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Abstract: 

This study investigates propagation effects of CMORPH rainfall estimation errors on streamflow simulation for a headwater catchment of the Zambezi River. Model simulations (2006-2012) by the Representative Elementary Watershed (REW) framework are carried out for uncorrected and for bias corrected CMORPH product (the Climate Prediction Center Morphing technique of the National Oceanic and Atmospheric Administration, or NOAA). As a benchmark to assessments, the model is run for in-situ observed rainfall obtained from 6 stations at a daily time step. Analysis of CMORPH rainfall necessitates bias correction. A suite of performance indicators indicates that uncorrected CMORPH estimates show substantial augmentation of rainfall error to streamflow simulation mismatch whereas bias corrected estimates show attenuation of error. The ɛ-NSGAII algorithm is selected for single and multi-objective calibration to assess CMORPH error propagation to REW streamflow results. Improved hydrograph simulation is achieved by multi-objective calibration. Flow discharge simulation during the dry season shows more substantial error attenuation compared to wet season high flow discharge simulation. Further, this study shows that ratios of model based actual evapotranspiration over rainfall (ETa/R) and stream flow over rainfall (Qs/R) (runoff coefficient) at seasonal base change subject to selected uncorrected and corrected CMORPH. REW water storage (ΔS) is affected as well as calibrated model parameters. The paper provides new insights on propagation effects of satellite-based rainfall errors in stream flow modelling. 
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1. [bookmark: _Hlk24177774]Introduction
Research on propagation effects of uncertainties in in-situ observed rainfall, also known as raingauge rainfall, on streamflow simulations is shown in many Basins across the world (Bisselink et al., 2016; Mockler et al., 2016; Ndiritu and Mkhize, 2017; Sirisena et al., 2018; Shin and Kim, 2019). Studies indicate that uncertainties affect peak flows (Reichert and Schuwirth, 2012), low and high flows (Dang et al., 2017), as well as the water balance as shown in catchment modelling studies (Najmaddin et al., 2017).{Biemans, 2009 #1591} This study assesses propagation effects of satellite rainfall estimate (SRE) errors in streamflow simulation for the Kabompo Basin in Zambia. SRE errors can be systematic (also known as bias) or be random. Different from random errors, systematic error can be corrected once the bias is known (Vu et al., 2018). It is relevant to know how the systematic error propagates to manifest in streamflow characteristics as affected by the non-linear rainfall-runoff behaviour when rainfall increases (Yong et al., 2012)[15]. In contrast, random errors in rainfall can be traced to fundamental issues that relate to satellite’s sensor precision and lack of understanding of the rainfall estimation process from space. In this study, focus is on the National Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center-MORPHing rainfall product (CMORPH) (Joyce et al., 2004; Wehbe et al., 2017)[16,17]. Whereas Shanhu et al. (2016), Wehbe et al. (2017) and Gumindoga et al. (2019a) provide information on use of SRE’s for hydrological applications, aspects of error propagation to streamflow mismatch are not commonly explored.

Studies by Artan et al. (2007) and Jiang et al. (2012)[15] on SREs application in hydrologic studies discuss patterns of error propagation and [22]highlight the nonlinear error transformation process, i.e. the hydrologic models propagate relatively small error without distinctly affecting model performance, but may augment this error at higher rainfall magnitudes. [23]Nikolopoulos et al. (2012) highlights a linear transformation of rainfall volumetric error to streamflow volumetric mismatch for the steep Bacchiglione in north-eastern Italy. [24]Pan et al. (2010) evaluated the performance of CMORPH as forcing input for the Variable Infiltration Capacity (VIC) model in the US. They found that satellite rainfall errors cause mismatches in VIC simulated streamflow volume. [25]Maggioni et al. (2013) used a stochastic ensemble-based satellite rainfall error model (SREM2D) to improve stream flow predictions in the Tar-Pamlico Basin using CMORPH. They showed that the rainfall error doubled to runoff mismatch in Basins of different sizes ranging from 500 - 5000 km2. A study on the same basins by Vergara et al. (2014)[26] showed significant errors in the CMORPH rainfall fields, which propagated to streamflow volume and peak simulation mismatch with augmented bias. Similarly, [22]Artan et al. (2007) demonstrated the use of NOAA Climate Prediction Center (CPC) satellite rainfall product in the Mekong River’s Nam Ou and Se Done Basins using the Geospatial Stream Flow Model (GeoSFM). Their results show that in the Se Done Basin, a slight rainfall bias augments into simulated streamflow mismatch. [21]Over the Eastern Italian Alps catchment, a higher degree of linearity in error propagation is associated with high rainfall compared to low rainfall (Mei et al., 2016).  

Studies also show that the effects of error propagation reduce when bias corrected SREs replace uncorrected counterparts. Habib et al. (2014a)[29] report on an application of bias corrected CMORPH to the HBV rainfall-runoff model in the Upper Blue Nile Basin in Ethiopia. Findings show that bias corrected CMORPH as compared to uncorrected CMORPH results in reduced rainfall error propagation effects to streamflow mismatches. Specifically, bias corrected SRE results in rainfall error attenuation to streamflow mismatch whereas uncorrected SRE results in error augmentation. The above is reported when space and temporal variability of CMORPH bias is accounted for. In many regions of the world, SREs show different performance in the rainy and off-rainy season (Gumindoga et al., 2019a). Maggioni et al. (2013) [21]investigated error propagation of corrected CMORPH in the Integrated Catchment Hydrological Model (ICHYMOD) streamflow simulations in northeast Italy and observed more substantial error attenuation in the dry season than the wet season. 

