References
Ballester P., Navarrete-Gómez M., Carbonero P., Oñate-Sánchez L. & Ferrándiz C. (2015). Leaf expansion in Arabidopsis is controlled by a TCP-NGA regulatory module likely conserved in distantly related species. Physiologia Plantarum, 155(1), 21-32.
Bastakis E., Hedtke B., Klermund C., Grimm B. & Schwechheimer C. (2018). LLM-Domain B-GATA transcription factors play multifaceted toles in controlling greening in Arabidopsis. The Plant Cell, 30, 582-599.
Bastow E.L., Bych K., Crack J.C., Le Brun N.E. & Balk J. (2017). NBP35 interacts with DRE2 in the maturation of cytosolic iron-sulphur proteins in Arabidopsis thaliana . The Plant Journal, 89, 590-600.
Bonke M., Thitamadee S., Mähönen A.P., Hauser M.-T. & Helariutta Y. (2003) APL regulates vascular tissue identity in Arabidopsis. Nature, 426, 181-186.
Brown D.M., Zeef L.A.H., Ellis J., Goodacre R. & Turner S.R. (2005). Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. The Plant Cell, 17, 2281-2295.
Camoirano A., Arce A.L., Ariel F.D., Alem A.L., Gonzalez D.H. & Viola I.L. (2020). Class I TCP transcription factors regulate trichome branching and cuticle development in Arabidopsis. Journal of Experimental Botany, in press, doi:10.1093/jxb/eraa257.
Comadira G., Rasool B., Karpinska B., Morris J., Verrall S.R., Hedley P.E., Foyer C.H. & Hancock R.D. (2015). Nitrogen deficiency in barley (Horedeum vukgare ) seedlings induces molecular and metabolic adjustments that trigger aphid resistance. Journal of Experimental Botany, 66(12), 3639-3655.
Comadira G., Rasool B., Karpinska B., Márquez García B., Morris J., Verrall S.R., Bayer M., Hedley P.E., Hancock R.D., & Foyer, C.H. (2015). WHIRLY1 functions in the control of responses to N-deficiency but not aphid infestation in barley (Hordeum vulgare ). Plant Physiology, 168, 1140-1151.
De Clercq I., Vermeirssen V.,  Van Aken O., Vandepoele K., Murcha M.W.,  Law S.R., Inzé D., Ng S., Ivanova A., Rombaut D., van de Cotte B., Jaspers P., Van de Peer Y., Kangasjärvi J., Whelan J., & Van Breusegem F. (2013). The membrane-bound NAC transcription factor ANAC013 functions in mitochondrial retrograde regulation of the oxidative stress response in Arabidopsis. The Plant Cell, 25, 3472–3490.
Desveaux D., Subramaniam R., Després C., Mess J.N., Lévesque C., Fobert P.R., Dangl J.L., & Brisson N (2004). A “Whirly” transcription factor is required for salicylic acid dependent disease resistance in Arabidopsis. Developmental Cell, 6, 229-240.
Desveaux D., Maréchal A., & Brisson N. (2005). Whirly transcription factors: defense gene regulation and beyond. Trends in Plant Science, 10, 95-102.
Diaz M.G., Hernandez-Verdeja T., Kremnev D., Crawford T., Dubreuil C., & Strand A. (2018). Redox regulation of PEP activity during seedling establishment in Arabidopsis thaliana. Nature Communications, 9, 50.
Dietz K., & Pfannschmidt T. (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiology, 155, 1477-1485.
Foyer C.H., Karpinska B.. & Krupinska K. (2014). The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: A hypothesis. Philosophical Transactions of the Royal Society B, 369, 20130226.
