References
Ballester P., Navarrete-Gómez M., Carbonero P., Oñate-Sánchez L. &
Ferrándiz C. (2015). Leaf expansion in Arabidopsis is controlled by a
TCP-NGA regulatory module likely conserved in distantly related species.
Physiologia Plantarum, 155(1), 21-32.
Bastakis E., Hedtke B., Klermund C., Grimm B. & Schwechheimer C.
(2018). LLM-Domain B-GATA transcription factors play multifaceted toles
in controlling greening in Arabidopsis. The Plant Cell, 30, 582-599.
Bastow E.L., Bych K., Crack J.C., Le Brun N.E. & Balk J. (2017). NBP35
interacts with DRE2 in the maturation of cytosolic iron-sulphur proteins
in Arabidopsis thaliana . The Plant Journal, 89, 590-600.
Bonke M., Thitamadee S., Mähönen A.P., Hauser M.-T. & Helariutta Y.
(2003) APL regulates vascular tissue identity in Arabidopsis. Nature,
426, 181-186.
Brown D.M., Zeef L.A.H., Ellis J., Goodacre R. & Turner S.R. (2005).
Identification of novel genes in Arabidopsis involved in secondary cell
wall formation using expression profiling and reverse genetics. The
Plant Cell, 17, 2281-2295.
Camoirano A., Arce A.L., Ariel F.D., Alem A.L., Gonzalez D.H. & Viola
I.L. (2020). Class I TCP transcription factors regulate trichome
branching and cuticle development in Arabidopsis. Journal of
Experimental Botany, in press, doi:10.1093/jxb/eraa257.
Comadira G., Rasool B., Karpinska B., Morris J., Verrall S.R., Hedley
P.E., Foyer C.H. & Hancock R.D. (2015). Nitrogen deficiency in barley
(Horedeum vukgare ) seedlings induces molecular and metabolic
adjustments that trigger aphid resistance. Journal of Experimental
Botany, 66(12), 3639-3655.
Comadira G., Rasool B., Karpinska B., Márquez García B., Morris J.,
Verrall S.R., Bayer M., Hedley P.E., Hancock R.D., &
Foyer, C.H. (2015). WHIRLY1 functions in the control of responses to
N-deficiency but not aphid infestation in barley (Hordeum
vulgare ). Plant Physiology, 168, 1140-1151.
De Clercq I., Vermeirssen V., Van Aken O., Vandepoele K., Murcha M.W.,
Law S.R., Inzé D., Ng S., Ivanova A., Rombaut D., van de Cotte
B., Jaspers P., Van de Peer Y., Kangasjärvi J., Whelan J., & Van
Breusegem F. (2013). The membrane-bound NAC transcription factor ANAC013
functions in mitochondrial retrograde regulation of the oxidative stress
response in Arabidopsis. The Plant Cell, 25, 3472–3490.
Desveaux D., Subramaniam R., Després C., Mess J.N., Lévesque C., Fobert
P.R., Dangl J.L., & Brisson N (2004). A “Whirly” transcription factor
is required for salicylic acid dependent disease resistance in
Arabidopsis. Developmental Cell, 6, 229-240.
Desveaux D., Maréchal A., & Brisson N. (2005). Whirly transcription
factors: defense gene regulation and beyond. Trends in Plant Science,
10, 95-102.
Diaz M.G., Hernandez-Verdeja T., Kremnev D., Crawford T., Dubreuil C.,
& Strand A. (2018). Redox regulation of PEP activity during seedling
establishment in Arabidopsis thaliana. Nature Communications, 9, 50.
Dietz K., & Pfannschmidt T. (2011) Novel regulators in photosynthetic
redox control of plant metabolism and gene expression. Plant Physiology,
155, 1477-1485.
Foyer C.H., Karpinska B.. & Krupinska K. (2014). The functions of
WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance
responses in plants: A hypothesis. Philosophical Transactions of the
Royal Society B, 369, 20130226.