The field of error propagation and water balance closure error assessments are topics of continuing interest. [30]Sheffield et al. (2009) evaluated water balance closure over the Mississippi River Basin using SREs and reports overestimation of runoff because of large positive bias in SREs (Gao et al., 2010)[31]. [32]Pan et al. (2012) developed water balance assessments over 10 large river Basins globally using SREs. Results show that water balance closure errors of 5 - 25 % of rainfall input are attributed primarily to errors in uncorrected SREs. Evaporation which by far is the largest water loss term to catchment provides critical information on the hydrological state (Omondi, 2017). In the context of error propagation, studies on water balance closure assessment with SREs in the Zambezi Basin remain largely unknown to the authors. As such, we aim to demonstrate how error in rainfall forcing affect error in the simulated streamflow (Qs), and actual evapotranspiration (ETa). 
Rainfall-to-stream flow error propagation is commonly expressed by single performance indicators that use detection or bias indicators to show performance. In De Vos and Rientjes (2007), comparison of an artificial neural network and a conceptual rainfall–runoff model is shown with analysis that encompass the use of a suite of performance indicators and objective functions. In-situ rainfall and observed discharge serve as a benchmark to the comparisons with satellite rainfall and satellite simulated streamflow, respectively. The use of a suite of model performance indicators is suggested, since not all differences between modelled and observed hydrograph characteristics (e.g. peak flows, low flows and high flows) and the water balance can be expressed adequately by a single performance indicator. Any single performance indicator may not adequately measure the ways in which the model fails to match the important characteristics of the target data (Yapo et al., 1998){Yapo, 1998 #1594}. It would be recommended to select a suitable combination of performance indicators based on which ones provide an objective indication of the best simulated hydrograph characteristic under different hydrological circumstances (Madsen, 2000; Booij and Krol, 2010). Different literature converge on the understanding that there could be no single or ideal metric that is the best in all situations (Hyndman and Koehler, 2006a; de Vos and Rientjes, 2008a; Grünewälder, 2015). In this study we also aim contribute to improved knowledge of performance metrics and their role in enhancing understanding of hydrological modelling. The choice of best performance indicators should be dynamic depending on accuracy, consistency and reliability in hydrological modelling output.[7]
Multi-objective calibration has gained growing attention of hydrologists in recent years (Yapo et al., 1998; Seibert, 2000; Cheng et al., 2002){Cheng, 2002 #1595;Seibert, 2000 #1596;Yapo, 1998 #1594}. The method assumes that a single-objective function is not adequate to measure specific characteristics of the observed data (Yapo et al., 1998) and identifies a set of optimal solutions (model parameter sets) based on a trade-off between different objective functions (Madsen, 2000). These applications have been on knowledge-driven hydrological model approaches and thus, it is likely that aspects of error propagation can be assessed from such a calibration approach. Gupta et al. (1998) demonstrated that the multi-objective approach is practical and relatively simple to apply and can also provide useful information that improves hydrological model understanding. Multi-objective calibration allows the evaluation of simultaneous outputs from the model; therefore, in this study, the strategies are tested for error propagation with different rainfall inputs (in-situ rainfall and SREs). 
In assessing error propagation, multi-objective calibration targets multiple hydrograph characteristics (e.g. timing of the peak, recession limb and volume) (Nash and Sutcliffe, 1970; De Vos and Rientjes, 2007; de Vos and Rientjes, 2008b; Benninga et al., 2017)[33-36]. Approaches are adopted from De Vos and Rientjes (2007) and Dhamge et al. (2012)[37] where objective functions are used in the training of Artificial Neural Networks (ANNs) for streamflow forecasts. Multi-objective approaches targeting specific hydrograph characteristics is also subject of interest to water resources managers as accurate representation of hydrographs helps to determine water shortages, behaviour of flood waves and reservoir operations. 

In this study, we propose a state of the art approach for catchment modelling, which is based on developing catchment scale balance equations for mass, momentum, energy and entropy by averaging the point-scale (microscale) equations over appropriate averaging regions or control volumes (Reggiani and Majid Hassanizadeh, 2016)[38]. We also propose[16] CMORPH, a gridded precipitation product which combines the retrieval accuracy of passive MW estimates with IR measurements which are available at high temporal resolution but with low accuracy (Joyce et al., 2004). Recent publications on CMORPH applications in African Basins exist (Haile et al., 2015; Koutsouris et al., 2016; Shanhu et al., 2016; Wehbe et al., 2017; Gumindoga et al., 2019b)[3,17-19,43]. However, studies on error propagation of CMORPH in the semi-arid Zambezi Basin are limited.

In this study, we seek improved understanding of propagation effects of CMORPH rainfall errors on REW streamflow simulation at the headwater catchment of the Zambezi River. Specifically, we aim to i) assess the pattern of rainfall error propagation to streamflow mismatch ii) assess error propagation in a single-objective and multi-objective calibration framework targeting specific hydrograph characteristics iii) assess how climatic seasonality,  high and low flows are affected by error propagation and iv) evaluate water balance closure errors due to SRE error propagation. Findings are expected to provide new insights on the hydrologic implications of satellite rainfall error and serves to improve applications in the Zambezi Basin such as for rainfall-runoff modelling.

1. METHODOLOGY

2.1. Description of study area
This research is carried out in the Kabompo Basin, which is a headwater catchment of the Zambezi Basin. The Kabompo River Basin, with an area of 72,140 km2 is situated in the North-western part of Zambia between Longitudes 23˚E and 26˚E and Latitudes 11˚S and 15˚S (Figure 1).

FIGURE 1 HERE

Kabompo River originates in North-Western Province of Zambia along the watershed between the Zambezi and Congo River Basins (Siwila et al., 2013)[44]. The river length from the source to the outlet is approximately 440 km. The gauging station for Kabompo River is located at Watopa Pontoon which is near the Basin outlet and has an upstream area of 67 261 km2 (Figure 1). The predominant soil types in the study area are Ferralsols, that are deep, strongly leached clayey to loamy soils, covering almost 70 % of the study area. Arenosols that are sandy soils featuring very weak or no significant soil profile development exist and are dispersed in slightly divided plateau zones which shelter the Southern and Western part of the Basin.

The landcover of the study area consists of about 60 % closed broadleaved deciduous forest, 22 % open broadleaved deciduous forest and the remainder closed to open shrublands. A sub-tropical climate exists consisting of a wet season (October to April) and a dry season (May to September). Rainfall is mostly prejudiced by the movement of the Inter Tropical Convergence Zone (ITCZ). The mean annual precipitation ranges from 900 mm/yr in the southern part to 1500 mm/yr in the northern part of the Basin, whereas actual evapotranspiration is around 785 mm/yr.

2.2. Gauge based rainfall and runoff data
Daily meteorological data for the period 1998-2012 were obtained from the Meteorological Department of Zambia and from the University of Zambia for six stations namely: Kabompo, Kaoma, Kasempa, Mwinilunga, Solwezi and Zambezi (Figure 1). The distribution of the gauge network is sparse and uneven over the watershed. Meteorological observations (highest and lowest temperature, rainfall, relative humidity, wind speed and sunshine) on six stations in the watershed were used to estimate daily potential evapotranspiration (PET) using the Penman-Montheith method (Allen et al., 1998)[46] which were then used as input to a hydrological  model.
For the same period, daily discharge data for the study was collected for Watopa gauging station from the Department of Water Affairs and Water Resources Management Authority of Zambia. From the collected data, Watopa gauge has an average annual discharge of 216 m3 s-1 with highest and lowest discharge of 1570 m3 s-1 and 36 m3 s-1 respectively. The most extreme values in history are recorded in 1979.  