Golin, S., Negroni, Y. L., Bennewitz, B., Klösgen, R. B., Mulisch, M., La Rocca, N., Cantele, F., Vigani, G., Lo Schiavo, F., Krupinska, K., & Zottini, M. (2020). WHIRLY2 plays a key role in mitochondria morphology, dynamics, and functionality in Arabidopsis thaliana . Plants Direct, 4, e00229. https://doi.org/10.1002/pld3.229
Grabowski E., Miao Y., Mulisch M., & Krupinska K. (2008). Single stranded DNA-binding protein Whirly1 in barley leaves is located in plastids and the nucleus of the same cell. Plant Physiology, 147, 1800–1804.
Grubler B., Merendino L., Twardziok S.O., Mininno M., Allorent G., Chevalier F., Liebers M., Blanvillain R., Mayer K.F.X., Lerbs-Mache S., Ravanel S., &  Pfannschmidt T. (2017). Light and plastid signals regulate different sets of genes in the albino mutant Pap7-1. Plant Physiology, 175, 1203-1219.
Guan Z., Wang W., Yu X., Lin L., & Miao. (2018). Comparative proteomic analysis of coregulation of CIPK14 and WHIRLY1/3 mediated pale yellowing of leaves in Arabidopsis. International Journal of Molecular Sciences, 19, 2231.
Harrington H.A., Feliu E., Wiuf C., & Stumpf M.P.H. (2013). Cellular compartments cause multistability and allow cells to process more information. Biophysical Journal, 104, 1824-1831.
Hu X., Kato Y., Sumida A., Tanaka A. & Tanaka R. (2017). The SUFBC2D complex is required for the biogenesis of all major classes of plastid Fe-S proteins. The Plant Journal, 90, 235-248.
Huang D., Lin W., Deng B., Ren Y., & Miao Y. ( 2017). Dual-located WHIRLY1 interacting with LHCA1 alters photochemical activities of photosystem I and is involved in light adaptation in Arabidopsis. International Journal of Molecular Sciences. 18, 2352.
Huang H., Ullah F., Zhou D.-X., Yi M. & Zhao Y. (2019) Mechanisms of ROS Regulation of Plant Development and Stress Responses. Frontiers in Plant Science 10, 800
Huang C., Yu J., Cai Q., Chen Y., Li Y., Ren Y., & Miao Y. (2020). Triple-localized WHIRLY2 influences leaf senescence and silique development via carbon allocation. Plant Physiology, 184, 1348–1362.
Isemer R, Mulisch M, Schäfer A, Kirchner S, Koop HU, Krupinska K (2012) Recombinant Whirly1 translocates from transplastomic chloroplasts to the nucleus. FEBS Lett 586: 85–88
James M., Poret M., Masclaux-Daubresse C., Marmagne A., Coquet L., Jouenne T., Chan P., Trouverie J. & Etienne P. (2018). SAG12, a major cysteine protease involved in nitrogen allocation during senescence for seed production in Arabidopsis thaliana. Plant and Cell Physiology, 59(10), 2052-2063.
Kim J., Rudella A., Rodriguez V.R., Zybailov B. Olinares P.D.B. & van Wijk K.J. (2009). Subunits of the plastidClpPR protease complex have differential contributions to embryogenesis, plastid biogenesis, and plant development in Arabidopsis . The Plant Cell, 21, 1669-1692.
Kim J.I., Murphy A.S., Baek D., Lee S.-W., Yun D.-J., Bressan R.A. & Narasimhan M.L. (2011) YUCCA6 over-expression demonstrates auxin function in delaying leaf senescence in Arabidopsis thaliana . Journal of Experimental Botany, 62(11), 3981-3992.
Kindgren P., Kremnev D., Blanco N.E., de Dios Barajas Lopez J., Fernandez A.P., Tellgren-Roth C., Kleine T., Small I., & Strand A. (2012) The plastid redox insensitive 2 mutant of Arabidopsis is impaired in PEP activity and high light-dependent plastid redox signalling to the nucleus. Plant Journal, 70, 279-291.