Golin, S., Negroni, Y. L., Bennewitz, B., Klösgen, R. B., Mulisch, M.,
La Rocca, N., Cantele, F., Vigani, G., Lo Schiavo, F., Krupinska, K., &
Zottini, M. (2020). WHIRLY2 plays a key role in mitochondria morphology,
dynamics, and functionality in Arabidopsis thaliana . Plants
Direct, 4, e00229. https://doi.org/10.1002/pld3.229
Grabowski E., Miao Y., Mulisch M., & Krupinska K. (2008). Single
stranded DNA-binding protein Whirly1 in barley leaves is located in
plastids and the nucleus of the same cell. Plant Physiology, 147,
1800–1804.
Grubler B., Merendino L., Twardziok S.O., Mininno M., Allorent G.,
Chevalier F., Liebers M., Blanvillain R., Mayer K.F.X., Lerbs-Mache S.,
Ravanel S., & Pfannschmidt T. (2017). Light and plastid signals
regulate different sets of genes in the albino mutant Pap7-1. Plant
Physiology, 175, 1203-1219.
Guan Z., Wang W., Yu X., Lin L., & Miao. (2018). Comparative proteomic
analysis of coregulation of CIPK14 and WHIRLY1/3 mediated pale yellowing
of leaves in Arabidopsis. International Journal of Molecular Sciences,
19, 2231.
Harrington H.A., Feliu E., Wiuf C., & Stumpf M.P.H. (2013). Cellular
compartments cause multistability and allow cells to process more
information. Biophysical Journal, 104, 1824-1831.
Hu X., Kato Y., Sumida A., Tanaka A. & Tanaka R. (2017). The
SUFBC2D complex is required for the biogenesis of all
major classes of plastid Fe-S proteins. The Plant Journal, 90, 235-248.
Huang D., Lin W., Deng B., Ren Y., & Miao Y. ( 2017).
Dual-located WHIRLY1 interacting with LHCA1 alters photochemical
activities of photosystem I and is involved in light adaptation in
Arabidopsis. International Journal of Molecular Sciences. 18, 2352.
Huang H., Ullah F., Zhou D.-X., Yi M. & Zhao Y. (2019) Mechanisms of
ROS Regulation of Plant Development and Stress Responses. Frontiers in
Plant Science 10, 800
Huang C., Yu J., Cai Q., Chen Y., Li Y., Ren Y., & Miao Y. (2020).
Triple-localized WHIRLY2 influences leaf senescence and silique
development via carbon allocation. Plant Physiology, 184, 1348–1362.
Isemer R, Mulisch M, Schäfer A, Kirchner S, Koop HU, Krupinska K (2012)
Recombinant Whirly1 translocates from transplastomic chloroplasts to the
nucleus. FEBS Lett 586: 85–88
James M., Poret M., Masclaux-Daubresse C., Marmagne A., Coquet L.,
Jouenne T., Chan P., Trouverie J. & Etienne P. (2018). SAG12, a major
cysteine protease involved in nitrogen allocation during senescence for
seed production in Arabidopsis thaliana. Plant and Cell
Physiology, 59(10), 2052-2063.
Kim J., Rudella A., Rodriguez V.R., Zybailov B. Olinares P.D.B. & van
Wijk K.J. (2009). Subunits of the plastidClpPR protease complex have
differential contributions to embryogenesis, plastid biogenesis, and
plant development in Arabidopsis . The Plant Cell, 21, 1669-1692.
Kim J.I., Murphy A.S., Baek D., Lee S.-W., Yun D.-J., Bressan R.A. &
Narasimhan M.L. (2011) YUCCA6 over-expression demonstrates auxin
function in delaying leaf senescence in Arabidopsis thaliana .
Journal of Experimental Botany, 62(11), 3981-3992.
Kindgren P., Kremnev D., Blanco N.E., de Dios Barajas Lopez J.,
Fernandez A.P., Tellgren-Roth C., Kleine T., Small I., & Strand A.
(2012) The plastid redox insensitive 2 mutant of Arabidopsis is impaired
in PEP activity and high light-dependent plastid redox signalling to the
nucleus. Plant Journal, 70, 279-291.