2.3. CMORPH based rainfall 
CMORPH rainfall (half hourly estimates) were obtained for the period 1998-2012 at 8 km × 8km, via the NOAA Repository: (ftp://ftp.cpc.ncep.noaa.gov/prep/CMORPH_V1.0/CRT/8km.30m/). Images are downloaded by means of the GeoNETCAST ISOD toolbox of ILWIS GIS software (http://52north.org/downloads/) and aggregated towards daily totals. CMORPH uses Infrared (IR) figures (with high spatio-resolution) from the U.S.GOES-8 and -10, the European Meteosat-5 and -7, and the Japanese GMS-5 to track the indication of rainfall patterns and interposes between microwave scans[47-49]. Detailed description of the product is found in the work by  Joyce et al. (2004)[47]. 
2.4. Comparison of CMORPH rainfall and gauged rainfall 
In this study for all pixels that overlay the study area we compare uncorrected and corrected CMORPH rainfall estimates to spatially interpolated gauged rainfall. Pixel-to-pixel comparison is performed  at 8 km x 8 km pixel scale and at daily time step between 2006-2012 as grids have equal projection (Yin et al., 2008; Tobin and Bennett, 2010; Li and Heap, 2011; Heidinger et al., 2012)[50-53]. Spatially interpolated gauged rainfall through Inverse Distance [54,55]interpolation serves to represent rainfall distributions across the area of study. Studies by Parida et al. (2017) and Bhatti et al. (2016)[54][56] employ Inverse Distance interpolating for daily rainfall from rain gauges to grid points for comparison with CMORPH estimates. 

2.5. Bias correction of CMORPH SRE
We correct bias in CMORPH SRE using six rain gauges and a linear based bias correction approach which is adopted from [57](Gumindoga et al., 2019a, 2019c), where it was found successful for the Zambezi Basin (Gumindoga et al., 2019a) and the Upper Blue Nile Basin (Bhatti et al., 2016)[29,56]. Bias correction was performed for the period 2006-2012, matching the period for error propagation assessment. The bias correction factor adopted from (Bhatti et al., 2016) and (Habib et al., 2014b) is calculated from a sequential time window that moves forward in the time domain. For a certain day, and within a 7-day sequential window, a bias correction factor is calculated only if there is a minimum of five rainy days and a minimum rainfall accumulation depth of 5 mm. When the above conditions are not met, a bias correction factor of 1 is assigned. In the Kabompo catchment, Gumindoga et al. (2019a, 2019c) noted that in order to detect the systematic error, multiple observations are needed for which a  7-day sequential window is appropriate. In the above approach, bias factors vary in time and space since bias factors change value for each station for each 7-day period.
 
A suite of 3 performance indicators [equations 1-3]: correlation coefficient (CC), Root Mean Squared Error (RMSE) as well as Mean Absolute Error (MAE) are used to assess performance of uncorrected and corrected CMORPH rainfall estimates. Assessment is based on gauge-based estimates.
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           Where:
S  = satellite rainfall estimates (mm d-1)
  = mean of the satellite rainfall estimates (mm d-1)
G  = rainfall by a rain gauge (mm d-1)
  = mean values of rainfall recorded by a rain gauge (mm d-1)
N  = number of time steps
n  =  time interval

CC which ranges from -1 (strong negative relationship) to 1 (strong positive relationship) measures how strong a relationship is between two data sets (in this case rain gauge and satellite-based estimates). RMSE and MAE are preferred to other performance indicators since they are dependent on scale of data in use, thus useful when comparing different methods of data observation (Hyndman and Koehler, 2006b). Higher values of MAE imply poor SRE performance, while zero means perfect match between SRE and rain gauge rainfall. MAE penalizes errors but is insensitive to outliers. Furthermore, MAE is based on absolute error between the rain gauge and satellite values, ensuring terms being summed are non-negative, and error accumulates rather than cancel out. RMSE in contrast avoids use of absolute errors, but represents aggregated squared residual errors between quantities compared. A smaller  RMSE indicates improved SRE performance and vice versa (Chai et al., 2014). 

2.6. REW model setup, calibration and validation
The REW model (Reggiani et al., 1998, 1999; Reggiani and Rientjes, 2005) is selected for streamflow modelling. In the REW approach, Representative Elementary Watersheds (REWs) make up a semi-distributed model domain. REWs constitutes a set of interconnected prismatic volumes that are organized around the stream channel network (Figure 2). A REW contains multiple flow zones that represent specific runoff behaviour. As such, the main hydrological characteristics of a catchment are embodied in the model approach. Detailed descriptions on REW flow algorithms are found in Reggiani et al. (1999, 2000) and Reggiani and Rientjes (2005), whereas [40,58-61]applications of the model are found in Reggiani et al. (2014), Reggiani and Majid Hassanizadeh (2016), Elgamal et al. (2017) and Gumindoga et al. (2019c)[38,62].

FIGURE 2 HERE

Based on data availability and completeness, model calibration with gauge-based estimates is for the period Oct 1998 - Sept 2002 whereas validation is for the period Oct 2002 - Sept 2006. Calibration is through trial and error where model parameters are manually adjusted to best match the observed streamflow time series. The  method is adopted from Gumindoga et al. (2019c) and is applied on the basis of expert knowledge of the REW hydrological model structure and the catchment characteristics (rainfall, discharge, events type).  Nash-Sutcliffe efficiency (NSE) (Nash and Sutcliffe, 1970) and relative volume error (RVE) (Gumindoga et al., 2011) objective functions are used as model performance indicators during calibration.  
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           Where:
O  = observed discharge (m3s-1)
  = mean of observed discharge (m3s-1)
Q  = simulated discharge (m3s-1)
  = mean of simulated discharge (m3s-1)

NSE is selected to evaluate the goodness-of-fit of the simulated hydrograph. NSE becomes 1 and RVE becomes 0 when the model estimates perfectly match with observations. Whereas  (Gupta et al., 2008) show that interpreting NSE values is not straightforward, in modelling practice, models are assumed to perform well for NSE values larger than 0.8. With respect to RVE, error values within a range of +5 % or -5 % indicate (very) good performance whereas errors within a range of +10 % or -10 % indicate satisfactory performance (Madsen, 2000; Parajka et al., 2007). NSE and RVE guide to conclude that the REW model performed satisfactorily.

2.7. [bookmark: _Hlk21381017] Propagation of rainfall estimation error 
REW model calibration is performed with interpolated in-situ observed rainfall and recalibrated with uncorrected and corrected CMORPH estimates so as to evaluate propagation effects of rainfall bias on model parameter optimization. The period 2006-2012 (outside the model calibration period) is selected. Any augmentation or attenuation of rainfall bias is referred to as error propagation. In this study, performance indicator ratios between Basin average rainfall (R) (rain gauge, corrected and uncorrected CMORPH) and runoff (Qs) are calculated to assess error propagation (CCQs/CCR, MAEQs/MAER, and RMSEQs/RMSER). The above performance indicator ratios are selected because they have different implications, for example, MAEQs/MAER < 1 implies error attenuation whereas CCQs/CCR <1 implies augmentation of error. Whereas past studies (Hong et al., 2006) employed error propagation procedures where absolute performance indicator values are interpreted, in this study, we took magnitude of the ratios and ignore the direction (negative or positive) of the systematic error so as to focus only on the magnitude of error propagation from rainfall to streamflow.

2.8.  Objective functions and hydrograph characteristics in error propagation
By use of selected model performance objective functions, we evaluate matching of peak flows, high flows, low flows, shape of rising limb, shape of recession limb and overall shape. Any change in hydrograph characteristics with respect to the benchmark simulation result that is set by use of spatially interpolated, in-situ based rainfall is referred to as error propagation. Such applications are not common in SRE studies for streamflow simulation and thus bring a novelty in the present work. Table 1 shows selected objective functions (performance indicators).