Kohorn B.D., Kobayashi M., Johansen S., Riese J., Huang L.-F., Koch K., Fu S., Dotson A. & Byers N. (2006) An Arabidopsis cell wall-associated kinase required for invertase activity and cell growth. The Plant Journal, 46(2), 307-316.
Klermund C., Ranftl Q.L., Diener J., Bastakis E., Richter R. & Schwechheimer, C. (2016). LLM-Domain B-GATA transcription factors promote stomatal development downstream of light signaling pathways inArabidopsis thaliana hypocotyls. The Plant Cell, 28, 646-660.
Krause K., Kilbienskia I., Mulischb M., Rödigerc A., Schäfera A., & Krupinska, K. (2005). DNA-binding proteins of the Whirly family in Arabidopsis thaliana are targeted to the organelles. FEBS Letters, 579, 3707-3712.
Krupinska K, Haussühl K, Schäfer A, van der Kooij TA, Leckband G, Lörz H, Falk J (2002) A novel nucleus-targeted protein is expressed in barley leaves during senescence and pathogen infection. Plant Physiology, 130, 1172–1180.
Krupinska K., Oetke S., Desel C., Mulisch M., Schäfer A., Hollmann J., Kumlehn J., & Hensel G. (2014). WHIRLY1 is a major organizer of chloroplast nucleoids. Fronteirs in Plant Science, 5, 432.
Krupinska K., Braun S., Nia M.S., Schäfer A., Hensel G., & Bilger W. (2019). The nucleoid‑associated protein WHIRLY1 is required for the coordinate assembly of plastid and nucleus‑encoded proteins during chloroplast development. Planta, 249, 1337–1347.
Lepage É., Zampini É., & Brisson N. (2013). Plastid genome instability leads to reactive oxygen species production and plastid-to-nucleus retrograde signaling in Arabidopsis. Plant Physiology, 163, 867–881.
Li X., Henry R., Yuan J., Cline K. & Hoffman N.E. (1995). A chloroplast homologue of the signal recognition particle subunit SRP54 is involved in the posttranslational integration of a protein into thylakoid membranes. Proceedings of the National Academy of Sciences USA, 92, 3789-3793.
Lichtenthaler H.K. ( 1987). Chlorophylls and carotenoids - pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350-382.
Lima A., Lima S., Wong J.H., Phillips R.S., Buchanan B.B. & Luan S. (2006) A redox-active FKBP-type immunophilin functions in accumuylation of the photosystem II supercomplex in Arabidiopsis thaliana . Proceedings of the National Academy of Sciences USA, 103, 12631-12636.
Lin W, Huang D, Shi X, Deng B, Ren Y, Lin W, Miao Y (2019) H2O2 as a feedback signal on dual-located WHIRLY1 associates with leaf senescence in Arabidopsis. Cells 8: 1585.
Liu Z., Jia L., Wang H. & He Y. (2011) HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via miRNA-mediated pathways. Journal of Experimental Botany, 62(12), 4367-4381.
Luo X.-M., Lin W.-H., Zhu S., Zhu J.-Y., Sun Y., Fan X.-Y., Cheng M., Hao Y., Oh E., Tian M., Liu L., Zhang M., Xie Q., Chong K. & Wang Z.-Y. (2010). Integration of light- and brassinosteroid-signaling pathways by a GATA transcription factor in Arabidopsis . Developmental Cell, 19, 872-883.
Maréchal A., Parent J.-S., Sabar M., Véronneau-Lafortune F., Abou-Rached C., & Brisson N. (2008). Overexpression of mtDNA-associated AtWhy2 compromises mitochondrial function. BMC Plant Biology, 8, 42.
Maréchal A., Parent J.S., Véronneau-Lafortune F., Joyeux A., Lang B.F., & Brisson N. (2009). Whirly proteins maintain plastid genome stability in Arabidopsis. Proceedings of the National Academy of Sciences USA, 106, 14693–14698.
