Conceptual framework of heterogeneous soil column and (b) distribution of log permeability of each facies. 
Figure 4. Transition probabilities from the indicator information obtained from heterogeneous soil column: sample (gray dots) and fitted model results (solid blue lines).
Figure 5. Auto-covariances with sample (gray dots) and fitted model results (solid blue lines). (a), (b) and (c) represent the auto-covariance of fine, medium and coarse sand, respectively.
Figure 6. Global covariances with sample (gray dots) and fitted model results (solid blue lines). The contributions of cross- and auto-terms are also plotted. Unimodal covariance is the one calculated value using a single, global integral scale of 2.22 cm.
Figure 7. Dispersivities at different distances. Gray dots represent the dispersivities calculated from the experimental data. Solid blue line is the result of the Lagrangian-based model. The contribution of cross- and auto-terms are also plotted. Unimodal (upscaled) dispersivity is the one calculated value using a single, global integral scale of 2.22 cm. 
Figure 8. Breakthrough curves at different distances. (a), (b), (c), (d), (e), (f) and (g) represent breakthrough curves at 10, 20, 30, 50, 60, 70 and 100 cm. Gray dots represent the data measured from tracer experiment. Solid blue lines are the results based on the Lagrangian-based model. 



Appendix A. Layer thicknesses in the heterogeneous soil column
	Layered Depth
(cm)
	Soil type
	Layered thickness
(cm)

	0-2
	Medium Sand
	2

	2-5
	Fine Sand
	3

	5-7
	Coarse Sand
	2

	7-11
	Medium Sand
	4

	11-13
	Fine Sand
	2

	13-16
	Medium Sand
	3

	16-18
	Fine Sand
	2

	18-22
	Coarse Sand
	4

	22-25
	Fine Sand
	3

	25-27
	Medium Sand
	2

	27-31
	Coarse Sand
	4

	31-34
	Fine Sand
	3

	34-37
	Coarse Sand
	3

	37-41
	Fine Sand
	4

	41-43
	Medium Sand
	2

	43-46
	Coarse Sand
	3

	46-48
	Fine Sand
	2

	48-52
	Coarse Sand
	4

	52-55
	Medium Sand
	3

	55-57
	Coarse Sand
	2

	57-61
	Fine Sand
	4

	61-63
	Medium Sand
	2

	63-65
	Coarse Sand
	2

	65-68
	Medium Sand
	3

	68-72
	Fine Sand
	4

	72-74
	Coarse Sand
	2

	74-77
	Medium Sand
	3

	77-81
	Coarse Sand
	4

	81-85
	Fine Sand
	4

	85-88
	Coarse Sand
	3

	88-91
	Medium Sand
	3

	91-93
	Fine Sand
	2

	93-97
	Medium Sand
	4

	97-100
	Coarse Sand
	3
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