Kohorn B.D., Kobayashi M., Johansen S., Riese J., Huang L.-F., Koch K.,
Fu S., Dotson A. & Byers N. (2006) An Arabidopsis cell wall-associated
kinase required for invertase activity and cell growth. The Plant
Journal, 46(2), 307-316.
Klermund C., Ranftl Q.L., Diener J., Bastakis E., Richter R. &
Schwechheimer, C. (2016). LLM-Domain B-GATA transcription factors
promote stomatal development downstream of light signaling pathways inArabidopsis thaliana hypocotyls. The Plant Cell, 28, 646-660.
Krause K., Kilbienskia I., Mulischb M., Rödigerc A., Schäfera A., &
Krupinska, K. (2005). DNA-binding proteins of the Whirly family in
Arabidopsis thaliana are targeted to the organelles. FEBS Letters, 579,
3707-3712.
Krupinska K, Haussühl K, Schäfer A, van der Kooij TA, Leckband G, Lörz
H, Falk J (2002) A novel nucleus-targeted protein is expressed in barley
leaves during senescence and pathogen infection. Plant Physiology, 130,
1172–1180.
Krupinska K., Oetke S., Desel C., Mulisch M., Schäfer A., Hollmann J.,
Kumlehn J., & Hensel G. (2014). WHIRLY1 is a major organizer of
chloroplast nucleoids. Fronteirs in Plant Science, 5, 432.
Krupinska K., Braun S., Nia M.S., Schäfer A., Hensel G., & Bilger W.
(2019). The nucleoid‑associated protein WHIRLY1 is required for the
coordinate assembly of plastid and nucleus‑encoded proteins during
chloroplast development. Planta, 249, 1337–1347.
Lepage É., Zampini É., & Brisson N. (2013). Plastid genome instability
leads to reactive oxygen species production and plastid-to-nucleus
retrograde signaling in Arabidopsis. Plant Physiology, 163, 867–881.
Li X., Henry R., Yuan J., Cline K. & Hoffman N.E. (1995). A chloroplast
homologue of the signal recognition particle subunit SRP54 is involved
in the posttranslational integration of a protein into thylakoid
membranes. Proceedings of the National Academy of Sciences USA, 92,
3789-3793.
Lichtenthaler H.K. ( 1987). Chlorophylls and carotenoids -
pigments of photosynthetic biomembranes. Methods in Enzymology, 148,
350-382.
Lima A., Lima S., Wong J.H., Phillips R.S., Buchanan B.B. & Luan S.
(2006) A redox-active FKBP-type immunophilin functions in accumuylation
of the photosystem II supercomplex in Arabidiopsis thaliana .
Proceedings of the National Academy of Sciences USA, 103, 12631-12636.
Lin W, Huang D, Shi X, Deng B, Ren Y, Lin W, Miao Y (2019) H2O2 as a
feedback signal on dual-located WHIRLY1 associates with leaf senescence
in Arabidopsis. Cells 8: 1585.
Liu Z., Jia L., Wang H. & He Y. (2011) HYL1 regulates the balance
between adaxial and abaxial identity for leaf flattening via
miRNA-mediated pathways. Journal of Experimental Botany, 62(12),
4367-4381.
Luo X.-M., Lin W.-H., Zhu S., Zhu J.-Y., Sun Y., Fan X.-Y., Cheng M.,
Hao Y., Oh E., Tian M., Liu L., Zhang M., Xie Q., Chong K. & Wang Z.-Y.
(2010). Integration of light- and brassinosteroid-signaling pathways by
a GATA transcription factor in Arabidopsis . Developmental Cell,
19, 872-883.
Maréchal A., Parent J.-S., Sabar M., Véronneau-Lafortune F., Abou-Rached
C., & Brisson N. (2008). Overexpression of mtDNA-associated AtWhy2
compromises mitochondrial function.
BMC Plant
Biology, 8, 42.