Marowa P., Ding A. & Kong Y. (2016). Expansins: roles in plant growth and potential applications in crop improvement. Plant Cell Reports, 35, 949-965.
Melonek J., Mulisch M., Schmitz-Linneweber C., Grabowski E., Hensel G., & Krupinska K. (2010). Whirly1 in chloroplasts associates with intron containing RNAs and rarely co-localizes with nucleoids. Planta, 232, 471–481.
Morley S.A., & Nielsen B.L. (2016). Chloroplast DNA copy number changes during plant development in organelle DNA polymerase mutants. Frontiers in Plant Science, 7, 57.
Motchoulski A. & Liscum E. (1999). Arabidopsis NPH3: A NPH1 photoreceptor-Interacting protein essential for phototropism. Science, 286, 961-964.
Müller C.J., Valdés A.E., Wang G., Ramachandran P., Beste L., Uddenberg D. & Carlsbecker A. (2016) PHABULOSA mediates an auxin signaling loop to regulate vascular patterning in Arabidopsis. Plant Physiology, 170, 956-970.
Nagashima Y., Tsugawa S., Mochizuki A., Sasaki T., Fukuda F. & Oda Y. (2018) A Rho-based reaction-difusion system governs cell wall patterning in metaxylem vessels. Scientific Reports , 8, 11542.
Neuteboom L.W., Veth-Tello L.M., Cludesdale O.R., Hooykaas P.J.J. & van der Zaal B.J. (1999). A novel subtilisin-like protease gene fromArabidopsis thaliana is expressed at sites of lateral root emergence. DNA Research, 6(1), 13-19.
Novitskaya L., Trevanion S.J., Driscoll S., Foyer C.H. & Noctor G. (2002). How does photorespiration modulate leaf amino acid contents? A dual approach through modelling and metabolite analysis. Plant, Cell and Environment, 25, 821-835.
Ohashi-Ito K. & Bergmann D.C. (2006) Arabidopsis FAMA controls the final proliferation/
differentiation switch during stomatal development. The Plant Cell, 18, 2493-2505.
Osteryoung K.W., Stokes K.D., Rutherford S.M/, Percival A.L. & Lee W.Y. (1998). Chloroplast division in higher plants requires members of two functionally divergent gene families with homology to bacterialftsZ . The Plant Cell, 10, 1991-2004.
Pogson B.J., Woo N.S., Forster B., & Small I.D. (2008). Plastid signalling to the nucleus and beyond. Trends in Plant Science, 13, 602-609.
Powikrowska M., Oetke S., Jensen P.E. & Krupinska K. (2014) Dynamic composition, shaping and organization of plastid nucleoids. Frontiers in Plant Science, 5, 424.
Prikryl J., Watkins K.P., Friso G., van Wijk K.J., & Barkan A. (2008). A member of the Whirly family is a multifunctional RNA- and DNA-binding protein that is essential for chloroplast biogenesis. Nucleic Acids Research, 36, 5152–5165.
Richter R., Behringer C., Zourelidou M. & Schwechheimer C. (2013). Convergence of auxin and gibberellin signaling on the regulation of the GATA transcription factors GNC and GNL in Arabidopsis thaliana . Proceedings of the National Academy of Sciences USA, 110, 13192-13197.
Roland M.m Przybyla-Toscano J., Vignols F., Berger N., Azam T., Christ L., Santoni V., Wu H.-C., Dhalleine T., Johnson M.K., Dubos C., Couturier J. & Rouhier N. (2020). The plastidial Arabidopsis thaliana NFU1 protein binds and delivers [4Fe-4S] clusters to specific client proteins. The Journal of Biological Chemistry, 295, 1727-1742.
Rose J.K.C., Braam J., Fry S.C. & Nishitani K. (2002) The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: Current perspectives and a new unifying nomenclature. Plant and Cell Physiology, 43(12), 1421-1435.