TABLE 1 HERE

Performance indicators such as the RMSE are generic as they apply to entire stream flow hydrograph time series to indicate overall fit of the hydrograph whereas additional indicators serve to assess specific parts of a stream flow hydrograph. These are: The Mean Squared Logarithmic Error (MSLE) function, Persistence Index (PI), Mean Squared Derivative Error (MSDE), The Mean Squared Logarithmic Error (MSLE), Mean Squared Percentage Error (MSPE) and Mean Absolute Percentage Error (MAPE) [Eqs. 6-11]. For example, the MSE and RMSE focuses on peak flows, since large differences are given more importance. The Mean Squared Logarithmic Error (MSLE) function (Madsen, 2000) is suitable for low flows because of the logarithmic transformation since errors in base flow simulations are expected to be small. The relative mean absolute error for low flow assessments (RMAEL) captures the degree of exact agreement between modelled and observed low flows. RMAEL varies between 0 and ∞ with a perfect fit of zero (Booij and Krol, 2010). The relative mean error with 10-year and 100-year return values (RMERV) is used to assess match of high flows (Booij and Krol, 2010). The RMERV vary between –∞ and ∞, but perform best when a value of zero is generated. At the same time, the NSE is particularly suitable for measuring the performance of high flows and is oversensitive to extreme values and outliers (Legates and McCabe Jr., 1999; Dobler et al., 2012). MSDE[63] is used in combination with residual-based functions such as the MSE and [34]is an indicator of the fit of the shape of the hydrograph. MSDE assumes continuous time records and as such is suitable for rising limbs of hydrographs. We complemented the list of performance indicators with the recession error constant (). This error as derived by Blume et al. (2010) has best performance when it is 1. The best calibrated parameter set exists for each performance indicator and each hydrograph parameter (Gumindoga et al., 2019c). 
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In the above, a single-objective calibration is undertaken manually and separately for each of the hydrograph characteristics. We note that most model calibration procedures suffer from the existence of multiple optima in the objective function response surface and interaction or correlation between subsets of fitted model parameters. In the next section we propose an automatic calibration procedure using single-objective and multi-objective calibration approaches. 

2.9. Multi-objective calibration procedures
In rainfall-runoff modelling and in previous descriptions, most approaches are single-objective calibration based, which aims at a single optimal solution (Yang et al., 2014). Optimisation via single-objective calibration renders reduces performance in other objectives. Optimality in the context of multi-objective global optimization is named after Vilfredo Pareto (Moore, 1897). A solution is classified as Pareto optimal when there is no feasible solution that will improve some objective values without degrading performance in at least one other objective (Deb et al., 2002; Kollat and Reed, 2006). This case for two solutions (Tang et al., 2006), are incommensurable, i.e. one solution simulates the peaks better and simulates the base flow poorer, while the other solution simulates the peaks poorer and simulates the base flow effectively (Reichert and Schuwirth, 2012; Yang et al., 2014; Forootan, 2018). As such Pareto multi-objective optimization objects at finding a set of optimal solutions (Pareto solutions), as an alternative of one single solution. A Pareto optimal solution has more or equal to one minor (better) objective value as compared to any other feasible solution X in the decision space. The solution performs as well or worse than X in all remaining objectives (Tang et al., 2006). A Pareto solution stands for an optimum parameter set and Pareto front means solutions are equivalent. The Pareto front (PF*) is the mapping of Pareto optimal set from the decision space to the objective space. As such, the Pareto front consists of a set of objective vectors not dominated by other objective vectors within the objective space.

Generally, a multi-objective optimization problem can be formulated as follows:
min F(X) = (f1(X),f2(X), . . . ,fi(X), . . . ,fk(X))
s.t. G(X) = (g1(X),g2(X), . . . ,gi(X), . . . ,gl(X)), 				       [12]
Where X is an n-dimensional vector and, in the Kabompo Basin, represents the model factors to be calibrated, fi(X) is the ith objective function, and gi(X) is the ith constraint function.

In this study, to obtain the Pareto solutions we adopt the NSGAII (Deb et al., 2002) algorithm which was later modified by (Yang et al., 2014). The modified algorithm, is efficient, reliable, and easy to use (Yang et al., 2014) owing to its dynamic population sizing and archiving which lead to rapid conjunction to very high-quality solutions with minimal user input. In addition, the user has the choice to control exactness requirements and hence algorithm runtime. The Epsilon Dominance (ɛ-NSGAII) is an extension of NSGAII (Deb and Sachin, 2002), a second generation of multi-objective evolution algorithms. The ɛ-dominance is engaged to enhance the coverage of non-dominated solutions along the full extent of an application’s trade-offs and to uphold the diversity of solutions. Ɛ-NSGAII is binary coded and real coded. Its strengths have been studied in Kollat and Reed (2006) and Tang et al. (2006). For more details reference is made to (Kollat and Reed, 2006; Yang et al., 2014). To scrutinise the Pareto solution and also to compare it with the solution from manual calibration, the “level diagram” proposed by Blasco et al. (2008) is also used. The procedure has two steps. For the first step, the vector of objectives (k measurement) for a Pareto point is mapped to numeral (single measurement) according to the vicinity of the theoretical optimum measured with a specific standard of objectives; and in the second step, these standard values are plotted against the corresponding values of each objective or factor. 1-standard, 2-standard and 1-standard are suggested. For comparison with single-objective calibration, the 2-standard was used. 

Note that it is crucial that principles of optimization be the same when findings of rainfall error propagation are to be compared. Otherwise the calibration approach impacts rainfall error propagation aspects. In this study, ɛ-NSGAII is applied to both single and multi-objective calibration to enable assessment of CMORPH performance. We used a rigorous statistical assessment of the performances of the single and multi-objective algorithms using a suite of performance indicators. The emphasis is put on the impact of the selected objective functions on the hydrograph shapes (e.g. recession and rising limb) and simulation errors rather than on the calibration algorithm as several studies have already investigated this aspect (Johnsen et al., 2005; Tang et al., 2006). 

We also used the Analysis of variance (ANOVA) to assess whether there is a significant difference amongst the simulated discharge for corrected and uncorrected CMORPH under single and multi-variable calibration approach. Using the Tukey HSD, Scheffe, and Bonferroni post hoc tests (Brown, 2005; Kucuk et al., 2018), the study determined which simulated discharge differ significantly.