Maréchal A., Parent J.S., Véronneau-Lafortune F., Joyeux A., Lang B.F.,
& Brisson N. (2009). Whirly proteins maintain plastid genome stability
in Arabidopsis. Proceedings of the National Academy of Sciences USA,
106, 14693–14698.
Marowa P., Ding A. & Kong Y. (2016). Expansins: roles in plant growth
and potential applications in crop improvement. Plant Cell Reports, 35,
949-965.
Melonek J., Mulisch M., Schmitz-Linneweber C., Grabowski E., Hensel G.,
& Krupinska K. (2010). Whirly1 in chloroplasts associates with intron
containing RNAs and rarely co-localizes with nucleoids. Planta, 232,
471–481.
Morley S.A., & Nielsen B.L. (2016). Chloroplast DNA copy number changes
during plant development in organelle DNA polymerase mutants.
Frontiers
in Plant Science, 7, 57.
Motchoulski A. & Liscum E. (1999). Arabidopsis NPH3: A NPH1
photoreceptor-Interacting protein essential for phototropism. Science,
286, 961-964.
Müller C.J., Valdés A.E., Wang G., Ramachandran P., Beste L., Uddenberg
D. & Carlsbecker A. (2016) PHABULOSA mediates an auxin signaling loop
to regulate vascular patterning in Arabidopsis. Plant Physiology, 170,
956-970.
Nagashima Y., Tsugawa S., Mochizuki A., Sasaki T., Fukuda F. & Oda Y.
(2018) A Rho-based reaction-difusion system governs cell wall patterning
in metaxylem vessels. Scientific Reports , 8, 11542.
Neuteboom L.W., Veth-Tello L.M., Cludesdale O.R., Hooykaas P.J.J. & van
der Zaal B.J. (1999). A novel subtilisin-like protease gene fromArabidopsis thaliana is expressed at sites of lateral root
emergence. DNA Research, 6(1), 13-19.
Novitskaya L., Trevanion S.J., Driscoll S., Foyer C.H. & Noctor G.
(2002). How does photorespiration modulate leaf amino acid contents? A
dual approach through modelling and metabolite analysis. Plant, Cell and
Environment, 25, 821-835.
Ohashi-Ito K. & Bergmann D.C. (2006) Arabidopsis FAMA controls
the final proliferation/
differentiation switch during stomatal development. The Plant Cell, 18,
2493-2505.
Osteryoung K.W., Stokes K.D., Rutherford S.M/, Percival A.L. & Lee W.Y.
(1998). Chloroplast division in higher plants requires members of two
functionally divergent gene families with homology to bacterialftsZ . The Plant Cell, 10, 1991-2004.
Pogson B.J., Woo N.S., Forster B., & Small I.D. (2008). Plastid
signalling to the nucleus and beyond. Trends in Plant Science, 13,
602-609.
Powikrowska M., Oetke S., Jensen P.E. & Krupinska K. (2014) Dynamic
composition, shaping and organization of plastid nucleoids. Frontiers in
Plant Science, 5, 424.
Prikryl J., Watkins K.P., Friso G., van Wijk K.J., & Barkan A. (2008).
A member of the Whirly family is a multifunctional RNA- and DNA-binding
protein that is essential for chloroplast biogenesis. Nucleic Acids
Research, 36, 5152–5165.
Richter R., Behringer C., Zourelidou M. & Schwechheimer C. (2013).
Convergence of auxin and gibberellin signaling on the regulation of the
GATA transcription factors GNC and GNL in Arabidopsis thaliana .
Proceedings of the National Academy of Sciences USA, 110, 13192-13197.
Roland M.m Przybyla-Toscano J., Vignols F., Berger N., Azam T., Christ
L., Santoni V., Wu H.-C., Dhalleine T., Johnson M.K., Dubos C.,
Couturier J. & Rouhier N. (2020). The plastidial Arabidopsis
thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to
specific client proteins. The Journal of Biological Chemistry, 295,
1727-1742.
Rose J.K.C., Braam J., Fry S.C. & Nishitani K. (2002) The XTH family of
enzymes involved in xyloglucan endotransglucosylation and
endohydrolysis: Current perspectives and a new unifying nomenclature.