Rubio M.C., Calco-Begueria L., Díaz-Mendoza M., Elhiti M., Moore M., Matamoros M.A., James E.K., Díaz I., Pérez-Rontomé C., Villar I., Sein-Echaluce V.C., Hebelstrup K.H., Dietz K.-J. & Becana M. (2019). Phytoglobins in the nuclei, cytoplasm and chloroplasts modulate nitric oxide signaling and interact with abscisic acid. The Plant Journal, 100, 38-54.
Safrany J., Haasz V., Máté Z., Ciolfi A., Feher B., Oravecz A., Stec A., Dallmann G., Morelli G., Ulm R., & Nagy F. (2008). Identification of a novel cis-regulatory element for UV-B-induced transcription in Arabidopsis. The Plant Journal, 54, 402–414.
Schröder F., Lisso J., Lange P. & Müssig C. (2009) The extracellular EXO protein mediates cell expansion in Arabidopsis leaves. BMC Plant Biology, 9, 20.
Schuetz M., Fidanza M. & Mattsson J. (2019). Identification of auxin response factor-encoding genes expressed in distinct phases of leaf vein development and with overlapping functions in leaf formation. Plants, 8, 242.
Selinski J. & Scheibe R. (2019). Malate valves: old shuttles with new perspectives. Plant Biology, 21 (Suppl 1), 21-30.
Shapiguzov A., Vainonen J.P., Hunter K., Tossavainen H., Tiwari A., Järvi S., Hellman M., Aarabi F., Alseekh S., Wybouw B., Van Der Kelen K., Nikkanen L., Krasensky-Wrzaczek J., Sipari N., Keinänen M., Tyystjärvi E., Rintamäki E., De Rybel B., Salojärvi J., Van Breusegem F., Fernie A.R., Brosché M., Permi P., Aro E.-M., Wrzaczek M., & Kangasjärvi J. (2019). Arabidopsis RCD1 coordinates chloroplast and mitochondrial functions through interaction with ANAC transcription factors. eLife, 8, e43284.
Shumbe L., D’Alessandro S., Shao N., Chevalier A., Ksas B., Bock R. & Havaux M. (2017). METHYLENE BLUE SENSITIVITY 1 (MBS1) is required for acclimation of Arabidopsis to singlet oxygen and acts downstream of β-cyclocitral. Plant, Cell and Environment, 40, 216-226.
Streatfield S.J., Weber A. Kinsman E.A., Häusler R.E., Li J., Post-Beittenmiller D., Kaiser W.M., Pyke K.A., Flügge U.-I. & Chory J. (1999). The phosphoenolpyruvate/phosphate translocator is required for phenolic metabolism, palisade cell development, and plastid-dependent nuclear gene expression. The Plant Cell, 11, 1609-1621.
Sweetlove L.J. Beard K.F.M., Nunes-Nesi A., Fernie A.R. & Ratcliffe R.G. (2010). Not just a circle: flux modes in the plant TCA cycle. Trends in Plant Science, 15, 462-470.
Suetsugu N., Takemiya A., Kong S.-G., Higa T., Komatsu A., Shimazaki K., Kohchi T. & Wada M. (2016). RPT2/NCH1 subfamily of NPH3-like proteins is essential for the chloroplast accumulation response in land plants. Proceedings of the National Academy of Sciences USA, 113, 10424-10429.
Sun A.Z., & Guo F.Q. (2016). Chloroplast retrograde regulation of heat stress responses in plants. Frontiers in Plant Science, 7, 398.
Suzuki K., Nakanishi H., Bower J., Yoder D.W., Osteryoung K.W. & Miyagishima S. (2009) Plastid chaperonin proteins Cpn60 and Cpn60are required for plastid division in Arabidopsis thaliana . BMC Plant Biology, 9, 38.