2.10. Error propagation analysis for Kabompo seasons and flow categories
Rainfall error propagation is further assessed for wet (Nov-March) and dry (May-September) seasons. Considering the large catchment size, it is possible that the rainfall error in March and September propagates to the runoff error in April and October respectively. To avoid this scenario, we removed April (start of dry season) and October (start of wet season) in the analysis. Performance indicator ratios for Mean Squared Deviation Error (MSDE) and Mean Squared Logarithmic Error (MSLE) are defined for the dry and wet season, selected and calculated based on their application in literature for rainfall and discharge seasonality (de Vos and Rientjes, 2008b; Reusser et al., 2009). These are MSDEQs_dry/MSDER_dry, MSDEQs_wet/MSDER_wet, MSLEQs_dry/MSLER_dry and MSLEQs_wet/MSLERwet), the following subscripts are defined in the above ratios:
Qs 	= 	Streamflow
R 	= 	Rainfall
Dry	= 	Dry season
Wet	= 	Wet season

Performance indicator ratios <1 for both wet and dry season imply attenuation of error, whereas ratios >1 implies the augmentation of error from rainfall to streamflow mismatch.

Three classes are defined from 2 quartiles which indicate low: 25th percentile (25thPerc) and high: 75th percentile (75thPerc) rainfall and discharge. Additional performance indicator ratios are given for the Mean Squared Percentage Error (MSPE) and Mean Absolute Percentage Error (MAPE). These are MSPEQs_25thPerc/MSPER_25thPerc, MSPEQs_75thPerc/MSPER_75thPerc, MAPEQS_25thPerc/MAPER_25thPerc, MAPEQs_75thPerc /MAPER_75thPerc.  For both seasonality and flow categories, the implications on error propagation assessment is on the hydrological state representation in the REW model. Concepts are derived from the training of Artificial Neural Networks (ANNs) for streamflow forecasting by De Vos and Rientjes (2007) and Dhamge et al. (2012) and also based on indicators of forecast accuracy (Hyndman and Koehler, 2006b). Essentially, because of different rainfall amounts and intensities, SRE error propagation is dissimilar for dry and wet seasons. 
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Percentage errors have the advantage of being scale independent (Hyndman and Koehler, 2006b), and so are suitable for comparing error propagation in uncorrected and corrected CMORPH. MAPE which is the percentage equivalent of MAE, has a clear interpretation since percentages are easier to conceptualize. MSPE is also interpreted as a weighted version of MSE. In the seasonal analysis and flow categories, single-objective calibration is first used followed by multi-objective calibration, all by the ɛ-NSGAII approach. 

2.11. Water balance assessment ratios
Water balance assessments in this study consider the distribution of rainwater in actual evapotranspiration and streamflow, and storage of rainwater in the model. In this study, water balance closure ratios for actual evapotranspiration (ETa/R) and discharge (Qs/R) are computed from the distributed REW simulation. We assess error propagation via water balance evaluation for simulated ETa, observed stream flow and rain gauge simulated streamflow, uncorrected and bias corrected CMORPH simulated streamflow, this after (Rientjes et al., 2013; Long et al., 2014). This work attributes to water balance closure aspects by also considering error propagation for ETa and R by single-objective and multi-objective calibration. As such, we assess how ratios for rainfall and runoff totals (Sum) are affected for uncorrected and bias corrected rainfall and can thus be used to assess augmentation (SumQs/SumR > 1) or attenuation (SumETa/SumR < 1) of error. 

1. RESULTS

3.1. SRE rainfall performance
We first assess the magnitude of errors inherent in SREs. Figure 3 shows the spatial variation of correlation coefficient (CC), Root Mean Square Error (RMSE), as well as Mean Absolute Error (MAE) in the Kabompo Basin (2006-2012). All the performance indicators show improvement for bias corrected CMORPH with reference to uncorrected CMORPH. The most substantial improvements are shown for Kabompo and Mwinilunga stations, this for CC and MAE. High MAE (> 8mm/day) is shown for areas in and around Kasempa, Kaoma and Solwezi, this for uncorrected CMORPH. Corrected CMORPH shows substantial removal of error as evidenced by MAE of < 6 mm/day. RMSE shows high rainfall error levels (~ 20 mm/day) in the Mwinilunga area for uncorrected CMORPH which greatly improves across the whole Basin for bias corrected CMORPH. Results give insights into the magnitude of errors inherent in the SREs which necessitates bias correction.

FIGURE 3 HERE

3.2. Calibration and validation of REW model
The results of REW model calibration (October 1998 – September 2002) and validation (October 2002 - September 2006) through the single-objective manual calibration procedure are shown in Figure 4. 

FIGURE 4 HERE

Observed as well as simulated streamflow hydrographs indicate that the Kabombo Basin is a slow responding system by lack of rapid changes in streamflow over short periods by high rainfall. This is expected considering the large catchment size (72,140 km2). Model simulation result show some overestimation of peak flows but also some overestimation of baseflows. We note that in streamflow calibration results, volumetric overestimation does not match underestimation. For improvement we manually adjusted saturated hydraulic conductivity and soil porosity model parameter values as guided by work in (Gumindoga et al., 2019c).  There is also hydrograph mismatch in the period January to April in both the calibration and validation periods. Differences between modelled and observed high flows (> 500 m3/s) and baseflow ( < 50 m3/s) may be attributed to the small number (i.e. 6) of raingauge stations that compromise the Inverse Distance interpolation technique selected in this study. Overal, the model successfully simulates observed streamflow in both the calibration and validation period. The NSE in the calibration period is 0.74 as compared to 0.71 in the validation period. Similarly, the RVE is in the acceptable range: 5.5 % (calibration) to 6.1 % (validation). 

3.3. Pattern of error propagation
Performance indicator ratios between Basin average rainfall (rain gauge, corrected and uncorrected CMORPH) are calculated to show the attenuation or augmentation of error for CC, MAE, and RMSE. 

FIGURE 5 HERE

The CC ratios, which are all greater than 1, show attenuation of error for both uncorrected (2.23) and corrected CMORPH (1.22). The MAE and RMSE for uncorrected CMORPH, are all greater than 1 and indicate augmentation of error. For all performance indicators, results show that  uncorrected CMORPH introduces augmentation of error to streamflow mismatch. When corrected CMORPH is introduced there is reduction of error, for instance CC ratio for uncorrected CMORPH is 2.3 as compared to 1.2 for corrected CMORPH.
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3.4. Single and multi-objective calibration for improved hydrograph characteristics under error propagation
Figure 6 shows best streamflow hydrograph fits for both single-objective and multi-objective NSGAII optimization for rain gauge, uncorrected and bias corrected CMORPH. We observe from Figure 6 the best overall fit for the simulation period (2006-2012) for bias corrected CMORPH as compared to uncorrected CMORPH. Except for the baseflow, all the hydrograph characteristics show fair match between observed streamflow and the CMORPH simulated streamflow. The best model performance is indicated for rain gauge-based simulation, that is followed by bias corrected CMORPH and uncorrected CMORPH based stream flow simulation results. We note that base flows are matching whereas peak flows and rising limbs are not always matching. Performance indicator values for each rainfall type and calibration procedures are explained in detail in next sections.