Plant and Cell Physiology, 43(12), 1421-1435.
Rubio M.C., Calco-Begueria L., Díaz-Mendoza M., Elhiti M., Moore M.,
Matamoros M.A., James E.K., Díaz I., Pérez-Rontomé C., Villar I.,
Sein-Echaluce V.C., Hebelstrup K.H., Dietz K.-J. & Becana M. (2019).
Phytoglobins in the nuclei, cytoplasm and chloroplasts modulate nitric
oxide signaling and interact with abscisic acid. The Plant Journal, 100,
38-54.
Safrany J., Haasz V., Máté Z., Ciolfi A., Feher B., Oravecz A., Stec A.,
Dallmann G., Morelli G., Ulm R., & Nagy F. (2008). Identification of a
novel cis-regulatory element for UV-B-induced transcription in
Arabidopsis. The Plant Journal, 54, 402–414.
Schröder F., Lisso J., Lange P. & Müssig C. (2009) The extracellular
EXO protein mediates cell expansion in Arabidopsis leaves. BMC Plant
Biology, 9, 20.
Schuetz M., Fidanza M. & Mattsson J. (2019). Identification of auxin
response factor-encoding genes expressed in distinct phases of leaf vein
development and with overlapping functions in leaf formation. Plants, 8,
242.
Selinski J. & Scheibe R. (2019). Malate valves: old shuttles with new
perspectives. Plant Biology, 21 (Suppl 1), 21-30.
Shapiguzov A., Vainonen J.P., Hunter K., Tossavainen H., Tiwari A.,
Järvi S., Hellman M., Aarabi F., Alseekh S., Wybouw B., Van Der Kelen
K., Nikkanen L., Krasensky-Wrzaczek J., Sipari N., Keinänen M.,
Tyystjärvi E., Rintamäki E., De Rybel B., Salojärvi J., Van Breusegem
F., Fernie A.R., Brosché M., Permi P., Aro E.-M., Wrzaczek M., &
Kangasjärvi J. (2019). Arabidopsis RCD1 coordinates chloroplast and
mitochondrial functions through interaction with ANAC transcription
factors. eLife, 8, e43284.
Shumbe L., D’Alessandro S., Shao N., Chevalier A., Ksas B., Bock R. &
Havaux M. (2017). METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for
acclimation of Arabidopsis to singlet oxygen and acts downstream of
β-cyclocitral. Plant, Cell and Environment, 40, 216-226.
Streatfield S.J., Weber A. Kinsman E.A., Häusler R.E., Li J.,
Post-Beittenmiller D., Kaiser W.M., Pyke K.A., Flügge U.-I. & Chory J.
(1999). The phosphoenolpyruvate/phosphate translocator is required for
phenolic metabolism, palisade cell development, and plastid-dependent
nuclear gene expression. The Plant Cell, 11, 1609-1621.
Sweetlove L.J. Beard K.F.M., Nunes-Nesi A., Fernie A.R. & Ratcliffe
R.G. (2010). Not just a circle: flux modes in the plant TCA cycle.
Trends in Plant Science, 15, 462-470.
Suetsugu N., Takemiya A., Kong S.-G., Higa T., Komatsu A., Shimazaki K.,
Kohchi T. & Wada M. (2016). RPT2/NCH1 subfamily of NPH3-like proteins
is essential for the chloroplast accumulation response in land plants.
Proceedings of the National Academy of Sciences USA, 113, 10424-10429.
Sun A.Z., & Guo F.Q. (2016). Chloroplast retrograde regulation of heat
stress responses in plants. Frontiers in Plant Science, 7, 398.
Suzuki K., Nakanishi H., Bower J., Yoder D.W., Osteryoung K.W. &
Miyagishima S. (2009) Plastid chaperonin proteins Cpn60 and Cpn60are
required for plastid division in Arabidopsis thaliana . BMC Plant
Biology, 9, 38.