Swida-Barteczka A, Krieger-Liszkay A, Bilger W, Voigt U, Hensel G, Szweykowska-Kulinska Z, Krupinska K (2018) The plastid-nucleus located DNA/RNA binding protein WHIRLY1 regulates microRNA levels during stress in barley (Hordeum vulgare L.). RNA Biology 15, 886–891
Usadel B., Nagel A., Steinhauser D., Gibon Y., Blasing O.E., Redestig H., Sreenivasulu N., Krall L., Hannah M.A., Poree F., Fernie A.R. & Stitt M. (2006). PageMan: an interactive ontology tool to generate, display, and annotate overview graphs for profiling experiments. BMC Bioinformatics, 7, 535.
Van Aken O., & Pogson B.J. (2017). Convergence of mitochondrial and chloroplastic ANAC017/PAP-dependent retrograde signalling pathways and suppression of programmed cell death. Cell Death and Differentiation, 24, 955–960.
Wang, W., Li, K., Yang, Z., Hou, Q., Zhao, W. W., & Sun, Q. (2021). RNase H1C collaborates with ssDNA binding proteins WHY1/3 and recombinase RecA1 to fulfill the DNA damage repair in Arabidopsis chloroplasts. Nucleic Acids Research, 49, 6771–6787.
Wang X.-C., Wu J., Guan M.-L., Zhao C.-H., Geng P. & Zhao Q. (2020).Arabidopsis MYB4 plays dual roles in flavonoid biosynthesis. The Plant Journal, 101, 637-652.
Waters M.T., Wang P., Korkaric M., Capper R.G., Saunders N.J. & Langdale J.A. (2009). GLK transcription factors coordinate expression of the photosynthetic apparatus in Arabidopsis . The Plant Cell, 21, 1109-1128.
Wu G.Z., Meyer E.H., Richter A.S., Schuster M., Ling Q., Schottler M.A., Walther D., Zoschke R., Grimm B., Jarvis R.P., & Bock R. (2019). Control of retrograde signalling by protein import and cytosolic folding stress. Nature Plants, 5, 525-538.
Xu X.M., Adams S., Chua N.-H. & Møller S.G. (2005). AtNAP1 represents an atypical SufB protein in Arabidopsis plastids. The Journal of Biological Chemistry, 280, 6648-6654.
Yan Y., Liu W., Wei Y. & Shi H. (2020b). MeCIPK23 interacts with Whirly transcription factors to activate abscisic acid biosynthesis and regulate drought resistance in cassava. Plant Biotechnology Journal, 18, 1504–1506.
Yoshimura K., Mori T., Yokoyama K., Koike Y., Tanabe N., Sato N., Takahashi H., Maruta T. & Shigeoka S. (2011). Identification of alternative splicing events regulated by an Arabidopsis serine/arginine-like protein, atSR45a, in response to high-light stress using a tiling array. Plant and Cell Physiology, 52, 1786-1805.
Yoo, C.Y., Pasoreck E.K., Wang H., Cao J, Blaha G.M., Weigel D. & Chen M. (2019) Phytochrome activates the plastid-encoded RNA polymerase for chloroplast biogenesis via nucleus-to-plastid signaling. Nature Communications, 10, 2629.
Yoo H.H., Kwon C., Lee M.M., & Chang I.K. (2007). Single-stranded DNA binding factor AtWHY1 modulates telomere length homeostasis in Arabidopsis . The Plant Journal, 49, 442–451.
Zhao S.-Y., Wang G.-D., Zhao W.-Y., Zhang S., Kong F.-Y., Dong X.-C., & Meng Q.-W. (2018). Overexpression of tomato WHIRLY protein enhances tolerance to drought stress and resistance to Pseudomonas solanacearum in transgenic tobacco. Biologia Plantarum, 62, 55-68.
Zhuang K., Wang J., Jiao B., Chen C., Zhang J., Ma N. & Meng Q. (2020). WHIRLY1 maintains leaf photosynthetic capacity in tomato by regulating the expression of RbcS1 under chilling stress. Journal of Experimental Botany, 71, 3653–3663.