FIGURE 6 HERE

Figure 6 also show that the best hydrograph simulations are for multi-objective calibration compared to single-objective calibration. The Figure also shows that overall, the best performance (in terms of reproducing observed runoff) is for raingauge data, followed by bias corrected rainfall in a multi-objective calibration approach. However, bias corrected single objective calibration slightly outperforms bias corrected multi-objective calibration for baseflow, rising limb and recession. The least performing is uncorrected rainfall in a single-objective calibration approach. The ɛ -NSGAII used for both single and multi-objective calibration is an efficient and effective algorithm attaining very close approximations of the Pareto solutions thus allowing us to assess extent of error propagation.

Figure 6 shows however that the above-mentioned differences are difficult to detect graphically. As such the Analysis of Variance (ANOVA) helps to statistically examine whether the simulated runoff for corrected and uncorrected CMORPH under single and multi-variable calibration approach are significantly different. Results of ANOVA revealed that there is a significant (p<0:05) difference in the mean values of the five runoff simulations: raingauge based simulations, uncorrected CMORPH under single-variable calibration (UC-SOC) corrected CMORPH under single-variable calibration (BC-SOC), uncorrected CMORPH under multi-variable calibration (UC-MOC), corrected CMORPH under multi-variable calibration (BC-MOC) As such we ran a post hoc test to determine which runoff simulations differ significantly. Table 2 gives a summary contingency matrix for the Tukey HSD, Scheffe, and Bonferroni methods. Bias corrected simulated runoff is significantly different from uncorrected CMORPH simulated runoff. Table 2 also reveals that multi-objective calibration simulated runoff is significantly different from single-objective calibration simulated runoff. Overall, results also reveal that raingauge rainfall resembles bias corrected satellite rainfall as well as runoff simulated in a multi-objective calibration approach. The above shows the effectiveness of the linear based bias correction scheme and also the need to adopt multi-variable calibration approaches in rainfall runoff modelling of similar catchments such as Kabompo.

TABLE 2 HERE

Indications on perfect fit by the performance indicators and acceptable values in both single objective and multi-objective calibration are given in Table 3. The combination of performance indicators (e.g. the use of NSE and RMERV for high flows) is by knowledge of the area and also based on literature (De Vos and Rientjes, 2007; de Vos and Rientjes, 2008a). Note that assessment for both single-objective and multi-objective calibration is by ɛ -NSGAII.

TABLE 3 HERE

3.4.1. Stream flow hydrograph simulation (overall shape)
Simulation results for uncorrected CMORPH show underestimation of  high peak flows, but satisfactorily reproduce low flows and recession curves (through small overestimation). There are sudden changes in the slope of the recession curve, where additional slow reduction of the discharge would be more precise. The use of bias corrected CMORPH results in good model performance but contain some inaccuracy that occurs in periods of low flows. Use of bias corrected CMORPH produces best simulated peak flows, even though more than half of the peaks were still underestimated by more than 10 %. Table 3 shows improved MSE and MSDE indicators for bias corrected CMORPH as compared to uncorrected CMORPH. Improvement is more evident in the multi-objective calibration approach than for the single variable-calibration approach. For example MSE of 0.0451 m3/s (uncorrected CMORPH) improves to 0.0144 m3/s (corrected) for single-objective calibration whereas 0.0313 m3/s (uncorrected) improves to 0.0025 m3/s (corrected) in the multi-objective calibration. Table 4 also shows Correlation Coeffcient (CC) Pareto solutions for MSE and MSDE which are all positive in the multi-objective (uncorrected CMORPH= 0.55 and Corrected CMORPH= 0.57)  and single-objective (objective (uncorrected CMORPH= 0.55 and Corrected CMORPH= 0.57)  calibration approaches. The study also show that the use of one performance indicator can be inadequate but that there is much to be gained by use of combined performance indicators.

3.4.2. Peak flows 
Bias corrected rainfall show peak flow (annual peaks for the period 2006-20012) matching with observed peak flows as compared to uncorrected CMORPH and in-situ rainfall. Uncorrected to corrected CMORPH rainfall input shows model improvement by 30 % for single-objective calibration whereas 48 % improvement is shown for multi-objective calibration. The simulations with uncorrected CMORPH rainfall generally fails to match peak flows. For uncorrected CMORPH, findings indicate that improvement of MSE results in overestimation of peak flows. The multi-objective calibration improves the MSE by penalising for overestimation of peakflows. For both multi-objective and single-variable calibration, there is a trade-off between having good overall fit and having correct timing of days, so further research is suggested for an improved modelling approach so to satisfy both objectives. (de Vos and Rientjes, 2005) Notes that, the MSE indicator may fail to show effects of a time shift in time series, while correct timing is of high importance in streamflow model performance assessments. Correlation coefficients for MSE and Difference in time to peak are high and positive (>0.50) as shown in Table 4.

3.4.3. High flows
Table 3 shows that the NSE values for both corrected and uncorrected CMORPH are in the same order of magnitude for the high flows and same applies for single-objective calibration as well as multi-objective calibration (all in range of 0.64-0.69). The multi-objective indicator has preference towards solving the water balance (high NSE) and a good agreement of high flows (low RMERV) and this results in reduced error propagation from rainfall to streamflow. The combination of NSE and RMERV gives comparably satisfactory results for multi-objective calibration. Correlation coefficients are high and negative for NSE and RMERV (−0.54) as shown in Table 4. 

3.4.4. Low flows 
The observed and simulated low flows are illustrated in Table 3. The simulated low flows are generally below the threshold of 95 m3s-1 which also coincide with the 25th percentile value. The magnitude of the low flows is more successfully captured in the bias corrected CMORPH than in the uncorrected CMORPH. The model simulation with uncorrected CMORPH was successful only for the low and not for values below 25 m3s-1. Similar explanations are in the work by (Demirel and Booij, 2009) on identification of an appropriate low flow forecast model for the Meuse River (Netherlands). The performance indicator related to low flows (RMAEL) is used in this study. In Table 3, we observe a large increase in the value of RMAEL for uncorrected CMORPH compared to corrected CMORPH, as well as improved performance for multi-objective calibration compared to single-variable calibration counterparts.  Furthermore, RMAEL seems to be more important for the calibration than MSLE, although MSLE is used as objective function in most hydrological modelling studies and low-flow related objective functions are much less incorporated. The correlation coefficient between MSLE and RMAEL is low and positive (< 0.44). 

3.4.5. Recession limb
The simulations with uncorrected CMORPH show a poor reproduction of the shape of the recession curves where the error is increasing in time and thus resulted in a worsening model performance. The simulation with bias corrected CMORPH rainfall results in improved simulation of the recession limb. This is evidenced by rk of 2.9 for uncorrected CMORPH compared to rk = 1.2 for bias corrected CMORPH in the single objective calibration. A same observation applies for multi-objective calibration as indicated by rk and MSDE. For both calibration approaches, correlation coefficients are high and negative for rk and MSDE (−0.065 to -0.39), and this indicates that along the Pareto surface, a lower MSDE will eventually result in a higher rk and vice versa.