Swida-Barteczka A, Krieger-Liszkay A, Bilger W, Voigt U, Hensel G,
Szweykowska-Kulinska Z, Krupinska K (2018) The plastid-nucleus located
DNA/RNA binding protein WHIRLY1 regulates microRNA levels during stress
in barley (Hordeum vulgare L.). RNA Biology 15, 886–891
Usadel B., Nagel A., Steinhauser D., Gibon Y., Blasing O.E., Redestig
H., Sreenivasulu N., Krall L., Hannah M.A., Poree F., Fernie A.R. &
Stitt M. (2006). PageMan: an interactive ontology tool to generate,
display, and annotate overview graphs for profiling experiments. BMC
Bioinformatics, 7, 535.
Van Aken O., & Pogson B.J. (2017). Convergence of mitochondrial and
chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and
suppression of programmed cell death. Cell Death and Differentiation,
24, 955–960.
Wang, W., Li, K., Yang, Z., Hou, Q., Zhao, W. W., & Sun, Q. (2021).
RNase H1C collaborates with ssDNA binding proteins WHY1/3 and
recombinase RecA1 to fulfill the DNA damage repair in Arabidopsis
chloroplasts. Nucleic Acids Research, 49, 6771–6787.
Wang X.-C., Wu J., Guan M.-L., Zhao C.-H., Geng P. & Zhao Q. (2020).Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. The
Plant Journal, 101, 637-652.
Waters M.T., Wang P., Korkaric M., Capper R.G., Saunders N.J. &
Langdale J.A. (2009). GLK transcription factors coordinate expression of
the photosynthetic apparatus in Arabidopsis . The Plant Cell, 21,
1109-1128.
Wu G.Z., Meyer E.H., Richter A.S., Schuster M., Ling Q., Schottler M.A.,
Walther D., Zoschke R., Grimm B., Jarvis R.P., & Bock R. (2019).
Control of retrograde signalling by protein import and cytosolic folding
stress. Nature Plants, 5, 525-538.
Xu X.M., Adams S., Chua N.-H. & Møller S.G. (2005). AtNAP1 represents
an atypical SufB protein in Arabidopsis plastids. The Journal of
Biological Chemistry, 280, 6648-6654.
Yan Y., Liu W., Wei Y. & Shi H. (2020b). MeCIPK23 interacts with Whirly
transcription factors to activate abscisic acid biosynthesis and
regulate drought resistance in cassava. Plant Biotechnology Journal, 18,
1504–1506.
Yoshimura K., Mori T., Yokoyama K., Koike Y., Tanabe N., Sato N.,
Takahashi H., Maruta T. & Shigeoka S. (2011). Identification of
alternative splicing events regulated by an Arabidopsis
serine/arginine-like protein, atSR45a, in response to high-light stress
using a tiling array. Plant and Cell Physiology, 52, 1786-1805.
Yoo, C.Y., Pasoreck E.K., Wang H., Cao J, Blaha G.M., Weigel D. & Chen
M. (2019) Phytochrome activates the plastid-encoded RNA polymerase for
chloroplast biogenesis via nucleus-to-plastid signaling. Nature
Communications, 10, 2629.
Yoo H.H., Kwon C., Lee M.M., & Chang I.K. (2007). Single-stranded DNA
binding factor AtWHY1 modulates telomere length homeostasis
in Arabidopsis . The Plant Journal, 49, 442–451.
Zhao S.-Y., Wang G.-D., Zhao W.-Y., Zhang S., Kong F.-Y., Dong X.-C., &
Meng Q.-W. (2018). Overexpression of tomato WHIRLY protein enhances
tolerance to drought stress and resistance to Pseudomonas solanacearum
in transgenic tobacco. Biologia Plantarum, 62, 55-68.
Zhuang K., Wang J., Jiao B., Chen C., Zhang J., Ma N. & Meng Q. (2020).
WHIRLY1 maintains leaf photosynthetic capacity in tomato by regulating
the expression of RbcS1 under chilling stress. Journal of Experimental
Botany, 71, 3653–3663.