3.4.6. Shape of rising limb
In addition to a well simulated rising limb in the multi-objective calibration approach, an improved MSE of 0.0018 is achieved as compared to a slightly higher value (0.0024) for single-objective calibration, this for bias corrected CMORPH. Similarly, an MSDE value of 7.0 e-4 m3/s is achieved for uncorrected CMORPH as compared to an improved value of 4.5 e-6 m3/s for bias corrected CMORPH for single objective calibration. The results also show that the REW model using a multi-objective calibration performs slightly better than single-objective calibration approach. Table 4 shows that the correlation coefficient between MSE and MSDE is lower for single-objective calibration compared to multi-objective calibration approach.

TABLE 4 HERE

3.4.8. Pareto distribution functions
Figures 7a-l shows Pareto distribution function, selected for low flows, high flows and overall shape, which are all curved lines. For the same forcing data and objective functions (Table 4) a range of REW model parameters are developed that all perform equally well (see (Reggiani and Schellekens, 2003; Reggiani and Rientjes, 2005; Rientjes et al., 2011) for further explanation on parameters). The ɛ -NSGAII algorithm in both single objective and multi-objective calibration is tested on their ability to quantify a 2-objective distribution (trade-off) based on RMSE and NSE problem formulation. The curved lines are the actual pareto front that shows the trade-ff between criterion 1 (x-axis) and 2 (y-axis) for example, if value of water content at saturation improves then for soil porosity it deteriorates (and vice-versa), but any combination shows an optimal solution. It is clear from all the Pareto plots (Figures 7a-l) that MOC obtains a better spread that SOC. It is also clear that corrected CMORPH runoff obtains a better curve than uncorrected CMORPH. As such bias correction techniques and multi-variable calibration approaches results in more error attenuation than when uncorrected SREs and single-variable calibration techniques are used. 

FIGURE 7 HERE


3.5. Wet and dry seasons
Table 5 shows the ratio of daily streamflow in the dry season and wet season to daily rainfall in the dry and wet season, respectively. Results calculated for MSLE and MSDE are shown for both corrected and uncorrected rainfall. Table 4 shows for both the wet and dry season that MSLE ratio (>1) and thus augmentation of error which is most pronounced for the dry season and uncorrected CMORPH. For both the dry and wet season, MSDE ratio (<1) reveals attenuation of error from rainfall to streamflow mismatch. Greater improvement is shown for corrected than for uncorrected CMORPH.

Performance indicators show that there is reduced error propagation for multi-objective calibration as compared to single-objective calibration. MSLE shows reduced augmentation of error whereas MSDE shows increased attenuation of error, a situation more evident in the multi-objective calibration than for the single-objective calibration. 

Overall results for the two performance indicator ratios (MSLE and MSDE), for single and multi-objective calibration show that error propagation is more evident in the dry season than in the wet season. 

 TABLE 5 HERE

3.6. Error propagation for flow categories
The performance indicator ratios calculated for MSDE, MSPE, MAPE and MSLE shows reduced error propagation for the bias corrected CMORPH than uncorrected CMORPH. For both the 25th and 75th percentile, MSDE and MSPE ratios show  attenuation of error (Figure 8). With respect to MSDE in the 25th percentile, there is approximately no error propagation but significant attenuation for bias corrected CMORPH. MAPE (75th percentile) shows that there is substantial augmentation of error (error ratio > 1) as compared to attenuation in the 25th percentile. MSLE shows augmentation of error for both the 25th and 75th percentile, with significant improvement for bias corrected versus uncorrected CMORPH. Overal, results show more error propagation in the 25th percentile than the 75th percentile. 

Results also show that there is more pronounced error propagation for single-objective calibration than for multi-objective calibration. Multi-objective calibration reveals more attenuation of error for MSDE and MSPE whereas for MSLE, multi-objective calibration shows more reduced augmentation of error than for single-objective calibration.

3.7. Effect of error propagation on the water balance 
Figure 9 shows percentage ratio scores for water balance coefficients in the multi-objective and single-objective calibration approach. The ratio values calculated for daily rainfall, ETa and runoff in the period 2006-2012 (error assessment period) with calibrated CMORPH shows that higher ET coefficient (ETa/R) is shown for model simulated with bias corrected CMORPH (SOC=19 %. MOC = 23 %) as compared to for uncorrected CMORPH (SOC=11 %, MOC 16 %) implying good performance for bias corrected CMORPH and multi-objective calibration. Changes in ETa/R for the same error assessment period are not equal to changes in Qs/R (Runoff coefficient) in the model indicating that there is a change in the water storage (ΔS). The results show that error propagation affected the model simulated water balance as the above-mentioned differences are more evident for uncorrected than for corrected CMORPH. Results also show that for uncorrected CMORPH, an average of 6 % of rainfall received is converted to runoff for the single-objective calibration (SOC), as compared to 9 % in the multi-objective calibration (MOC) approach. An improvement is shown for bias corrected CMORPH (SOC = 6 % and MOC = 10 %). (Omondi, 2017) Notes that the low runoff coefficient also implies most of rainwater in the catchment infiltrates into the soils causing delayed peak discharges. Figure 9 also shows that there is a substantial difference in the bias of corrected or uncorrected CMORPH in terms of the rainfall coefficient and implies CMORPH error propagation. 
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FIGURE 9 HERE

Table 6 shows a comparison of water balance components and model parameters obtained from the REW model simulation (period 2006-2012) based on rain gauge, uncorrected and bias corrected satellite rainfall estimates. Uncorrected SREs show higher estimates than bias corrected estimates signifying substantial error propagation from rainfall to stream flow for uncorrected CMORPH. Water balance closure error represents the water balance equation residual term that is expressed as percentage of precipitation, as the main model forcing. A water balance closure is achieved more for bias corrected satellite rainfall estimates (multi-objective calibration) than uncorrected CMORPH. However, for the Kabompo Basin, corrected CMORPH rainfall resulted in increase of the water balance closure error (3.5 %) compared to in-situ rainfall (2.5 %). Results reveal reduced error propagation from rainfall error to streamflow mismatch, for multi-objective calibration than single-objective calibration for all the water balance components. Performance indicator ratios show NSE and RVE much improved for corrected CMORPH than uncorrected CMORPH, this also for multi-objective than single-objective calibration. 

TABLE 6 HERE

1. Discussion
This study shows that CMORPH generated rainfall contains substantial errors as demonstrated for the Kabompo Basin. To correct for the errors, a space and time varying bias correction scheme was selected. As demonstrated in various Basins in Africa (Habib et al., 2014b; Bhatti et al., 2016; Gumindoga et al., 2019a), a substantial correction and thus better match between satellite-based rainfall and gauged rainfall has been achieved. The accuracy of the REW model when SREs are used is evaluated against a bench-mark simulation that uses in-situ rainfall as model input., Simulations on use of SRE’s target specific characteristics at the outlet of the Kabompo Basin (Watopa). To set a bench mark to assess effects of error propagation, model parameters are manually calibrated in a single-objective calibration approach. The RVE (5.5 % and 6.1% in calibration and validation period, respectively) and NSE (0.74 and 0.71 in calibration and validation period, respectively) objective function values are satisfactory and allow for error propagation analysis in this study. To investigate the possible augmentation or attenuation of the rainfall error to the hydrologic variable (streamflow) examined, we selected a number of performance indicator ratios for both corrected and uncorrected CMORPH. Findings by assessing streamflow simulation results indicate that performance indicators (CC, MAE and RMSE) for uncorrected CMORPH show more augmentation of bias from rainfall to streamflow mismatch.

This study shows that the use of a suite of performance indicator ratios is most effective to assess rainfall error propagation to stream flow mismatch. [8,27,86] Show that a model parameter set may indicate a good fit in the CC ratio, but may give a poor fit for RVE ratio and vice versa. During the model calibration process and based on RMSE and NSE problem formulation, we observed that increasing a model performance measure (e.g., the water balance closure measure) cannot be achieved without affecting a second performance measure (e.g., the peak difference). This phenomenon has triggered the advent of multi-objective automatic model calibration models [28] that explore the trade-off in the relationship among two or three competing model performance measures. 

Research on hydrological model calibration has shown that single-objective approaches might not be adequate to best simulate different aspects of a stream flow hydrograph (Forootan, 2018). Theoretically and in modelling practice, multi-objective calibration is preferred. In this study, we assess how multi-objective calibration compares to single-objective calibration. An important motivation for multi-objective model calibration in this study originates from recognizing that different characteristics of a hydrograph (e.g., peak flows, recession curves, low flows) are sensitive to different underlying physical mechanisms and, consequently, to different model parameters (Reichert and Schuwirth, 2012). Multi-objective calibration uses multiple performance measures to improve model behaviour of distinctly different responses within a watershed’s hydrograph simultaneously (e.g., high flow and low flow). REW stream flow results for the Kabompo Basin show significant model performance improvement for multi-objective calibration as compared to single-objective calibration. As observed by (Gupta et al., 1998), the multi-objective calibration method is practical, quite modest to implement, and can offer perceptions into parameter uncertainty as well as the limitations of a model. 

In this analysis, for the period 2006-2012 with raingauge and CMORPH estimates, focus is on various characteristics of a streamflow hydrograph. The following hydrograph characteristics are considered: peak, high flows, low flows, consistency of progressive flow estimates in time, shape of rising limb, shape of recession limb and overall shape. The REW model is most effective in simulating the overall hydrograph shape as the model attenuates the high and low flows errors, since these flows occur only incidentally. As such tracking error propagation for different characteristics of a hydrograph is essential for water resources management. In the Goodwin Creek experimental watershed located in north-central Mississippi, systematic error of hydrograph shapes (low, intermediate and high flows) show error attenuation from rainfall to streamflow mismatch whereas augmentation is shown for the volumetric error (Mei et al., 2016). In this instance, the use of two carefully selected objective functions seem to be sufficient for REW based runoff simulation. Examples in this study are NSE & RMERV, MSLE & RMAEL and MSE & MSDE. The use of one performance indicator can be inadequate and there is much to be gained by use of additional suite of performance indicators though objective functions always are sort of independent.

Performance indicators (MSLE and MSDE) show that satellite rainfall error propagation is more substantial in the wet season than the dry season. Overall, results also show more error propagation in the 25th percentile than the 75th percentile. The above observation is more evident for single-objective calibration than for multi-objective calibration. Our results also support earlier work in SREs application in error propagation by [22]Artan et al. (2007) and (Jiang et al. (2012) who[15] highlight a nonlinear error transformation process, i.e. small rainfall errors are augmented or attenuated in high or low rainfall magnitudes to significant or insignificant stream flow mismatches. The hydrological behaviour of Kabompo catchment and presumably other catchments in Southern Africa, with highly variable climate conditions is difficult to capture using a single model parameter set for the whole simulation period. Transposing these parameters to other time periods (such as often practiced in climate impact studies) or areas (in regionalization studies) should be carried out with caution. 

The stream flow hydrograph shows that Kabompo is a slow responding system with only gradual changes in stream flow discharges. REW model simulation results show that changes in ETa/P (ET coefficient) are not equal to changes in R/P (Runoff coefficient) and thus indicate that water storage (ΔS) is affected. The above-mentioned differences are more evident in uncorrected than corrected CMORPH. Water balance closure errors are higher in a single-objective calibration than multiple objective calibration.

1. Conclusions 
This study focuses on the headwater catchment of the Zambezi River and investigates the propagation of CMORPH rainfall errors on stream flow simulation in the Representative Elementary Watershed (REW) framework. A contribution of this work is the development of a methodology for assessing rainfall-stream flow error propagation in a single-objective and multi-objective model calibration framework. This study supports ongoing researches on SRE applications for water management. From this study, 5 conclusions are drawn:

i. We note that gauge-based data is “accurate” representation at rain gauge site. However, this data has limitation in serving as reference for ungauged areas and the above has implications in the interpretation of the findings. In data scarce areas such as Kabompo Basin, assessing accuracy of SRE’s that serve as input to a stream flow model allows researchers to obtain time series of rainfall to be used as input data for hydrological modelling studies and related analyses. 

ii. In this study, a number of model performance indicators were used to assess mismatch between measured and simulated hydrographs. Our results in Kabompo Basin support the notion that in model calibration, no single-objective function is adequate to measure the ways in which the model fails to match the important characteristics of the observed data. Therefore, the appropriate performance indicator should be carefully selected and used for model parameter calibration. In our case the best results in terms of attenuation of error were obtained with two objective functions for each calibration run.

iii. In this study, we applied multi-objective calibration and single-objective calibration to uncorrected and bias corrected CMORPH based on RMSE and NSE problem formulation. Results for the Kabompo Basin for most objective functions applied, show attenuation of error in a multi-objective calibration framework as compared to single-objective calibration framework. Our results also reveal that for certain objective functions, it is very difficult to conclude on best performance and for some objective functions it is easy to come to a conclusion. As such visual inspection from the Pareto plots, by expert knowledge combined with objective function values become confirms that MOC which obtains a better spread that SOC results in attenuation of error than augmentation. It is also clear from Pareto fronts that corrected CMORPH obtains a better curve than corrected CMORPH to result in more attenuation of error than augmentation.

iv. For seasonality and specified flow categories, we assessed the error propagation and implications on the amount and distribution of water storage in a catchment when uncorrected and bias corrected CMORPH rainfall is used in REW model. Results show that SRE error propagation is dissimilar for dry and wet seasons. Dry seasons show more augmentation of rainfall error than for wet seasons this more for uncorrected CMORPH simulated in a single-objective calibration fashion. Results show substantial attenuation of error in the 75th percentile and augmentation of error in the 25th percentile, this more evident for single objective calibration than multi-objective calibration. For the above, the benchmark is in-situ rainfall and manual calibration of REW to get improved performance of NSE and RVE performance indicators. 

v. This study shows that differences in the closure of the water balance in the Kabompo Basin can be related to aspects of error propagation for uncorrected and corrected CMORPH, as well as the ɛ-NSGAII algorithm driven single-objective and multiple objective model calibration approaches.
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